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Abstract

Motivation: Cancers arise as the result of somatically acquired changes in the DNA of cancer cells.

However, in addition to the mutations that confer a growth advantage, cancer genomes accumu-

late a large number of somatic mutations resulting from normal DNA damage and repair processes

as well as carcinogenic exposures or cancer related aberrations of DNA maintenance machinery.

These mutagenic processes often produce characteristic mutational patterns called mutational sig-

natures. The decomposition of a cancer genome’s mutation catalog into mutations consistent with

such signatures can provide valuable information about cancer etiology. However, the results from

different decomposition methods are not always consistent. Hence, one needs to be able to not

only decompose a patient’s mutational profile into signatures but also establish the accuracy of

such decomposition.

Results: We proposed two complementary ways of measuring confidence and stability of decom-

position results and applied them to analyze mutational signatures in breast cancer genomes. We

identified both very stable and highly unstable signatures, as well as signatures that previously

have not been associated with breast cancer. We also provided additional support for the novel sig-

natures. Our results emphasize the importance of assessing the confidence and stability of inferred

signature contributions.

Availability and implementation: All tools developed in this paper have been implemented in an

R package, called SignatureEstimation, which is available from https://www.ncbi.nlm.nih.gov/

CBBresearch/Przytycka/index.cgi\#signatureestimation.

Contact: wojtowda@ncbi.nlm.nih.gov or przytyck@ncbi.nlm.nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowledge of elementary mutational processes underlying cancer

cells is essential for understanding the etiology of cancer and its pro-

gression. The ever-growing amount of sequencing data allows for

the analysis of cancer genomes not only from the perspective of

highly mutated genes, but also from the perspective of broader mu-

tational patterns. It is increasingly recognized that there is a whole

spectrum of mutational processes that contribute to the mutation

landscape of cancers. In addition to cancer driving mutations, cancer

genomes harbor somatic mutations acquired during the normal cell

cycle as well as those triggered by cancer related aberrations of

DNA maintenance machinery such as mismatch repair, or by car-

cinogenic exposures such as tobacco smoking, ultraviolet light, rep-

lication stress. Each of these processes often leads to distinctive

pattern of mutations—the so-called mutational signature.

Computational methods developed to uncover such signatures from

catalogs of somatic mutations (Alexandrov et al., 2013a,b; Helleday

et al., 2014; Alexandrov and Stratton, 2014; Fischer et al., 2013;

Goncearenco et al., 2017; Nik-Zainal et al., 2012), including the

classical nonnegative matrix factorization (NMF) approach, build
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on the assumptions that the mutations observed in a cancer genome

are a result of several mutational processes and various genomes

might experience different exposure to each of the contributing

mutagens. Previous analyses of cancer genomes from the perspective

of mutational signatures have been very informative. In particular,

the APOBEC mutational signature acts as a footprint of the activity

of the APOBEC family of cytidine deaminases. Playing a key factor

in many human cancers (Haradhvala et al., 2016; Kanu et al., 2016;

Roberts et al., 2013), APOBEC activity has been proposed to be the

direct cause of some cancer driving mutations (Burns et al., 2013;

Henderson et al., 2014; Kim et al., 2017). As another example, a re-

cent analysis of mutational signatures in the genomes of tobacco

smoking-associated cancers provided a novel insight into how smok-

ing increases cancer risk (Alexandrov et al., 2016).

Given the growing interest in studies of mutational signatures in

cancers and the need for a better understanding of the relation be-

tween detected signatures and biological causes, it is important to con-

fidently associate known signatures to patients and assess patients’

exposure to each of these signatures. As a step in this direction,

Rosenthal et al. recently developed an approach, called

deconstructSigs (dS), which determines a linear combination of the

predefined signatures that best reconstructs the patient’s mutational

profile given a patient’s catalog of mutations and a set of mutational

signatures (Rosenthal et al., 2016). However, this decomposition is

not always in agreement with the signature contributions provided by

the nonnegative matrix factorization approach. Importantly, while

deconstructSigs is based on a heuristic, the decomposition problem

can be solved using a quadratic programming (QP) approach

(Goldfarb and Idnani, 1983) that rapidly converges to the optimal so-

lution. We observed that the optimal decomposition is sometimes

strikingly different from the decomposition provided by either of the

two approaches in terms of signature presence or inferred contribu-

tion of signatures in tumor samples. This prompted us to address the

confidence and stability of the decomposition problem. In particular,

our approach allows us to assess if a cancer genome was exposed to a

given set of mutational signatures and to quantify the confidence in

the estimated contribution of each mutational signature.

