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Associations between neighborhood food environment and adult body mass index (BMI; weight (kg)/height (m)2)
derived using cross-sectional or longitudinal random-effects models may be biased due to unmeasured confounding
and measurement and methodological limitations. In this study, we assessed the within-individual association
between change in food environment from 2006 to 2011 and change in BMI among adults with type 2 diabetes using
clinical data from the Kaiser Permanente Diabetes Registry collected from 2007 to 2011. Healthy food environment
was measured using the kernel density of healthful food venues. Fixed-effects models with a 1-year-lagged BMI
were estimated. Separate models were fitted for persons who moved and those who did not. Sensitivity analysis
using different lag times and kernel density bandwidths were tested to establish the consistency of findings. On aver-
age, patients lost 1 pound (0.45 kg) for each standard-deviation improvement in their food environment. This rela-
tionship held for persons who remained in the same location throughout the 5-year study period but not among
persons who moved. Proximity to food venues that promote nutritious foods alone may not translate into clinically
meaningful diet-related health changes. Community-level policies for improving the food environment need multifac-
eted strategies to invoke clinically meaningful change in BMI among adult patients with diabetes.

built environment; diabetes; econometrics; food environment; obesity

Abbreviations: BMI, body mass index; ITT, intention to treat; OLS, ordinary least squares.

Over 22 million Americans—7% of the US population—
were diagnosed with diabetes in 2012, at a total cost of $245
billion, including direct medical costs and lost productivity
(1). Obesity is a major risk factor for development of type 2
diabetes; 60%–90% of cases of type 2 diabetes mellitus are
associated with obesity or weight gain (2). Weight manage-
ment for control of blood glucose levels and reduction of
cardiovascular disease risk based on a personalized diet and
exercise plan is an important goal for diabetic patients (3).

Recently, policy-makers have focused on community-
level approaches to reducing obesity in addition to individual-
level approaches (4). A primary driver of the community-level
approach is the notion that the “food environment” contributes
to individual weight status and chronic disease conditions.

Government interventions such as the Healthy Food Financing
Initiative have been implemented to increase the numbers and
types of stores carrying healthy food (5, 6). Supermarkets and
produce vendors have been identified as 2 types of food venues
that may exert a positive influence on weight change (7).

Although there is some evidence that a healthy food envi-
ronment and low body mass index (BMI) coexist, these asso-
ciations may suffer from selection bias because people are
not randomly assigned to their neighborhoods (8). In other
words, a person’s food environment may reflect diet, health
status, and exercise preferences and voluntary or involuntary
neighborhood selection (9). Because it is costly and ethically
challenging to randomize individuals to different neighbor-
hoods, few studies have been able to avoid selection bias by
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design. Researchers from the Moving to Opportunity Study
(10), in which housing vouchers were randomly assigned to
low-income families to move to wealthier neighborhoods,
found a significantly lower percentage of severe obesity in
the intervention group 10 years later. Very few observational
studies of the association between the built environment and
BMI have addressed the endogeneity issue (in this case, the
idea that neighborhoods are not randomly assigned) by using
more sophisticated design or analysis techniques (11).

Although some observational cross-sectional studies have
supported an association between the presence of supermar-
kets and lower BMI, including differential effects by race/
ethnicity (12), the evidence for improved weight and health
outcomes is mixed (9, 13–17). Shier et al. (18) found that
the cross-sectional relationship between neighborhood food
environment and youth body mass index disappeared when
the association was examined longitudinally.

In this study, the Diabetes Study of Northern California
(DISTANCE), we tested the longitudinal association between
changes in the food environment and changes in BMI among
diabetic adults over a 5-year period. A measure of good food
environment was designed for this research in order to cap-
ture both density and proximity (19). We hypothesized that
as the food environment became more health-promoting, as
measured by residential proximity to healthy food vendors,
the BMI of adults with diabetes would decrease.

