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Abstract

Motivation: Identification of disease-associated miRNAs (disease miRNAs) is critical for understand-

ing disease etiology and pathogenesis. Since miRNAs exert their functions by regulating the expres-

sion of their target mRNAs, several methods based on the target genes were proposed to predict

disease miRNA candidates. They achieved only limited success as they all suffered from the high

false-positive rate of target prediction results. Alternatively, other prediction methods were based on

the observation that miRNAs with similar functions tend to be associated with similar diseases and

vice versa. The methods exploited the information about miRNAs and diseases, including the func-

tional similarities between miRNAs, the similarities between diseases, and the associations between

miRNAs and diseases. However, how to integrate the multiple kinds of information completely and

consider the biological characteristic of disease miRNAs is a challenging problem.

Results: We constructed a bilayer network to represent the complex relationships among miRNAs,

among diseases and between miRNAs and diseases. We proposed a non-negative matrix factorization

based method to rank, so as to predict, the disease miRNA candidates. The method integrated the

miRNA functional similarity, the disease similarity and the miRNA-disease associations seamlessly,

which exploited the complex relationships within the bilayer network and the consensus relationship

between multiple kinds of information. Considering the correlation between the candidates related to

various diseases, it predicted their respective candidates for all the diseases simultaneously. In add-

ition, the sparseness characteristic of disease miRNAs was introduced to generate more reliable pre-

diction model that excludes those noisy candidates. The results on 15 common diseases showed a su-

perior performance of the new method for not only well-characterized diseases but also new ones. A

detailed case study on breast neoplasms, colorectal neoplasms, lung neoplasms and 32 other dis-

eases demonstrated the ability of the method for discovering potential disease miRNAs.

Availability and implementation: The web service for the new method and the list of predicted can-

didates for all the diseases are available at http://www.bioinfolab.top.

Contact: xuanping@hlju.edu.cn or zhang@hlju.edu.cn or lijzh@hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that regulate

the expression of their mRNA targets through RNA cleavage or

translational repression (Bartel, 2004; Chatterjee and Grosshans,

2009; He and Hannon, 2004). The dysregulation of miRNAs can

cause developmental defects and contributes to progression of vari-

ous diseases (Calin and Croce, 2006; Meola et al., 2009; Sayed and

Abdellatif, 2011). Hence identifying disease-associated miRNAs

(disease miRNAs) can provide novel insights into the genetic causes

and consequences of complex diseases.

Aided by large scale deep sequencing, computational prediction

of disease miRNAs can provide reliable miRNA candidates for fur-

ther functional analysis in disease studies. Several methods have

been developed for predicting disease miRNAs, which fall into two

main categories. The methods in the first group extensively ex-

ploited the negative regulation of miRNAs on their target mRNAs

(Bartel, 2004). They first identified the sets of target genes based on

the complementarity between miRNA sequences and the sequences

of putative target genes. The disease miRNA candidates were then

inferred according to the similarities or the interactions between the

target genes and the known disease-related genes (Jiang et al., 2010;

Li et al., 2011; Shi et al., 2013). However, the experimentally

validated target genes are so scanty that they fail to support the

methods effectively. Hence the target prediction programs, such as

TargetScan (Lewis et al., 2003) and PITA (Kertesz et al., 2007),

have been adopted to obtain the majority of target genes. Due to the

high false positive rate of target prediction results (Bartel, 2009; Liu

et al., 2014; Ritchie et al., 2009), it is difficult for the methods of the

first group to achieve excellent prediction accuracy.

In the second category, as functionally related miRNAs are usually

involved in similar diseases (Bandyopadhyay, 2010; Goh et al., 2007;

Lu et al., 2008), the functional similarity of two miRNAs was meas-

ured based on their associated diseases successfully (Wang et al.,

2010). A functional similarity network of miRNAs was further con-

structed and denoted as MiRNet. Several methods were proposed to

prioritize the miRNA candidates for a specific disease (Chen, 2012;

Xuan et al., 2015) via random walks on MiRNet. Similarly, Chen’s

method inferred the disease candidates related to a specific miRNA

via random walks on the disease network (Chen and Zhang, 2013).

HDMP exploited the k most similar neighbors and the distribution of

known disease miRNAs to infer the miRNA candidates (Xuan et al.,

2013). These methods relied on a seed set of miRNAs that have al-

ready been related to the specific disease and therefore are not effect-

ive on the new diseases without any known related miRNAs.

Recently, the information about diseases was introduced into the pre-

diction methods to make them applicable to all the diseases, especially

to the new ones (Chen and Yan, 2014; Liu et al., 2016; Xuan et al.,

2015). However, Chen et al. established the separate objective func-

tions for the miRNA network and the disease network respectively,

which did not integrate the multiple kinds of information about

miRNAs and diseases completely. Xuan et al. and Liu et al. concen-

trated on the prediction for the single disease and ignored the correl-

ation between the candidates related to different diseases.

We propose and develop a novel prediction method based on

non-negative matrix factorization and refer to it as DMPred.