There are two complementary aspects related to evaluating the con-

fidence and stability of the decomposition of a mutational catalog into

mutational signatures. The first is to measure decomposition variability

and accuracy when the patient’s mutational catalog is perturbed, as

mutational catalogs might be noisy and incomplete. In addition, muta-

tional processes act in a stochastic way. Given that quadratic program-

ming can quickly compute optimal solutions for the original and the

perturbed data, this question can be answered using a bootstrap ana-

lysis. The second and complementary perspective arises from the possi-

bility that equivalent approximate solutions might exist. Specifically,

different linear combinations of signatures might equally well approxi-

mate a mutational profile observed in a given patient. If quantitatively

different suboptimal solutions exist in close proximity to the optimal

solution, our confidence in the biological relevance of the optimal de-

composition is reduced. To address this concern, we used a simulated

annealing based method to randomly explore alternative decompos-

itions whose error is close to the optimal one.

We applied both approaches to the whole-genome dataset of

somatic mutations from 560 breast cancer (BRCA) patients

(Morganella et al., 2016; Nik-Zainal et al., 2016). Identifying both

very stable signatures (e.g. APOBEC related signatures 2 and 13)

and highly unstable signatures (such as signatures 3, 5 and 8), we

found that unstable signatures can be decomposed into other signa-

tures with relatively small error, thereby explaining the lack of sta-

bility of these signatures. Next we re-analyzed the BRCA data and

found signatures that have not been associated with breat cancer by

previous analyses. In addition to statistical validation of these signa-

tures, we evaluated their association with genomic features, which

provides additional support for these signatures. Our results empha-

size the importance of assessing the confidence and stability of

inferred signature contributions for the interoperability of decom-

position results.

2 Approach

Given the mutational catalog of a cancer genome (a set of somatic

mutations), we strive to identify operative mutagenic processes and

to quantify the genome’s exposure to each of them. The imprint of a

particular mutational process, referred to as its signature, is defined

by the relative frequency of all types of nucleotide substitutions typ-

ically within the context of specific flanking residues. Here, we uti-

lized mutational signatures that have already been discovered

(Alexandrov et al., 2013a). The goal is to approximate a genome

mutational profile (i.e. observed mutation frequencies) as a linear

combination of the signatures. Each signature coefficient of the lin-

ear combination is interpreted as the genome exposure (i.e. the frac-

tion of mutations in the genome) to a mutagenic process represented

by the respective signature.

Formally, let M (K�G) be a matrix containing observed muta-

tional profiles from G samples (e.g. 560 breast cancer patients),

where each profile contains the frequencies of K mutation types (e.g.

96 substitution types in the trinucleotide context) computed from

each patient’s catalog of mutations; and let P (K�N) be a matrix of

N predefined mutational signatures (e.g. 30 COSMIC signatures)

that specifies the probabilities of generating each of K mutation

types by separate mutational processes. The objective is to find a

nonnegative exposure matrix E (N�G) that contains, for each of G

samples, the exposure to each of N signatures by minimizing a

Frobenius norm (Alexandrov et al., 2013 b,a; Nik-Zainal et al.,

2012): minEkM� PEkF; the value of the objective function repre-

sents the error of the inferred decomposition. For each patient g

(g¼1,. . ., G), the objective function can be written as:

min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

k¼1

ðmkg �
XN
n¼1

ðengpknÞÞ

vuut s:t: :

XN
n¼1

eng ¼ 1

eng � 0:

8>><
>>:

There are many approaches to solve such a minimization problem.

In this paper, we implemented two methods based on quadratic pro-

gramming (QP) and simulated annealing (SA); for details see

Supplementary Material. We used two publicly available R packages

(https://cran.r-project.org): quadprog and GenSA for QP and SA, re-

spectively. Both algorithms can find the optimal solutions. QP is ex-

tremely fast and stable, but it requires a predefined signature matrix

P to be full column rank and relies on the problem formulation as a

minimization of the Frobenius norm. SA can be widely used on a

not-well-defined signature matrix, as well as a wider range of error

measures, but it is slower than QP in converging to the optimal solu-

tion. Importantly, SA can also be used to randomly explore the land-

scape of suboptimal solutions that are close to the optimal

decomposition.