Specifically, this study contributes to advancing knowledge
on the role of the food environment in obesity by exposing 2
types of bias: 1) omitted-variable bias and 2) residential self-
selection bias. The individual fixed-effects approach targets
the within-individual change in BMI and by design controls
for time-invariant person-specific variables (i.e., preferences
for healthy food, tendency to cook, etc.). This approach was
taken because the variables that are omitted in standard ordi-
nary least squares (OLS) estimates were expected to induce
positive bias in the coefficient on food environment.

Residential selection bias was the second source of bias
addressed in this study. Separate models were fitted for per-
sons who moved and persons who did not move during the
observation period. Among those who remained in a single
location, the individual fixed-effects model estimated the
association between BMI and changes in the residential
neighborhood, such as store openings or closings, which are
presumably unexpected and thus can be assumed to be
largely exogenous to residential decisions. Estimating asso-
ciations among movers is potentially more problematic due
to possible endogenous migration related to either neighbor-
hood change or other unobserved life changes with potential
direct effects on BMI.

METHODS

Study design and subjects

Individual-level data were obtained from the Kaiser Per-
manente Northern California Diabetes Registry, a prospec-
tively assembled cohort of insured patients established in
1993 to measure the prevalence and incidence of diabetes
and to understand factors associated with disease progres-
sion. Clinical data used in this study were collected during

the period 2007–2011 from ambulatory patient visits to Kai-
ser Permanente Northern California clinics (n = 369,222).
Patients with type 1 (n = 3,616) or unknown-type (n =
11,085) diabetes and patients who were pregnant at some
point within the study period or 1 year prior (n = 2,327),
had cancer within the study period or 1 year prior (n =
23,871), or had a history of lower-extremity amputation
(n = 3,922) were excluded. All study protocols were ap-
proved by the Kaiser Permanente Division of Research and
the Committee for Protection of Human Subjects of the Uni-
versity of California, Berkeley.

Due to patient privacy concerns, patient residence was geo-
coded to the census block centroid according to the patient
address data from February of each year. Patients with at least
1 valid geocodable address during 2006–2010 in the 19 coun-
ties served by Kaiser Permanente Northern California were re-
tained for analysis. Of patients with a census block identifier,
75% had at least 1 measurement of BMI in all 5 years, 18%
had at least 1 BMI measurement in 4 of the 5 years, and fewer
than 1% had only 1 BMI measurement during all 5 years.

Main outcome

The main outcome, BMI (weight (kg)/height (m)2), was
calculated at each patient visit and was grand-mean-centered
(20). The interquartile range for number of BMI measurements
was 10–27 (median, 17) over the 5-year study period and 2–8
(median, 4) per year. Two variables were created to account
for the timing and quality of BMI measurement. First, indicator
variables for each month of BMI measurement were generated
to adjust for seasonal variation. Second, an indicator for mea-
surement precision (1 = calculated from exact visit weight and
height, 0 = midpoint of range-based BMI). One-year-lagged
BMI was used as our main specification, since there is no evi-
dence regarding the average length of time for which a new
store could influence a change in shopping behaviors (21).

Measurement of the local food environment

A measure of food environment, kernel density surface of
good food, was constructed because it captures both density
and proximity dimensions (22). First, we used the software
ArcGIS (ESRI, Redlands, California) and the business data-
base InfoUSA (Infogroup, Papillion, Nebraska), as acquired
from ESRI, to geocode the addresses of supermarkets and
produce vendors from 2006 to 2010 in our study area. We
identified 380 produce vendors using code 543101 of the
North American Industry Classification System (23). We
identified 1,096 supermarkets using codes 541105, 541101,
543102, and 543101 and included them if they had a sales
volume of at least $2 million and a size of at least 2,500
square feet (232m2).