DMPred focuses on the following three important aspects. First, it is

well known that miRNAs with similar functions tend to be associ-

ated with similar diseases and vice versa. As a result, the miRNA

functional similarity, the disease similarity and the miRNA-disease

associations are consistent with each other. Considering the consen-

sus relationship, DMPred integrates the multiple kinds of informa-

tion about miRNAs and diseases seamlessly. Second, in terms of two

similar diseases, their associated miRNA candidates are correlated

rather than independent. Hence DMPred predicts their respective

candidates for all the diseases simultaneously instead of for a single

disease. Third, as only a small number of miRNAs are relevant to a

specific disease (Kosik, 2006; Shi et al., 2013), the predicted associ-

ations between miRNAs and diseases should be sparse. DMPred

takes the sparseness characteristic into account, which contributes

to the generation of more reliable prediction model that excludes the

noisy candidates.

2 Materials and methods

Our goal is to develop a global method that is able to simultaneously

predict their respective associated miRNA candidates for all the dis-

eases. We first constructed a bilayer network of miRNAs and dis-

eases to represent the complex relationships between them. A novel

prediction method based on non-negative matrix factorization with

sparseness constraints was proposed specifically for the network.

Let S be the set that contains all the diseases. For a specific dis-

ease d 2 S, the known d-related miRNAs are referred to as the

labeled nodes, and the remaining miRNAs which have no informa-

tion of relevance to d, are the unlabeled nodes. As the unlabeled

nodes may potentially be associated with d, we correlate an un-

labeled node ui with an association score S ui; dð Þ. The higher

S ui; dð Þ, the more ui is likely to be associated with d. All the un-

labeled nodes are ranked by their scores and the top ranked nodes

are regarded as the promising d-related candidates.

2.1 Disease similarity measurement
The disease similarity quantifies how similar they are from the per-

spectives of disease semantics and symptom. The similarity of two

diseases are calculated based on their common semantic annotations

and shared disease symptoms.

Disease semantic similarity. We calculated the semantic similar-

ity between diseases by using the existing measurement (Wang et al.,

2010). Each disease is represented with a directed acyclic graph

(DAG) which contains all the annotation terms related to the dis-

ease. Figure 1 shows the DAGs of two diseases ‘Liver Neoplasms

(LN)’ and ‘Stomach Neoplasms (SN)’. The DAG of a disease like

LN is denoted as DAG(LN)¼ (TLN, ELN), where TLN is a set that

includes all the ancestor nodes of LN and LN node itself, and ELN is

a set of edges connecting these nodes. Each node t (t 2 TLN) has its

semantic contribution, which is calculated by

DLN tð Þ ¼
1 if t ¼ LN

maxf� �DLN t0ð Þjt0 2 children of tg otherwise
;

(
(1)

where � is an semantic contribution adjustment factor for the edges

linking node t with its child t0. As suggested in the literature (Wang

et al., 2010), it is set to 0.5. The overall semantic value of disease

LN, DV(LN), is defined as

DV LNð Þ ¼
X

t2TLN

DLN tð Þ: (2)
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As two diseases sharing more terms in their DAGs are more similar,

the semantic similarity between two diseases LN and SN is defined

as

SS LN; SNð Þ ¼
P

t2TLN\TSN
DLN tð Þ þDSN tð Þð Þ

DV LNð Þ þDV SNð Þ ; (3)

where DLN tð Þ and DSN tð Þ are the semantic values of term t related

to diseases LN and SN, respectively. The semantic similarity of two

diseases ranges between 0 and 1.

Disease phenotypic similarity. It is well studied that two diseases

sharing more common phenotypes (signs and symptoms) are often

more similar. Hoehndorf et al. (2015) measured the phenotypic simi-

larities between diseases by integrating the phenotype data from the

OMIM database (Hamosh et al., 2005) and the Orphanet database

(Weinreich et al., 2008) and the phenotype ontology information. The

phenotypic similarity of two diseases also ranges between 0 and 1.

Integrating disease semantic and phenotypic similarity. Let

PS(A, B) be the phenotypic similarity between two diseases A and B.

In order to incorporate their semantic and phenotypic similarities,

the similarity of A and B, DS(A, B), is defined as follows,

DS A;Bð Þ ¼ aSS A;Bð Þ þ 1� að ÞPS A;Bð Þ; (4)

where a 2 0; 1½ � is a trade-off parameter determining the importance

of the semantic similarity and it is set to 0.5 in our experiments. The

values of the disease similarity range between 0 and 1.

2.2 MiRNA similarity measurement
The functional similarity of two miRNAs quantifies how similar

their functions are. Based on the observation that miRNAs with

similar functions are usually implicated in similar diseases, Wang

et al. estimated the functional similarity of two miRNAs by measur-

ing the similarity between their associated two groups of diseases

(Wang et al., 2010). Consider Figure 2a as an example, miRNA ma

is associated with diseases d1, d2, d3, d4 and d8, and mb is associated

with d1, d2, d5 and d8. The similarity between DTa ¼ fd1;d2; d3;d4;

d8g and DTb ¼ fd1; d2; d5; d8g is calculated as the functional simi-

larity of ma and mb and denoted as MS ma;mbð Þ.
The miRNA similarity is calculated by using Wang’s measurement

method. We firstly compute the similarity between a disease, such as

d1, and a group of diseases, such as DTb. It is defined as follows,

S d1;DTbð Þ ¼ max
1� k� jDTb j

DS d1;dkð Þð Þ; (5)

where dk 2 DTb. The similarity of two miRNAs, such as ma and mb,

is obtained by calculating the similarity of DTa and DTb. It is

defined as,

MS ma;mbð Þ ¼
P

1� i� jDTa j S di;DTbð Þ þ
P

1� j� jDTa j S dj;DTa

� �
jDTaj þ jDTbj

;

(6)

where jDTaj and jDTbj is the numbers of diseases in DTa and DTb re-

spectively. S di;DTbð Þ is the similarity between di 2 DTa and the dis-

ease group DTb, and S dj;DTa

� �
is the similarity between dj 2 DTb

and DTa. The similarity of two miRNAs also ranges between 0 and 1.