3 Materials and methods

3.1 Confidence and stability of signature contributions
While the optimal method of quantifying the uncertainty attributed

to noise in biological data requires the replication of measurements,
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bootstrapping serves as a pragmatic alternative. To determine how

estimates of signature contribution were distributed and assess their

confidence and stability, we perturbed the original mutational cata-

log of each patient 1000 times by random re-sampling with replace-

ment and estimated signature contributions in each bootstrap

sample using the QP method. Based on the distribution of signature

contributions, one can estimate bootstrap confidence intervals for

each signature contribution and the empirical probability that a sig-

nature contribution is above a specific threshold. To assess the sta-

bility (bias) of contributions for different signatures, i.e. to test how

much the contributions of bootstrap experiments vary from the ori-

ginal contributions, we computed the mean squared error (MSE) of

the difference between the bootstrap estimates and the optimal con-

tributions in the original data.

Apart of decomposition stability with respect to the input data,

we tested the stability of the optimal solution itself to explore hidden

dependencies between signatures. We sampled the space of subopti-

mal decompositions, i.e. approximate decompositions with slightly

higher error than the optimal solution, using the simulated anneal-

ing approach—modifying the SA approach we used to find the opti-

mal solutions by enforcing a stopping rule to report suboptimal

solutions when a given value of the objective function (decompos-

ition error) is reached. The decomposition error threshold was set to

be higher than the error of the optimal solution by a factor of 1, 3 or

5%. The calculations were repeated 1000 times for each patient

to randomly sample the space of suboptimal decompositions with

each given threshold of decomposition error. The obtained distribu-

tions of signature contributions were then used, similarly to the

bootstrap analysis, to assess the confidence and stability of signature

contributions.

3.2 Genomic features of signatures
Morganella et al. (2016) showed that breast cancer mutational sig-

natures exhibit distinct relationships with genomic features related

to transcription, replication and chromatin organization. These ana-

lyses indicate that, in addition to the sequence context captured by

the nucleotides flanking each mutation, the general genomic context

also matters. In particular, if the mutational profile of a patient is

shaped by several mutational processes, the mutations from the con-

tributing processes are not shuffled randomly over the genome.

Instead, mutations from each operating process are often clustered

together. Maximal stretches of adjacent substitutions in a sample

generated by the same mutational process on the same reference al-

lele are called processive groups. Our analysis of breast cancer data

(see Results) has identified previously missed signatures, thus, in

addition to statistical analysis, we tested these signatures for ex-

pected genomic features, following procedures of Morganella et al.

as summarized below (for details see Morganella et al., 2016).

Each base substitution was associated with the mutational signa-

ture with the highest a posteriori probability of generating this mu-

tation; the a posteriori probability was computed based on signature

exposure levels inferred by QP method. Mutations (in the pyrimi-

dine context) within protein coding genes (Ensembl release 60) were

classified based on whether they are located on the transcribed/non-

coding strand or the non-transcribed/coding strand. Transcriptional

strand bias was computed for each signature separately as a ratio of

the number of mutations on the transcribed strand to the total num-

ber of mutations in all samples. For processive groups, we counted

the number of groups of different lengths (the number of maximal

successive mutations) for each signature separately. To assess the

significance of the observed group counts, we compared them with

the numbers of processive groups in 100 randomized datasets, where

the order of mutations was shuffled with respect to the original

data.

3.3 Datasets
The whole-genome dataset of somatic mutations from 560 breast

cancer (BRCA) patients (Morganella et al., 2016; Nik-Zainal et al.,

2016) was downloaded from the ICGC Data Portal (release 23),

https://dcc.icgc.org. We classified all somatic substitutions into 96

mutation types in the trinucleotide context (6 substitutions from a

pyrimidine base pair times 4�4 nucleotide types at both 50 and 30

sides of substitution). For each patient, we computed its mutational

profile from the patient’s catalog of mutations, i.e. the number of

mutations of each type. Each patient’s mutational profile was nor-

malized by the total number of mutations that each patient

possessed.