As in previous studies, we included supermarkets and
produce vendors in a single measure to avoid multicollinear-
ity among multiple measures of stores selling nutritious
items such fruits and vegetables (16, 24). After identification
of all supermarkets and produce vendors in 19 counties of
Northern California, we used a quartic (biweight) kernel
function to create a continuous kernel density surface with a
1-mile (1.6-km) radius, where the density was greatest at the
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geocoded point for each vendor and decreased to zero at the
edge of the radius. We selected the 1-mile fixed bandwidth
as our primary measure because in this sample the mean dis-
tance to the closest supermarket was 1.3 miles (2.1 km),
with a standard deviation of 1.2 miles (1.9 km). Two alter-
nate measures with bandwidths of 2.1 miles (3.8 km) and
4.5 miles (7.2 km) were also created. A bandwidth of 2.1
miles was selected after applying Silverman’s rule to deter-
mine the optimal smoothed surface (25). The bandwidth of
4.5 miles was selected because a majority of Americans
travel no farther than 4.5 miles to reach their primary super-
market (26). Finally, we assigned the value of the surface of
the patient’s census block (smallest unit available) centroid
for each year from 2006 to 2010.

Covariates

Data on individual time-varying covariates were collected
from 2007 to 2011. Demographic variables included age (in
years, mean-centered). An indicator for enrollment in the
Medicaid program (1 = Medicaid, 0 = not on Medicaid)
was constructed. Because all members of this cohort had
health insurance, enrollment in Medicaid was included to
control for shocks in individual income, which might affect
a person’s interaction with the food environment and also
BMI. Health variables were included to control for variation
in health status and receipt of health care. Covariates included
a continuous score (possible range, 0–33) for the Charlson
comorbidity index (27), a weighted index taking into account
the number and seriousness of comorbid conditions. Medica-
tion indicators included use of insulin, oral diabetes medica-
tions, and certain psychiatric medications that are associated
with weight change.

Time-varying census block group covariates from the Amer-
ican Community Survey (28) were included as additional con-
trol variables and linked to patient block group. In the absence
of more precise measures, we used 5-year pooled estimates as
a proxy for the middle year (i.e., 2005–2009 for 2007 and
2006–2010 for 2008). These measures included continuous
variables: population density (population per square mile), pro-
portion non-Hispanic white, proportion black, and proportion
of households under the federal poverty line (the number of
people living under the federal poverty line divided by total
population per block group).

The only individual time-invariant covariate was an indi-
cator for residential moves. Movers (1 = movers, 0 = non-
movers) were defined as persons who reported at least 2
different valid addresses between 2006 and 2010.

Statistical methods

First, the mean values and standard deviations of time-
varying variables were determined by decomposing the
between-person and within-person components.

Standard models using OLS and individual random effects
were fitted to compare with the a priori preferred fixed-effects
specifications. A Hausman test (29) was used to compare
model specifications for consistency. It was hypothesized that
the fixed-effects models would attenuate the relationship

between food environment and BMI observed in the OLS and
random-effects models if omitted variable bias was reduced.

In order to understand how change in BMI is related to
the change in food environment, the within-person relation-
ship between changes in food environment and 1-year-
lagged BMI was estimated using year and individual fixed
effects, as follows:

= β + β + β + β + β
+β + ε
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where BMIits is a measure of the BMI of individual i on
occasion s nested in year t; βoi is the individual intercept that
is swept out in the fixed-effects model; Envirit−1 is a mea-
sure of the food environment for individual i in year t − 1;
Mits is a vector of measurement characteristics of the BMI of
individual i on occasion s nested in year t (quality, month);
Xit is a vector of individual characteristics in year t (age,
Medicaid enrollment, Charlson comorbidity index, and indi-
cators of medication use (insulin, oral medication, weight
gain medication, and weight loss medication)); Zit−1 is a
vector of lagged area-level controls of individual i in year
t − 1 (population density, proportion white, proportion
black, proportion poor); YearD includes indicators for year
t; and εit is the time- and individual-specific error term.

Several approaches were employed to better understand
whether the association between changes in the food envi-
ronment and BMI was affected by selection bias. To account
for the extent to which residential moves may bias estimates,
2 approaches were taken that exploit different portions of
neighborhood variation. First, an approach analogous to that
of an “intention-to-treat” (ITT) model was used, examining
only the variation over time in the movers’ original neigh-
borhood and ignoring the characteristics of the new (endog-
enously chosen) neighborhood. Moving was hypothesized
to be analogous to a person becoming “noncompliant” with
the treatment. The ITT approach was implemented using the
2006 address for all cohort members to model the associa-
tion between 1-year-lagged BMI and the local food environ-
ment score as the neighborhood changed around members
between 2006 and 2010.