2.3 Construction of miRNA-disease bilayer network
We construct a miRNA-disease bilayer network which contains two

kinds of nodes (miRNAs and diseases) and three types of relation-

ships (miRNA-miRNA similarity relationship and disease-disease

similarity relationship, as well as miRNA-disease association rela-

tionship). The bilayer network is composed of a miRNA functional

network, a disease network and the edges connecting the two net-

works. Figure 2 demonstrates the workflow of constructing the net-

work and its matrix representation.

Construction of MiRNet. The miRNA functional network

(MiRNet) is constructed by connecting any two miRNAs whose

functional similarity is more than 0. The topology structure of

MiRNet and the functional similarities between miRNAs are cap-

tured by a weighted graph GM ¼ VM;EM;WMð Þ. Each vertex vm

2 VM represents a miRNA, and an edge em 2 EM connects two verti-

ces indicating there is a functional link between them. The weight

wm 2WM of em quantifies the functional similarity degree of these

two vertices. Let M ¼ Mij

� �
2 <Nm�Nm be an adjacency matrix of

GM. Nm is the number of miRNAs, < denotes the set of real num-

bers, and <Nm�Nm represents real coordinate space of Nm �Nm di-

mensions. Mij is defined as follows,

Mij ¼
MS mi;mj

� �
if there is an edge connecting mi

and mj

0 otherwise

;

8>><
>>: (7)

where MS mi;mj

� �
is the functional similarity of mi and mj.

Obviously, M is a symmetric matrix.

Construction of DisNet. In terms of the disease network

(DisNet), its topology structure and the similarities between diseases

are denoted by a weighted graph GD ¼ VD;ED;WDð Þ (Fig. 2c).

Fig. 1. The DAGs of the diseases Liver Neoplasms and Stomach Neoplasms. Each node contains one disease term and its identification numbers. The blue bold

nodes are the common terms of these two diseases (Color version of this figure is available at Bioinformatics online.)
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Each vertex vd 2 VD represents a disease, and an edge ed 2 ED cap-

tures the relation between two diseases. The weight wd of edge ed

quantifies how similar two diseases are. Two disease nodes in

DisNet are connected if their similarity is greater than 0. Let

D ¼ Dij

� �
2 <Nd�Nd be an adjacency matrix of GD. Nd is the num-

ber of diseases, and Dij is defined as follows,

Dij ¼
DS di;dj

� �
if there is an edge connecting di

and dj

0 otherwise

;

8>><
>>: (8)

where DS di;dj

� �
is the similarity of the diseases di and dj. D is also a

symmetric matrix.

Edges between MiRNet and DisNet. If a miRNA within

MiRNet has been experimentally validated to be associated with a

disease within DisNet, an edge is added to connect them (Fig. 2b).

A ¼ Aij

� �
2 <Nm�Nd is a matrix representing the edges between

MiRNet and DisNet. Aij is 1 if miRNA mi is associated with disease

dj, and it is 0 if their association has not been observed.

Finally, the miRNA-disease bilayer network, MirDisNet, is con-

structed by integrating MiRNet, DisNet and the edges between

them (Fig. 2d). It is represented by a block adjacency matrix

U 2 <N�N,

U ¼
M A

AT D

" #
; (9)

where N ¼ Nm þNd and AT is the transpose of A.

2.4 Non-negative matrix factorization based model for

disease miRNA prediction
Let Pij be the association score reflecting how likely miRNA mi is

associated with disease dj. The score matrix for all the miRNAs and

diseases is P ¼ Pij

� �
2 <Nm�Nd , where each row corresponds to a

miRNA (number of miRNAs is Nm) and each column corresponds

to a disease (number of diseases is Nd). An objective function is es-

tablished by integrating the multiple kinds of information within the

bilayer network MiRDisNet.

(b)

(a)

(d)

(c)

Fig. 2. Construction of a miRNA-disease bilayer network and its matrix representation. (a) Calculate the functional similarity of two miRNAs based on their associ-

ated diseases and construct a miRNA network (MiRNet) and its adjacent matrix M. (b) Construct an adjacent matrix A according to the known miRNA-disease as-

sociations. (c) Calculate the similarity of two diseases based on their common semantic annotations and shared symptoms, and construct a disease network

(DisNet) and its adjacency matrix D. (d) Construct the miRNA-disease bilayer network (MirDisNet) and its adjacent matrix U
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Modelling the edges between MiRNet and DisNet. As mentioned

previously, Aij is 1 if the association between miRNA mi and disease

dj has been observed, and 0 if their association is unobserved.

Furthermore, matrix A is very sparse and only a limited number of

its entries are 1. In such cases, the model based on matrix factoriza-

tion is usually optimized only over the actually observed entries

(Natarajan and Dhillon, 2014).