The patterns of 30 known and validated mutational signatures

were retrieved from the COSMIC website (release 80), http://cancer.

sanger.ac.uk. This set of signatures was deciphered from dozens dis-

tinct types of human cancer, although not all signatures are present

in every cancer genome (Alexandrov et al., 2013a,b; Alexandrov

and Stratton, 2014; Helleday et al., 2014; Nik-Zainal et al., 2012,

2016). The most recent analysis of the breast cancer whole-genome

sequences by Nik-Zainal et al. (Nik-Zainal et al., 2016) revealed 12

signatures found in breast cancer patients—signatures 1, 2, 3, 5, 6,

8, 13, 17, 18, 20, 26 and 30 in the set of 30 COSMIC signatures—

and provided exposures of each breast cancer patient to each signa-

ture as estimated by the NMF-based Mutational Signatures

Framework (Alexandrov et al., 2013a). We refer to this decompos-

ition as NMF decomposition. We also applied the deconstructSigs

approach to this dataset using the 12 known breast cancer signa-

tures to infer their exposure contributions (Rosenthal et al., 2016);

no signatures were discarded to minimize decomposition error. We

refer to these estimates as dS decomposition.

4 Results

4.1 Differences in signature exposures inferred by

different decomposition methods
The most commonly used tool for discovering mutational signatures

from the catalog of mutations, the Mutational Signatures

Framework (Alexandrov et al., 2013a) based on NMF technique,

additionally provides estimates of the number of mutations gener-

ated by each discovered signature. The newly developed tool—

deconstructSigs (dS)—can be used to decompose a small tumor sam-

ple or a patient’s mutation profile into already known signatures

(Rosenthal et al., 2016). As both methods are based on heuristics,

they do not always show consistent levels of signature exposures. In

addition, the decomposition problem into known signatures can be

solved optimally using existing optimization techniques based on

quadratic programming or simulated annealing (see Approach sec-

tion) to provide the theoretically optimal decomposition solution.

We ran all four methods and compared them on the largest available

whole-genome dataset containing somatic mutations from 560

breast cancer patients (Nik-Zainal et al., 2016) (Fig. 1).

Results across all methods are often very similar; for example the

methods show similar contributions of all signatures for patient

PD24196 in Figure 1A. However, in many cases their results are sig-

nificantly different (see patients PD8609 and PD13608 in Fig. 1A),

where contributions of some signatures vary greatly between meth-

ods. QP and SA show very consistent results. NMF identifies the
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strongest mutational signatures (1, 2 and 13) in each sample and ig-

nores signatures with little contribution. Therefore the exposures of

strong signatures are over-estimated as compared to other methods.

Despite this, signature 5, estimated by QP and SA to have a high

contribution (about 0.15 and 0.25 in both examples), is missed. dS

usually shows similar results to QP and SA, but for some signatures

it differs significantly. For example, in patient PD13608, signature 3

is detected by dS with a high contribution of 0.15 although other

methods yield an absence of this signature. Signature 5 is detected

only at 0.1 even though QP and SA show a strong contribution of

0.25. The decomposition errors (values of the objective function)

across all 560 patients for the four methods are shown in Figure 1B.

Although QP finds slightly better solutions than SA in terms of opti-

mal decomposition error in the majority of patients (75%), the

Cohen’s d effect size of the difference between two methods is negli-

gible so we can assume that they perform equally well. Moreover,

QP and SA always have lower decomposition errors than that of the

two other methods across all 560 patients, and significantly outper-

form them in terms of both P-value (<2e-93; paired Wilcoxon test)

and Cohen’s d effect size (>0.4). In addition, we used simulated

data to test if QP and SA recover the true composition of the sample

(this information is not available in the real data). Indeed, we found

that these methods had excellent performance and outperformed the

dS method (see Supplementary Material and Supplementary Fig.

S1). NMF has, on average, the largest decomposition error, which is

much higher (by up to 750% and mean of 40%) relative to QP and

SA as shown in Figure 1C. However, the main objective of NMF is

to discover unknown signatures from the patient’s catalogs of muta-

tions, not to find the optimal decomposition into predefined signa-

tures. The method focuses on the most prominent signatures in each

patient, so the lower performance in terms of optimal error is not

surprising. While it is not striking in Figure 1B, the decomposition

error of dS is higher by up to 15% (mean 1.6%) relative to QP and

SA (Fig. 1C). As it is shown in two examples in Figure 1A, even such

small differences in decomposition error can lead to significant dis-

crepancy in inferred contributions or even overall signature pres-

ence. To show the extent of differences between methods, we

computed the pairwise cosine distance between exposures inferred

by QP versus NMF, dS and SA for each individual patient (Fig. 1D).