Second, the same models were also fitted using the actual
address (non-ITT) at which the person lived each year prior to
the BMI measurements. For people who moved, the non-ITT
approach captures the relationship between the prior year’s
food environment and BMI along with residential self-
selection bias, while the ITT approach estimates the association
between BMI and the food environment “offered” to indivi-
duals. People who moved can be considered to have refused
the “offer.” People who moved into a neighborhood with a
similarly dynamic food environment as their 2006 neighbor-
hood are expected to have similar estimates for the ITT and
non-ITT approaches, in the absence of selection bias.

All models were weighted using the inverse of the num-
ber of BMI measurements taken over the entire period so as
to generalize back to the individuals in this population. Due
to the theoretically ambiguous prediction of the appropriate
length of the lag period in which food environment can
change BMI, alternate lag periods were considered, and
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models were refitted using a lag of 2 years (i.e., good food
environment kernel density 2 years prior to BMI measures)
and a contemporaneous specification. To understand the
change of transitioning from no food environment to any
additional food, we recoded our primary exposure variable
as a binary indicator that took the value of 0 when it was
zero and 1 when it was greater than zero. To assess model
sensitivity to kernel density bandwidth, we refitted our mod-
els with the 2 alternate measures with larger bandwidths. All
analyses were conducted using Stata (StataCorp LP, College
Station, Texas), version 12.

RESULTS

There were 194,652 individuals in this study who met the
above inclusion criteria and had at least 2 BMI measurements
between 2007 and 2011. Approximately 3.7% (n = 7,218)
had at least 1 missing time-varying parameter, 17.3% of the
participants moved at least once during the study period, and
on average 7.2% of participants moved each year.

Table 1 shows mean values and standard deviations
for the time-varying variables. The mean BMI was 31.83,
the within-person standard deviation was 1.69, and the
between-person standard deviation was 7.04. The measure
of food environment kernel density, interpreted as number

of stores per square kilometer, ranged from 0 to 5.70, with a
mean of 0.34 (or 0.13 stores per square mile), a within-
person standard deviation of 0.01, and a between-person
standard deviation of 0.45. Eighty-two percent of partici-
pants had a kernel density score greater than zero, and 14%
had a baseline score of zero.

The results from the OLS and random-effects models
with full sets of covariates had larger magnitudes of associa-
tion than those from the a priori preferred fixed-effects mod-
els; the coefficient on good food environment was −0.208
in the OLS model and −0.120 in the random-effects model
(both P’s < 0.001; not shown). The null value of the Hausman
test, which states that the random effect is not correlated with
the other independent variables, was rejected. This means
that the random-effects model is biased and inconsistent and
the fixed-effects model is preferred.

Results from ITT models 1–6 are shown in Table 2. These
models assumed no relocation from the 2006 address, and
the results represent the association between BMI and the
food environment “offered” to individuals. In model 1, there
was a negative association between kernel density of good
food environment and BMI. For each 1-unit increase in the
prior year, BMI decreased by 0.25 units (P < 0.001). Based on
the average person in this sample with a BMI of 31, a height of
5′9″ (175.3 cm), and a weight of 210 pounds (95.3 kg), this
change is roughly equivalent to losing 2 pounds (0.9 kg).