Let X be the set of the observed miRNA-disease associations. In

the case of i; jð Þ 2 X, the target association score between mi and dj,

Pij, needs to reflect as closely as possible to the observed association

between the two, i.e. Aij. jjW � P� Að Þjj2F is the deviation of the ex-

pected scores from the observations and can be computed as

jjW � P� Að Þjj2F ¼
XNm

i¼1

XNd

j¼1

Wij Pij � Aij

� �2
; (10)

where jj � jjF is the Frobenius norm of a matrix and � is the

Hadamard product. W is an observation indicator matrix where Wij

is set to 1 if i; jð Þ 2 X, and 0 otherwise.

Modelling MiRNet. For one thing, Mij represents the actual func-

tional similarity (FS) between mi and mj within MiRNet. For an-

other, the well-known biological assumption means that if two

miRNAs are associated with more similar diseases, they have higher

FS. It indicates the miRNA FS is not only dependent on their associ-

ated diseases but also related to the similarities between diseases.

Therefore, M can be factorized as PDPT and M � PDPT . The ex-

pected FS of mi and mj PDPT
� �

ij
is calculated as,

PDPT
� �

ij
¼
XNd

r;s

PirPjsDrs; (11)

where PT is the transpose of P. The ith row of P records the case

that the diseases are associated with miRNA mi and it is composed

of Pir (1 � r � Nd) which reflects the possibility that mi is associ-

ated with the rth disease dr. Similarly, Pjs (1 � s � Nd) reflects the

possibility that miRNA mj is associated with disease ds. Drs is the

similarity of dr and ds. As the expected FSs over all pairs of miRNAs

should be as close as possible to their actual FSs, their squared loss is

given as follows to quantify the difference between them,

jj PDPT
� �

�Mjj2F ¼
XNm

i;j

PDPT
� �

ij
�Mij

� �2

¼
XNm

i;j

XNd

r;s

PirPjsDrs �Mij

 !2

:

(12)

Modelling DisNet. Dij records the actual similarity between disease

di and dj within DisNet. On the other hand, the known biological

premise also indicates that two diseases associated with functionally

similar miRNAs is more similar. In other words, two groups of

miRNAs associated with di and dj and the FSs between these

miRNAs are the latent factors affecting the similarity of di and dj.

Hence we factorize matrix D as PTMP and D � PTMP. The ex-

pected similarity of di and dj, is PTMP
� �

ij
, and its formal definition

is as follows,

PTMP
� �

ij
¼
XNm

r;s

PriPsjMrs: (13)

The ith column of P records the case that the miRNAs are associ-

ated with disease di and it is composed of Pri (1 � r � Nm) which

reflects the possibility that di is associated with the rth miRNA

mr. In the same way, Psj (1 � s � Nm) reflects the possibility that

dj is associated with the sth miRNA ms. Mrs is the FS of mr and

ms. The difference between the expected disease similarities like

PTMP
� �

ij
and the actual similarities like Dij can be calculated as

follows,

jj PTMP
� �

�Djj2F ¼
XNd

i;j

PTMP
� �

ij
�Dij

� �2

¼
XNd

i;j

XNm

r;s

PriPsjMrs �Dij

 !2

:

(14)

The Unified model. By integrating the information from the multiple

components of MiRDisNet, we have the unified objective function

as follows,

min
P	0

L Pð Þ ¼ jjW � P�Að Þjj2F þ kmjjPDPT �Mjj2F

þkDjjPTMP�Djj2F;
(15)

where kM and kD are regularization parameters adjusting the contri-

bution of the latter two terms. As the association score between a

miRNA and a disease should be greater than or equal to 0, the non-

negative property of matrix P is enforced as a constraint.

In addition, since only a small number of miRNAs are associated

with a specific disease, it seems reasonable that P should have a lim-

ited number of non-zero entries. So we add a sparse penalty term of

P to the objective function as in (15),

min
P	0

L Pð Þ ¼ jjW � P� Að Þjj2F þ kMjjPDPT �Mjj2F

þkDjjPTMP�Djj2F þ hjjPjj1;
(16)

h is the regularization parameter and jj � jj1 denotes the ‘1 norm.

2.5 Optimization
As the function in (16) is not convex, it is impractical to get its glo-

bally optimal solution. We give an iterative algorithm based on co-

ordinate descent to obtain its locally optimal solution. On the basis

of the properties of the trace and Frobenius norm of matrix, the

function L(P) can be rewritten as,

L Pð Þ¼ jjW� P�Að Þjj2FþkmjjPDPT�Mjj2FþkDjjPTMP�Djj2F
þhjjPjj1
¼Tr W� PPT�PAT�APTþAAT

� �� �
þkMTr PDPTPDTPT�PDPTMT�MPDTPTþMMT

� �
þkDTr PTMPPTMTP�PTMPDT�DPTMTPþDDT

� �
þhjjPjj1;

(17)

where Tr() denotes the trace of a matrix. Considering the nonnega-

tive constraint on P, we introduce a Lagrange multiplier W¼ wij

h i
2<Nm�Nd and establish the Lagrange function as follows,

L P;Wð Þ ¼ Tr W � PPT �PAT �APT þAAT
� �� �

þkMTr PDPTPDTPT �PDPTMT �MPDTPT þMMT
� �

þkDTr PTMPPTMTP�PTMPDT �DPTMTPþDDT
� �

þhjjPjj1 þTr WPT
� �

:

(18)
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After taking derivative of L P;Wð Þ with respect to P and setting it to

zero, we obtain

W ¼ 2W � P� Að Þ þ 4kM PDPTPD�MPD
� �

þ4kD MPPTMP�MPD
� �

þ hB;
(19)

where B ¼ Bij

� �
2 <Nm�Nd is a matrix whose elements are all 1.