There are a number of patients for which the distance between solu-

tions is large; this is not specific to particular patients, but rather to

compared decomposition methods.

The above results show that for some patients the signature ex-

posures inferred by different methods differ significantly, even when

there is no striking difference in decomposition errors. Moreover, it

appears that some signatures (e.g. 3 and 5) are more prone to vari-

ability than other signatures (e.g. 1, 2 and 13). Even though the

method based on QP shows the best performance in terms of small-

est decomposition error and runs much faster than other methods, it

is still not clear how stable the optimal solution is and which signa-

tures are credible. To answer these questions we analyzed the stabil-

ity of the optimal solution in terms of variability in both input data

and suboptimal solutions. This will help us to understand the origin

of the observed discrepancies between the methods.

4.2 Confidence and stability analysis of signature

contributions
The observed mutation frequencies in real biological samples may be

contaminated by noise and the optimal solutions inferred based on

such data do not always have meaningful and direct biological inter-

pretation. In order to measure the confidence in the estimation of the

A

B C

D

Fig. 1. Comparison of four decomposition methods. The decomposition of patient’s mutational profile into 12 mutational signatures known to be present in

breast cancers was inferred using four different methods for each of 560 patients. (A) Three examples comparing four methods shown as barplots. (B)

Distribution of decomposition errors (the root sum-squared error between observed and inferred mutational profile) compared between four method across 560

breast cancer patients. Statistical significance of difference between decomposition errors of QP and three other methods is shown (paired Wilcoxon test);

Cohen’s d effect size of difference between decomposition errors of QP and SA is negligible. (C) Decomposition errors for NMF and dS relative to QP errors

shown in the log scale (y axis). (D) Comparison of cosine distance between signature contributions inferred using QP and three other methods shown for all pa-

tients. Patients were sorted based on their distance between QP and NMF solutions. Three patients selected as the examples in (A) are marked
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exposure intensities, we applied the bootstrap technique. Thus, we

perturbed the original mutational catalog of each patient separately

by randomized re-sampling with replacement and estimated signature

contributions in each bootstrap sample using QP method. Figure 2A

shows the distribution of exposure estimates in perturbed input cata-

logs for the same three examples shown in Figure 1A. The bootstrap

estimates are, as expected, distributed around the optimal QP

solutions in the original data, and their median values are reasonably

close to the original contributions. However, the variability of the

bootstrap solutions for some signatures and patients vary significantly

from the original QP exposures. This variability seems to be related to

specific signatures and independed of patients and exposure levels.

For example, the contributions of signature 3 differ between the ex-

ample patients in Figure 2A from 0 to over 0.2, but the variability of

A

C

B

E

D F

Fig. 2. Stability of signature contributions. (A) Distribution of signature contributions in 1000 bootstrap samples for the three selected patients (same as in Fig.

1A). Contributions in the original samples inferred by QP are shown as red dots. (B) Comparison of signature contribution instability between all signatures meas-

ured as the mean squared error between contributions in 1000 bootstrap samples and contributions in the original samples for each patient. Corresponding re-

sults for suboptimal solutions based on simulated annealing trials with increased decomposition error are shown in (C) and (D), respectively. Three error

threshold increases (þ1, þ3 and þ5%) relative to the optimal error from QP methods are compared (C), but only results of ‘þ3% error’ are further presented. (E)

Summary of stability analysis based on bootstrap (top) and simulated annealing (bottom). The size of each circle represents median signature contribution in-

stability (log10 scale) over all patients for each signature separately; the sizes were normalized by the most unstable signature. The color of each circle indicates

median signature contribution. (F) Decomposition of a mutational signature (3, 5 and 8) into 11 remaining signatures using QP method (decomposition errors:

0.05, 0.03 and 0.06, respectively)
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bootstrap solutions seems to be high in all three cases. On the other

hand, the variability of signature 13 contributions in bootstrap sam-

ples is small across all examples and also independent of exposure lev-

els. To assess the signature stability more broadly we investigated the

divergence of their bootstrap contributions from the optimal QP solu-

tion in terms of the mean squared error for each patient separately

(Fig. 2B). Signatures 3, 5 and 8 show large instability in the majority

of patients; moderate instability can also be observed for signatures 1

and 30. On the contrary, signatures 2 and 13 are stable across all pa-

tients. Some of the other signatures (e.g. signature 17) seems to be sta-

ble as well, but they are rather infrequent signatures with median

contribution below 0.01.