Table 1. Time-Varying Characteristics of Participants in a Study of Neighborhood Food Environment and Adult Body Mass Index, Northern
California, 2006–2011

Variable Mean

Standard Deviation

Minimum Maximum No. of
Individuals

No. of
ObservationsOverall Between-

Person
Within-
Person

BMIa 31.83 7.26 7.04 1.69 15 134 214,830 2,815,549

Good food environment (kernel density) 0.34 0.46 0.45 0.01 0 5.7 198,030 2,810,220

Age, years 63.43 13.07 13.23 1.47 18 109 214,826 3,212,896

Medicaid enrollment (yes/no) 0.02 0.15 0.12 0.04 0 1 213,113 3,003,353

CCI scoreb 2.17 1.92 1.45 0.99 0 19 214,830 3,212,923

Insulin use (yes/no) 0.20 0.40 0.32 0.18 0 1 214,830 3,212,923

Oral medication use (yes/no) 0.42 0.49 0.42 0.25 0 1 214,830 3,212,923

Medication causing weight gain (yes/no) 0.07 0.25 0.18 0.14 0 1 214,830 3,212,923

Medication causing weight loss (yes/no) 0.09 0.28 0.21 0.15 0 1 214,830 3,212,923

Quality of BMI measurement 0.97 0.18 0.11 0.16 0 1 214,830 2,815,549

Month of BMI measurement 6.41 3.40 1.54 3.23 0 1 214,830 2,815,549

Census block group characteristicsc

Population density, persons/square
miled

8,118.38 8,705.75 8,588.29 1,976.85 0 227,475 198,206 2,295,612

Proportion white 0.59 0.23 0.23 0.05 0 1 198,206 2,295,612

Proportion black 0.08 0.11 0.11 0.03 0 1 198,206 2,295,612

Proportion below federal poverty line 0.11 0.11 0.10 0.03 0 1 198,206 2,295,612

Abbreviations: BMI, body mass index; CCI, Charlson comorbidity index.
a Weight (kg)/height (m)2.
b The possible range of scores in the CCI (27) is 0–33. The range in this data set was 0–19.
c Measured at the US Census block group level.
d Number of persons per square mile (per 1.6 km2).

Am J Epidemiol. 2017;185(9):743–750

746 Laraia et al.



Model 2, which adjusted for BMI measurement type, month,
and year indicators, showed an attenuated association of
good food environment with a BMI loss of 0.09 units
(P < 0.001). The addition of individual time-varying covari-
ates in model 3 and block-group covariates in model 4 re-
sulted in only small changes to the estimates.

Model 5 was restricted to nonmovers and model 6 was
restricted to movers, adjusting for the same covariates as in
model 4. Among the nonmovers, each 1-unit increase in
good food environment was associated with a BMI decrease
of 0.094 units (P < 0.05), translating into a loss of approxi-
mately 1 pound (0.45 kg), a small but statistically significant
association in the anticipated direction. For persons who
moved at least once during the 5-year study period, there
was no statistically significant association between change
in good food environment and BMI in the ITT model.

Results from the non-ITT models (models 7–12) using
the actual observed food environment as the exposure of
interest are shown in Table 3. Results from model 7 show
that, as in the equivalent ITT model, there was a negative
association between kernel density of good food environ-
ment and BMI. Each 1-unit increase in kernel density of
good food environment in the prior year resulted in a

decrease in BMI of 0.076 units (P < 0.001). In model 8,
which included BMI measurement type and month and year
indicators, the association between kernel density of good
food environment and BMI became insignificant, and it re-
mained so in models 9 and 10, when the individual time-
varying covariates and the block-group controls were
included, respectively.

Model 11 restricted the analysis to nonmovers and model
12 to movers only; both included the same covariates as
model 10. Estimates from model 11 can be thought of as rep-
resenting the change in the density of supermarkets and
produce vendors in a residential area. For every 1-unit
increase in kernel density of good food environment, there
was a decrease in BMI of 0.084 units (P < 0.05). These re-
sults were similar to the results from model 5 in a slightly
smaller cohort. For movers, there was no relationship
between kernel density of good food environment in the
prior year and change in BMI (model 12).