Both sides of Equation (19) are multiplied by Pij and then the

Karush-Kuhn-Tucker conditions (wijPij ¼ 0) is used to get the fol-

lowing equation,

2Wij P�Að ÞijPij þ 4kM PDPTPD�MPD
� �

ij
Pij

þ4kD MPPTMP�MPD
� �

ij
Pij þ hBijPij ¼ wijPij ¼ 0:

(20)

Finally, according to the gradient decent algorithm (Tan and

Févotte, 2009), the value of Pij is updated by multiplying its current

value with the ratio of the negative terms to positive terms of (20),

Pnew
ij  Pij

2WijAij þ 4kM MPDð Þij þ 4kD MPDð Þij
2WijPij þ 4kM PDPTPDð Þij þ 4kD MPPTMPð Þij þ hBij

:

(21)

Given an initial value of P, the solution of P can be obtained itera-

tively by using the above updating rule. The iterative process termin-

ates when the difference between the values of L(P) at the kth

iteration and at the (kþ1)th is less than 10�7. At last, in terms of

disease dj, P0s jth column contains the association scores between dj

and all the miRNAs including the labeled nodes and the unlabeled

nodes. Since a higher score reveals a more possible association

between a miRNA candidate and dj, all the unlabeled nodes are

ranked by their scores. The iterative algorithm of predicting disease

miRNAs is demonstrated in Figure 3.

3 Results and discussion

3.1 Data preparation
The human miRNA-disease database (HMDD) has collected thou-

sands of the miRNA-disease association pairs that had been con-

firmed by the biological experiments (Li et al., 2014a). As done in

previous work (Chen and Chen, 2014; Wang et al., 2010; Xuan

et al., 2015), we merged the redundant miRNA-disease associations

that produce the same mature miRNAs and obtained 5090 distinct

associations between 490 miRNAs and 326 diseases. The disease

terms within the disease directed acyclic graphs and their hierarchies

were acquired from the U.S. National Library of Medicine (MeSH,

http://www.ncbi.nlm.nih.gov/mesh).

3.2 Performance evaluation metrics
To evaluate our approach and the state-of-the-art disease-miRNA-

prediction methods, 5-fold cross validation was performed for the

well-characterized diseases firstly. For a specific disease d that has

known related miRNAs, the d-related miRNAs (labeled nodes) were

randomly divided into 5 subsets, 4 of which were used for training a

prediction model, while the left out subset was added into a dataset

for testing. The testing dataset also contains all the miRNAs that

have not been observed to be associated with d (unlabeled nodes).

The labeled and unlabeled nodes are regarded as the positive sam-

ples and the negative ones, respectively. After the association scores

of the testing samples are estimated, the samples will be ranked by

their scores. The higher the positive samples are ranked, the better

the prediction performance is.

We are also interested in evaluating the ability to correctly iden-

tify the miRNAs associated with the new diseases. As there is no any

miRNA observed to be related to a new disease so far, the evalu-

ation is simulated by using a disease with known related miRNAs,

such as d, and removing all the d-related associations in the training

process. In this way, d-related miRNA candidates are predicted by

only exploiting the information about the remaining diseases. All

the removed d-related miRNAs are taken as positive samples for

testing.

Given a threshold d, if the score of a labeled node is greater than

d, it is deemed as a correctly identified positive sample. If the score

of an unlabeled node is smaller than d, it is a successfully identified

negative sample. To obtain a receiver operating characteristic

(ROC) curve, the true positive rates (TPRs) and the false positive

rates (FPRs) at various d values are calculated,

TPR ¼ TP

TPþ FN
;FPR ¼ FP

TN þ FP
; (22)

where TP and TN are the numbers of correctly identified positive

and negative samples. FP and FN are the numbers of misidentified

positive and negative samples. The area under the ROC curve

(AUC) is used to measure the global performance of a prediction

method.

In addition, the top section of prediction result is usually selected

by the biologists to further validate with the wet-lab experiments,

and the more accurate top k candidates contribute to the success of

discovering the novel disease miRNAs. Therefore, the recall rates

within top 30, 60, . . . and 240 candidates are demonstrated, which

reveals how many positive samples are successfully recovered within

top k. Moreover, the proportion of misidentified negative samples

and the proportion of total positive and negative samples identified

correctly within top k ranking list are shown as well.

In the current miRNA-disease association data, most of diseases

are only associated with several miRNAs, which results in lack of

sufficient associations to evaluate the prediction performance.

Hence we performed the cross-validation and simulation experi-

ments on 15 well-characterized diseases each of which has at least

80 related miRNAs.

3.3 Comparison with other methods
As most of previous methods can only be applied to the well-

characterized diseases, we estimated the prediction performances on

these diseases and the new ones, respectively. Firstly, our method,

DMPred, was compared with RWRMDA (Chen, 2012), Chen’s
Fig. 3. Iterative algorithm for predicting the miRNA candidates associated

with diseases
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method (Chen and Zhang, 2013), RLSMDA (Chen and Chen,

2014), MIDP (Xuan et al., 2015) and Liu’s method (Liu et al.,

2016) which are state-of-the-art prediction methods for the well-

characterized diseases.