The COSMIC signatures were derived from a large but limited

dataset containing different cancer types using a heuristic method

based on NMF, so although the signatures are linearly independent,

they should not be assumed to be ‘orthogonal’: weak dependencies

between them might exist. As such, different linear combinations of

signatures can lead to equivalent approximations of the optimal de-

composition, i.e. approximations with the same decomposition error

in close proximity of the optimal solution. Then, our confidence in

the applicability of the optimal decomposition will be weakened. To

check whether this problem applies to all signatures or only some of

them, we randomly sampled the solution space of suboptimal de-

compositions for all patients using simulated annealing and stopping

the simulations whenever the decomposition error was close to the

error of optimal QP decomposition. We performed three runs of

simulations with increasing thresholds of error for suboptimal solu-

tions—optimal error times 1.01, 1.03 and 1.05, respectively. The re-

sults for our three exemplary patients are presented in Figure 2C.

The summary of signature stability analysis in terms of MSE for 3%

error increase is presented in Figure 2D, as an example since results

for all three error levels are consistent. And again, we can observe

that contributions of some signatures in suboptimal decompositions,

like signatures 2 and 13, are close to the contributions inferred by

QP method and that they are stable independently of patient, expos-

ure level and increased error level. The contributions of signatures 1

and 30 seem to be more stable than in bootstrap analysis. However,

the contributions of signatures 3, 5 and 8 in suboptimal decompos-

itions still vary substantially across all patients and diverge from the

optimal QP exposures (see for example patients PD8609 and

PD13608). This divergence increases with the increased error of sub-

optimal decompositions and can quickly lead to over- or underesti-

mation of contributions of some signatures like for example in

patient PD13608 for signatures 3 and 5, respectively. This explains

why the contributions of signatures 3 and 5 inferred by dS for this

patient differed significantly from the contributions inferred by QP

(Fig. 1A); dS found a suboptimal solution with decomposition error

higher than in the optimal solution found by QP.

Presented applications of both bootstrap and simulated anneal-

ing approaches provide different but complementary views on the

stability of contributions of mutational signatures inferred from pa-

tient’s mutational profile. Contributions of signatures 3, 5 and 8 are

unstable from both perspectives (Fig. 2E) and their variability seems

to be interrelated, especially in simulated annealing analysis (Fig.

2C). To check whether any signature can be easily replaced by a

combination of other signatures, we decomposed each signatures

into the remaining signatures using the QP approach (i.e. treating a

signature as a patient’s mutational profile and decomposing it using

the set of the remaining signatures). The only signatures that can be

decomposed with relatively small error (within decomposition errors

of real BRCA patients, <0.1) are signatures 3, 5 and 8 (Fig. 2F).

Each of these signatures requires considerable presence of the two

other signatures and limited contribution from some of the remain-

ing signatures. This helps to explain the exposure instability of

these three signatures. Moreover, both analyses show that contribu-

tions of signatures 2 and 13, both related to the activity of AID/

APOBEC, are stable across all patients and that they cannot be

replaced by a combination of other signatures (not shown). This

suggests that these two signatures are distinctively defined and well

separated from other signatures. Similar properties apply, to some

extent, to signatures 1 and 30, which offers insight into their

reduced instability in simulated annealing relative to that of the

bootstrap analysis.

In both analyses, we ran 1000 simulations and computed rele-

vant decompositions for each patient (e.g. three patients in Fig. 2A

and C). Based on these computations, one can estimate confidence

intervals for each signature contribution in each patient to better as-

sess which signatures are present in a patient’s mutational profile

and what their contribution levels are. Alternatively, one can ask

what is the probability that a patient’s exposure to a signature is

above a certain level. We counted the number of patients with differ-

ent exposure levels of all BRCA signatures (Table 1). As we can ob-

serve, a huge majority of patients (above 85%) is exposed to

signatures 1, 5 and 8 at a minimal exposure level of at least 0.01

(with P-value 0.01), and these signatures are relatively abundant in

a number of patients. Other signatures such as 6, 17, 20 and 26 are

only present in a limited number of patients, and only few patients

are exposed to these signatures at levels above 0.15. Such analysis

assesses which signatures are present in a single sample at a minimal

exposure level, so further analysis could be focused on essential sig-

natures only and signatures with little contribution could be disre-

garded from analysis of a particular patient.