There was no evidence for different associations between
the food environment and BMI using alternate lag struc-
tures. The results from substituting the binary exposure
variable were nearly identical to the main results (not
shown). Our estimates were sensitive to the bandwidth

Table 2. Coefficients (β (SEa)) from Ordinary Least Squares Models of the Influence of Food Environment on Body Mass Indexb With Individual
Fixed Effects (ITT Approachc), Northern California, 2006–2011

Variable
Modeld

1 2 3 4 5 (Nonmovers) 6 (Movers)

Intercept 31.59 (0.01)e 31.37 (0.02)e 36.58 (0.10)e 36.73 (0.18)e 36.73 (0.2)e 36.75 (0.42)e

Food environment in prior yearf −0.25 (0.03)e −0.09 (0.03)e −0.097 (0.03)e −0.09 (0.03)e −0.09 (0.04)g −0.06 (0.07)

Age, years (centered) −0.12 (0.00)e −0.12 (0.00)e −0.12 (0.00)e −0.13 (0.01)e

Medicaid enrollment 0.16 (0.08)g 0.08 (0.12) 0.01 (0.12) 0.16 (0.23)

Charlson comorbidity index −0.03 (0.00)e −0.04 (0.00)e −0.04 (0.00)e −0.04 (0.01)e

On insulinh 0.47 (0.02)e 0.28 (0.02)e 0.27 (0.03)e 0.30 (0.05)e

On oral medicationh 0.32 (0.01)e 0.25 (0.02)e 0.26 (0.02)e 0.22 (0.04)e

On weight gainh −0.04 (0.03) −0.04 (0.03) −0.03 (0.04) −0.09 (0.08)

On weight lossh −0.1 (0.02)e −0.09 (0.03)e −0.09 (0.03)e −0.11 (0.07)i

Population density, persons/square milej 0.01 (0.00) 0.00 (0.01)i 0.00 (0.01)

Proportion white −0.01 (0.07) 0.08 (0.08) −0.15 (0.11)

Proportion black 0.03 (0.04) 0.05 (0.05) −0.01 (0.06)

Proportion below federal poverty line 0.08 (0.08) 0.09 (0.11) 0.07 (0.12)

No. of individuals 179,378 179,378 177,244 171,120 139,784 31,336

No. of observations 2,380,290 2,380,290 2,344,061 1,438,136 1,172,446 265,690

Abbreviations: ITT, intention to treat; SE, standard error.
a Robust SE clustered on the individual.
b Weight (kg)/height (m)2.
c With the ITT approach, participants’ residences were modeled using their 2006 address, regardless of whether they moved.
d Models 2–6 adjusted for month and year indicators and measurement method (not shown).
e P < 0.01.
f Kernel density surface of good food (t − 1).
g P < 0.05.
h Indicators for use of medication (insulin, oral medication, and medications that cause weight gain or weight loss).
i P < 0.1.
j Coefficient was multiplied by 1,000 for display.
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selected for the data; there was no association between ker-
nel density of good food environment and BMI for any
model with a 2.1-mile (3.4-km) or 4.5-mile (7.2-km) band-
width (Table 4).

DISCUSSION

A clinically modest yet statistically significant association
was found between improvements in the food environment
proximate to one’s residence and weight loss among adults
with diabetes whose residential addresses remained unchanged
over a 5-year period. Using data from the Coronary Artery Risk
Development in Young Adults (CARDIA) Study, Boone-
Heinonen et al. (30) found similarly modest reductions in
BMI with a large increase in supermarket density; however,
differences by residential mobility were not tested.

Like prior studies that have shown that the relationship
between weight change and the food environment varies
based on measurement (18), our results were not robust to
the size of the bandwidth of the kernel of our exposure.
The null observed association of weight change with band-
widths wider than 1 mile (1.6 km) could be due to the food

environment’s having little influence beyond a distance of
1 mile, or it could be an artifact of oversmoothing.

There was no evidence to support the possibility of an asso-
ciation between improvement in the food environment and
weight status among adults who moved at least once during
the 5-year observation period. This could be explained by a
selection bias due to healthier people’s moving to neighbor-
hoods that reflect their tastes for healthier environments. Addi-
tionally, openings of supermarkets and produce vendors might
change proximate housing prices and inadvertently lead to
attrition of persons of lower socioeconomic status. Pope
and Pope (31) found that the opening of a Walmart store
(Wal-Mart Stores, Inc., Bentonville, Arkansas) increased local
housing prices. More research is needed to understand the
relationship between residential mobility and obesity.