The regularization parameters of each method should be tuned to

obtain its best performance. The parameters kM, kD and h of DMPred

were chosen from 1/10, 1/30,. . ., 1/90, 1, 10, 30,. . ., 90. The parameter

r for both RWRMDA and Chen’s method varied from 0.1 to 0.9. As

its literature suggested, the parameters gM and gD of RLSMDA were

set as 1 according to the prior knowledge, and w ranged from 0.1 to

0.9. The parameters rQ and rU of MIDP and the parameters c, k, d and

g of Liu’s method ranged from 0.1 to 0.9. The performances of these

methods obtained by using the optimum parameters are demonstrated

in Table 1 (kM¼1/70, kD¼1/10 and h ¼1/20 for DMPred, r¼0.9

for RWRMDA, r¼0.8 for Chen’s method, gM¼1, gD¼1 and

w¼0.9 for RLSMDA, rQ¼0.4 and rU¼0.1 for MIDP, c¼0.5,

k¼0.8, d¼0.9 and g¼0.1 for Liu’s method).

As shown in Table 1, the average AUCs of DMPred, RWRMDA,

Chen’s method, RLSMDA, MIDP and Liu’s method on the 15 tested

diseases are 91.63, 79.93, 65.20, 82.61, 86.15 and 85.81%, respect-

ively. DMPred performed the best for most of these diseases and its

average AUC is 11.7, 26.43, 9.02, 5.48 and 5.82% higher than the

other methods, respectively. Note that MIDP and RWRMDA ex-

ploited the information of miRNA network, and Chen’s method uti-

lized the information of disease network. DMPred, RLSMDA and

Liu’s method not only concentrated on miRNA network but also on

disease network, and they all achieved relatively better perform-

ances. Chen’s method worked much worse than the other methods,

primarily because it did not use the information of miRNA network.

Therefore, the use and integration of information of miRNAs and

diseases are essential. The improvement of DMPred over the existing

methods is mainly due to its seamless integration of multiple kinds

of information.

In addition, a paired t-test was performed to measure whether

DMPred’s AUCs across 15 diseases are significantly higher than

another method. The p-values are listed in Table 2. The statistical

result indicates DMPred achieves significantly better performance

than all of other methods at the significance level 0.05.

The higher recall value within top k ranking list means the more

positive testing samples (real disease-related miRNAs) are identified

successfully. The average recall values across 15 tested diseases

within the top k candidates are shown in Figure 4. DMPred consist-

ently outperformed the other methods at various k cutoffs, and

ranked 49.6% of positive samples in top 30, 87.1% in top 90 and

97.8% in top 150. MIDP had the second-best accuracy and ranked

43.6% in top 30, 78.4% in top 90 and 90.9% in top 150. Liu’s

method ranked 41.8% in top 30, 77.2% in top 90 and 89.0% in top

150, which is worse than MIDP but better than RLSMDA (32.8,

73.4 and 86.9%). RWRMDA achieved inferior performance and its

corresponding recall rates are 26.7, 68.4 and 83.7%. Chen’s method

ranked 8.5% in top 30, 33.7% in top 90 and 61.3% in top 150,

which is still much worse than other methods.

Specificity measures the proportion of correctly identified nega-

tive samples accounting for all the negative samples. Thus, 1-specifi-

city reflects the proportion of misidentified negative samples. A

lower 1-specificity value on the top k ranking list means less nega-

tive samples are misidentified. As shown in Figure 5, DMPred yields

the lowest 1-specificity values at different k cutoffs. In addition, ac-

curacy is the proportion of true positive and negative samples that

are identified correctly. DMPred also achieves higher accuracies

than the other methods at various k values (Fig. 6).

To evaluate DMPred’s performance for the new diseases without

known related miRNAs, we performed the simulation experiments

on the same 15 diseases as the ones in cross validation procedure.

Unlike the cross validation experiments, all the associations related

to a tested disease d were removed during training period. This oper-

ation ensured that predicting d-related candidates only utilized the

association information of the remaining diseases and the miRNA

and disease similarity information of MiRDisNet. All the removed

d-related miRNAs were taken as the positive testing samples.

Table 1. Prediction results of DMPred and other methods for the well-characterized diseases

Disease name AUC

DMPred RWRMDA Chen’s method RLSMDA MIDP Liu’s method

Acute myeloid leukemia 0.896 0.839 0.716 0.853 0.913 0.878

Breast neoplasms 0.940 0.785 0.653 0.832 0.838 0.847

Colorectal neoplasms 0.839 0.793 0.662 0.831 0.845 0.850

Glioblastoma 0.906 0.680 0.607 0.714 0.786 0.841

Heart failure 0.986 0.722 0.761 0.738 0.821 0.815

Hepatocellular carcinoma 0.902 0.749 0.613 0.794 0.807 0.835

Lung neoplasms 0.945 0.827 0.606 0.855 0.876 0.912

Melanoma 0.911 0.784 0.642 0.807 0.837 0.852

Ovarian neoplasms 0.928 0.882 0.644 0.909 0.923 0.898

Pancreatic neoplasms 0.915 0.871 0.684 0.887 0.945 0.899

Prostatic neoplasms 0.950 0.823 0.629 0.841 0.882 0.857

Renal cell carcinoma 0.899 0.815 0.627 0.839 0.862 0.820

Squamous cell carcinoma 0.901 0.819 0.676 0.849 0.870 0.877

Stomach neoplasms 0.901 0.779 0.628 0.797 0.821 0.827

Urinary bladder neoplasms 0.924 0.821 0.632 0.845 0.897 0.863

Table 2. A pairwise comparison with a paired t-test on the prediction results based on AUCs