4.3 Re-analysis of mutational signatures presence

in breast cancer
Nik-Zainal et al. (2016) analyzed whole-genome sequences of 560

breast cancers and extracted 12 base substitution mutational signa-

tures from patient’s catalogs of somatic mutations using their own

framework based on NMF (Alexandrov et al., 2013a). The method

focuses only on the essential mutational signatures that contribute

large numbers of mutations to the inferred mutational profile of

each sample. Using the tools we presented in our paper, we re-

analyzed the data using the full set of 30 COSMIC mutational signa-

tures and determined which signatures, beyond the 12 previously

identified signatures, are present in breast cancers with high confi-

dence. Figure 3A shows the distribution of sample exposures to 30

signatures over all patients as inferred by QP method. Signatures 9,

12 and 16, formerly detected in other cancer types, are likely to be

Table 1. The number of breast cancer patients exposed to each of

12 mutational signatures (columns) at different minimal contribu-

tion levels (rows) with P-value of 0.01 as assessed by bootstrap

analysis of the perturbed patient’s mutational catalogs

Exposure Signatures

threshold 1 2 3 5 6 8 13 17 18 20 26 30

>0.01 512 366 220 505 16 479 402 30 107 5 25 115

>0.05 411 173 187 459 7 374 218 8 41 4 11 20

>0.10 342 110 164 368 6 225 118 4 16 3 8 2

>0.15 258 71 144 301 5 121 78 3 6 1 7 1

>0.20 159 50 128 219 4 65 60 2 3 1 7 1

>0.25 75 35 118 144 1 27 45 1 1 1 5 1
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present in a number of patients as their contribution levels are com-

parable to, or even exceed, the contributions of some of the 12 sig-

natures. The results of bootstrap simulations confirmed these

observations, see Table 2; and simulated annealing analysis of sub-

optimal solutions showed consistent results (not shown). As we can

observe, each of these novel signatures is present in at least a few pa-

tients with high contribution above 0.15 and empirical P-value of

0.01; the same is true for the 12 known breast cancer signatures.

The remaining signatures do not show the same presence in breast

cancer patients, so they were excluded from further analysis. We

A

B C

D

Fig. 3. (A) Distribution of contributions of 30 COSMIC signatures over 560 breast cancer samples inferred using QP method. Three signatures (9, 12 and 16) sug-

gested to be novel in breast cancers are marked bold; signatures not present in breast cancer are gray. The signatures 9, 12 and 16 were evaluated in terms of

their contribution stability in the bootstrap and simulated annealing analyses (B) and genomic features known to be exhibited by some signatures such as the

transcriptional strand bias (C) and length of processive groups (D). Observed transcriptional strand bias is shown as a circle with 95% confidence intervals against

expected bias of 0.5. Processive groups of different lengths (columns) for each signature (rows) are represented as circles whose size corresponds to the number

of groups (log10 scale) and color to the P-value of detecting a processive group of a defined length (-log10 scale). The numbers of groups were normalized by the

number of groups of length 2 (Color version of this figure is available at Bioinformatics online.)

Table 2. The number of breast cancer patients exposed to each of 30 COSMIC mutational signatures (columns) at different minimal contri-

bution levels (rows) with P-value of 0.01 as assessed by bootstrap analysis of the perturbed patient’s mutational catalogs

Exposure Signatures

threshold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

>0.01 523 335 250 7 91 8 10 434 246 13 18 15 386 5 12 117 9 66 3 5 6 0 0 0 8 7 0 4 2 8

>0.05 423 165 210 1 62 6 0 312 65 0 0 9 210 2 1 32 4 25 0 3 3 0 0 0 0 5 0 1 0 1

>0.10 347 104 175 0 33 6 0 174 12 0 0 8 117 0 0 8 3 9 0 2 1 0 0 0 0 4 0 0 0 1

>0.15 265 69 154 0 12 4 0 91 2 0 0 7 78 0 0 2 3 5 0 1 0 0 0 0 0 3 0 0 0 1

>0.20 177 49 136 0 4 2 0 36 0 0 0 4 61 0 0 1 2 1 0 1 0 0 0 0 0 2 0 0 0 1

>0.25 96 35 120 0 1 2 0 16 0 0 0 3 45 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0 1

Note: The 12 known breast cancer signatures are marked italic and the three signatures (9, 12 and 16) suggested to also be present in breast cancers—bold.