Among the limitations of this study is the fact that the
study’s findings may only be generalizable to insured adults
with diabetes who live in Northern California. Because this
study included (mostly older) adults with type 2 diabetes,
the results might be different for young adults, children, or per-
sons without diabetes. In addition, there were no data on parti-
cipants who moved outside of the Kaiser Permanente Northern
California catchment area. Changes in food environment might

Table 3. Coefficients (β (SEa)) from Ordinary Least Squares Models of the Influence of Food Environment on Body Mass Indexb With Individual
Fixed Effects (Non-ITT Approachc), Northern California, 2006–2011

Variable
Modeld

7 8 9 10 11 (Nonmovers) 12 (Movers)

Intercept 31.53 (0.02)e 31.37 (0.012)e 36.58 (0.10)e 36.34 (0.13)e 36.34 (0.31)e 35.81 (0.29)e

Food environment in prior yearf −0.08 (0.02)e −0.01 (0.02) −0.02 (0.02) −0.02 (0.02) −0.08 (0.03)g 0.01 (0.03)

Age, years (centered) −0.12 (0.00)e −0.12 (0.00)e −0.12 (0.00)e −0.11 (0.01)e

Medicaid enrollment 0.22 (0.08)e 0.17 (0.09)h 0.12 (0.10) 0.25 (0.18)

Charlson comorbidity index −0.03 (0.00)e −0.04 (0.00)e −0.04 (0.00)e −0.033 (0.008)e

On insulini 0.46 (0.02)e 0.35 (0.21)e 0.35 (0.02)e 0.37 (0.04)e

On oral medicationi 0.32 (0.01)e 0.28 (0.01)e 0.3 (0.02)e 0.23 (0.03)e

On weight gaini −0.05 (0.02)g −0.06 (0.03)g −0.05 (0.03) −0.10 (0.07)

On weight lossi −0.09 (0.02)e −0.09 (0.02)e −0.09 (0.03)e −0.09 (0.06)

Population density, persons/square milej 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

Proportion white 0.09 (0.06) 0.28 (0.42) 0.08 (0.07)

Proportion black 0.01 (0.12) 0.86 (0.70) −0.02 (0.13)

Proportion below federal poverty line 0.05 (0.11) −0.06 (0.62) 0.05 (0.11)

No. of individuals 194,652 194,652 191,621 187,144 152,036 35,108

No. of observations 2,474,790 2,474,790 2,429,800 1,909,969 1,555,353 354,616

Abbreviations: ITT, intention to treat; SE, standard error.
a Robust SE clustered on the individual.
b Weight (kg)/height (m)2.
c With the non-ITT approach, participants’ residences were modeled using their actual address.
d Models 8–12 adjusted for month and year indicators and measurement method (not shown).
e P < 0.01.
f Kernel density surface of good food (t − 1).
g P < 0.05.
h P < 0.1.
i Indicators for use of medication (insulin, oral medication, and medications that cause weight gain or weight loss).
j Coefficient was multiplied by 1,000 for display.
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be accompanied by other changes in the built environment
(new parks or restaurants), which might not have been con-
trolled for by the community-level demographic variables.
In addition, there might have been measurement error
caused by the quality of the data obtained from InfoUSA.
Finally, our study did not take into account the food envi-
ronment of the workplace, which might have differed from
that of the residential environment.

Cummins et al. (21) found that the opening of a new store
in Philadelphia, Pennsylvania, increased awareness of access
but had no relationship with obesity or diet. The results of that
study, along with the clinically insubstantial findings of this
analysis, call for the reexamination of food policies that encour-
age the opening of supermarkets in “food deserts” as a means
of reducing obesity in the neighboring communities. Future
studies should move beyond the geographical conception of
food environment and take into account variation in food
acquisition, food quality, and purchase price and purchase
behaviors. Ghosh-Dastidar et al. (32) suggested that store-
level prices might be more important than distance in the
relationship with obesity. More research is needed to identify
the factors that will be most salient in slowing the obesity
epidemic.
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