RWRMDA Chen’s method RLSMDA MIDP Liu’s method

P-value between DMPred and another method 2.9441e-06 1.8670e-12 4.1391e-05 8.4149e-04 7.3586e-05
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As only RLSMDA, MIDP and Liu’s method can be applied to

the new diseases, DMPred was compared with them and the results

are shown in Table 3. The average AUCs of DMPred, RLSMDA,

MIDP and Liu’s method across 15 diseases are 0.876, 0.837, 0.839

and 0.832. DMPred consistently performed the best for nearly all of

15 diseases, and MIDP achieved slightly better performance than

RLSMDA for most of the diseases. The performance of Liu’s

method is relatively inferior. The primary reason is that DMPred

considered the correlation between the candidates of various dis-

eases, relative to MIDP and Liu’s method. Meanwhile, DMPred

integrated the multiple kinds of information within MiRDisNet

completely, relative to RLSMDA. In addition, the p-values of

DMPred versus other three methods obtained by performing the

paired t-test are 1.7635e-04, 4.4946e-06 and 9.4690e-06. It con-

firms DMPred’s performance is also significantly higher in terms of

the new diseases. In addition, DMPred consistently had the highest

average recall rates (Fig. 7), the lowest 1-specificity values (Fig. 8)

and the highest accuracies (Fig. 9) on 15 tested diseases at different

top k cutoffs.

3.4 Comparison with the prediction instance without

sparse penalty
In order to validate the effect of exploiting sparseness characteristic,

we further compared the prediction instance with sparse penalty

(DMPred) and the one without penalty (DMPred*). The penalty

item hjjPjj1 was eliminated from the original objective function L(P)

to form a new function L
 Pð Þ. The prediction instance based on L


Pð Þ is referred to as DMPred*. As shown in Table 4, the left part

demonstrates the results by performing 5-fold cross validation over

15 diseases, and the right part lists the results of simulation experi-

ments after removing the associations related to the tested disease.

DMPred achieves consistently higher prediction performances than

DMPred* for the well-characterized diseases and the simulated new

ones. In terms of the well-characterized diseases, AUC of DMPred

increased at least by 1.1%, increased at most by 9.7% and increased

Fig. 4. The average recalls across all the tested diseases at different top k

values

Fig. 5. The average 1-specificity values across all the tested diseases at differ-

ent top k values

Fig. 6. The average accuracies across all the tested diseases at different top k

values

Table 3. Prediction results of DMPred and the other methods for

the diseases whose respective associations were removed

Disease name AUC

DMPred RLSMDA MIDP Liu’s method

Acute myeloid leukemia 0.868 0.852 0.860 0.864

Breast neoplasms 0.877 0.803 0.821 0.806

Colorectal neoplasms 0.856 0.812 0.829 0.815

Glioblastoma 0.868 0.831 0.833 0.828

Heart failure 0.895 0.792 0.814 0.801

Hepatocellular carcinoma 0.865 0.789 0.804 0.785

Lung neoplasms 0.921 0.897 0.874 0.878

Melanoma 0.876 0.817 0.825 0.817

Ovarian neoplasms 0.906 0.894 0.876 0.875

Pancreatic neoplasms 0.891 0.895 0.891 0.891

Prostatic neoplasms 0.854 0.844 0.829 0.827

Renal cell carcinoma 0.878 0.809 0.824 0.810

Squamous cell carcinoma 0.886 0.883 0.864 0.865

Stomach neoplasms 0.844 0.781 0.806 0.788

Urinary bladder neoplasms 0.860 0.852 0.836 0.832

Fig. 7. The average recalls across all the simulated new diseases at different

top k values
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by 5.2% on average. For the new diseases, AUC of DMPred

increased at least by 1.4%, increased at most by 5.5% and increased

by 4% on average. It indicates that introducing sparse penalty is ef-

fective for the improvement of the discriminative ability of predic-

tion model.

3.5 Case studies: breast neoplasms, colorectal

neoplasms, lung neoplasms and 32 diseases
To further demonstrate DMPred’s ability to discover potential dis-

ease miRNA candidates for the well-characterized diseases, we exe-

cuted the case studies on breast neoplasms, colorectal neoplasms

and lung neoplasms. The top 50 candidates related to breast neo-

plasms are taken as examples and analyzed in detail.

First, a database named PhenomiR was established to demon-

strate the miRNAs which have different expression in disease tissues

relative to the normal ones (Ruepp et al., 2010). PhenomiR con-

tained 675 miRNAs that had been identified by analyzing the results

of microarray experiments, northern blot experiments and PCR ex-

periments. Similarly, the dbDEMC database included 607 miRNAs

that had abnormal expression in 14 kinds of cancers through ana-

lysis of microarray datasets (Yang et al., 2010). As shown in Table

5, 39 of 50 candidates are contained by PhenomiR and 39 candi-

dates are included by dbDEMC, which indicates they have been

upregulated or downregulated in breast cancer (malignant breast

neoplasm).