336 X.Huang et al.

Deleted Text: p


recomputed the data decomposition into 15 signatures—12 known

plus 3 novel, for all patients.

To further evaluate the presence of novel signatures 9, 12 and 16 in

breast cancers we assessed their stability and tested if these signatures

exhibit known transcriptional features previously shown for some of

the 12 signatures by Morganella et al. (Morganella et al., 2016). The

novel signatures show similar ranges of stability as the 12 signatures,

from stable signature 12 to unstable signature 16 (Fig. 3B; compare

with Fig. 2B and D). The transcriptional strand bias of the novel signa-

tures is highly significant (P-value< e-12) and much stronger than for

any other signature (Fig. 3C). Signatures 9 and 12 show bias towards

the non-transcribed strand, while signature 16 shows extremely strong

bias towards the transcribed strand, mostly with T>C mutations at

ATN context. The bias of signatures 12 and 16 was formerly observed

in other cancer types, while the bias of signature 9 was not observed

before and seems to be associated with the function of DNA polymer-

ase g, which plays an essential role in replicating damaged DNA. Some

mutational processes cause long stretches of successive mutations,

called processive groups, to occur on the same DNA strand. We found

significantly long processive groups containing at least 5-6 mutations

associated with the novel signatures, especially for signature 12, which

had the longest processive group of 11 substitutions (Fig. 3D). These

results shows that the novel signatures, 9, 12 and 16, carry genomic

features previously observed for breast cancer signatures or signatures

present in other cancer types and independently support the outcome

of our tools for decomposition of patient’s mutational profile into pre-

defined mutation signatures with confidence.

5 Conclusion

With the steadily decreasing cost of sequencing, we can now catalog

cancer somatic mutations for an ever increasing number of individ-

ual patients. It is important to be able to use this information opti-

mally. In particular, key information that we can obtain from such

mutation data includes the mutagenic processes shaping the muta-

tion catalog of each individual patient. Such information can point

to specific defects in the replication mechanism, enzymatic activities,

etc. Until now methods that decomposed patient’s mutational cata-

log into mutations associated with specific signatures made no at-

tempt to assess confidence in such decomposition. We showed that

the results provided by existing methods can differ significantly not

only in estimating exposure levels to each mutagenic process, but

also in assessing whether or not a given signature is actually present.

In particular, we provided statistical evidence and biological support

for the presence of three additional signatures in breast cancers.

However, many of the differences are not merely a reflection of dif-

ferences in the accuracy of decomposition methods, but are, at least

in part, related to the inherent instability of some signatures.

In this work, we used two complementary approaches to assess

the confidence and stability of the resulting decomposition. Our

analysis showed that some mutagenic signatures, such as the signa-

tures related to APOBEC activity, are very stable while others, espe-

cially noisy are signatures 3, 5 and 8, are not. This instability can be

explained, in part, by the fact that these signatures can be decom-

posed into a linear combination of other signatures with a very small

error. This problem can only deepen with the increasing number of

novel mutational signatures that are being discovered through the

steadily increasing number of cancer datasets. We note that some of

the 30 COSMIC signatures are already highly correlated

(Supplementary Fig. S2). Importantly, various cancer related events

such as differences in methylation, chromatin status, or similar

events might influence inferred mutational signatures even when the

mutagenic processes remain unchanged. Thus the analysis of muta-

tional signatures can potentially provide a wealth of additional in-

formation while at the same time can lead a set of signatures that

are relatively similar. Our results emphasize the importance of ana-

lyzing the confidence and stability of inferred signature contribu-

tions from the perspective of input data perturbation and

approximate suboptimal solutions; the evaluation methods and soft-

ware developed for this study can aid such analyses.
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