Second, a miRNA-cancer association database, miRCancer,

included the experimentally validated 878 associations between 236

miRNAs and 79 cancers (Xie et al., 2013). The associations were

extracted from the published literatures by using text mining techni-

que and then the dysregulation cases of the miRNAs were confirmed

manually. miR2disease is also a database which contained manually

curated miRNAs that had dysregulation in various diseases (Jiang

et al., 2009). Seven candidates are contained by miRCancer and 2

candidates are recorded by miR2disease. Therefore, they have been

verified to be breast cancer-related miRNAs.

Finally, 9 candidates labeled with ‘literature’ are supported by

the published literatures and the detailed interpretation is listed in

Supplementary Table ST1. Several studies verified that 7 of 9

miRNAs were dysregulated in breast tumors versus normal breast

tissues. In addition, hsa-mir-449b is a direct transcriptional target of

E2F1 which is an important transcription factor relative to breast

cancer (Yang et al., 2009). Estrogen receptor-alpha (ER-a) has be-

come one of the most important target in breast cancer therapeutics.

Hsa-mir-302e was inferred to inhibit the expression levels of ER-a
and negatively regulate ER-a-mediated signaling pathways in breast

cancer (Li et al., 2014b). Hence hsa-mir-449b and hsa-mir-302e are

the promising breast cancer-related candidates.

In terms of colorectal neoplasms, the top 50 candidates are dem-

onstrated in Supplementary Table ST2. Seven candidates were con-

tained by PhenomiR and 40 candidates were included by dbDEMC

to have abnormal expression in colorectal cancer. MiR2Disease and

miRCancer respectively confirmed that the expression levels of 3

candidates and 13 candidates varied significantly between the

colorectal tumors and normal colorectal tissues. Five candidates

were supported by the literatures to be dysregulated in colorectal

neoplasms.

The top 50 lung neoplasms-related candidates are listed in

Supplementary Table ST3. PhenomiR and dbDEMC respectively

identified 38 candidates and 43 candidates whose abnormal expres-

sions have been found in lung cancer. miRCancer confirmed 25 can-

didates to have differential expression in lung tumors versus normal

lung tissues. Ten candidates were verified by miR2disease to have

been associated with the disease. A candidate was supported by the

literature to be dysregulated in lung neoplasms.

In addition, since RLSMDA and MIDP concentrated on 32 new

diseases to show their ability to effectively determine the potential

candidates, DMPred was also applied to the diseases. The top 3 po-

tential candidates for each disease were validated by the literatures

Fig. 8. The average 1-specificity values across all the simulated new diseases

at different top k values

Fig. 9. The average accuracies across all the simulated new diseases at differ-

ent top k values

Table 4. Prediction results obtained by performing the prediction

instance with sparse penalty (DMPred) and the one without sparse

penalty (DMPred*)

Disease name AUC

DMPred DMPred* DMPred DMPred*

Acute myeloid leukemia 0.896 0.835 0.868 0.821

Breast neoplasms 0.940 0.874 0.877 0.850

Colorectal neoplasms 0.839 0.813 0.856 0.804

Glioblastoma 0.906 0.822 0.868 0.840

Heart failure 0.986 0.929 0.895 0.877

Hepatocellular carcinoma 0.902 0.805 0.865 0.842

Lung neoplasms 0.945 0.913 0.921 0.876

Melanoma 0.911 0.824 0.876 0.862

Ovarian neoplasms 0.928 0.910 0.906 0.851

Pancreatic neoplasms 0.915 0.904 0.891 0.808

Prostatic neoplasms 0.950 0.891 0.854 0.814

Renal cell carcinoma 0.899 0.855 0.878 0.858

Squamous cell carcinoma 0.901 0.824 0.886 0.837

Stomach neoplasms 0.901 0.830 0.844 0.801

Urinary bladder neoplasms 0.924 0.872 0.860 0.807
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and the related database. Forty-six miRNA-disease associations

were supported by the literatures and one association has been re-

corded by miR2Disease (see details in Supplementary Table ST4).

On the whole, the case studies indicate that DMPred has power-

ful ability to discover potential candidates for not only well-

characterized diseases but also new ones.

3.6 Predicting novel disease-related miRNAs
After having confirmed its prediction performance by cross valid-

ation and simulation experiments, as well as case studies, we further

applied DMPred to all the diseases including the ones with known

related miRNAs and the new ones. All the known miRNA-disease

associations were taken as training data to predict the novel disease-

related miRNAs. The potential candidates for all the diseases are

listed in Supplementary Table ST5.

4 Conclusions

A novel method based on non-negative matrix factorization with

sparseness constraints, DMPred, was developed for predicting dis-

ease miRNAs. DMPred integrated multiple kinds of information

within the miRNA-disease bilayer network seamless, which ex-

ploited the consensus relationship between them completely.

Furthermore, DMPred took the correlation between the candidates

of various diseases into account and predicted their respective candi-

dates for all the diseases at the same time. In addition, incorporating

the sparseness characteristic of miRNA-disease associations also

contributed to the improvement of prediction performance. The re-

sults of cross validation and simulation experiments on 15 common

diseases confirmed the superiority of DMPred for the well-

characterized diseases and the new ones. The case studies on 3 well-

characterized diseases and 32 new diseases further demonstrated

DMPred’s ability to discover the potential candidates. DMPred will

be useful in screening the promising candidates for subsequent stud-

ies concerning their involvement in the etiology and pathogenesis of

diseases.
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