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Abstract

Summary: To construct gene co-expression networks based on single-cell RNA-Sequencing data,

we present an algorithm called LEAP, which utilizes the estimated pseudotime of the cells to find

gene co-expression that involves time delay.

Availability and Implementation: R package LEAP available on CRAN

Contact: jun.li@nd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene co-expression networks (GCNs) use nodes to represent genes

and edges to represent co-expression (simultaneous expression/si-

lence, or simultaneously high/low expression) of genes, and they can

be used to predict gene functions, among many other applications.

Computational inference of GCNs are often based on a set of experi-

ments from different tissues or different conditions, each measuring

the expression of a large set of genes by high-throughput techniques

like microarrays or RNA-sequencing (see e.g. Allen et al., 2012;

Specht and Li, 2015), the current de facto standard. A popular and

most straightforward way of constructing a GCN is called the “cor-

relation-based” approach, which connects gene pairs whose expres-

sions in different biological samples are highly correlated, measured

by Pearson’s correlation or other correlation coefficients.

Correlation-based GCNs constructed based on microarray or

RNA-Sequencing data only capture simultaneous associations be-

tween pairs of genes. Biologically, if a gene enhances/inhibits an-

other gene, then the latter gene will have delayed expression/silence

(Munsky et al., 2012). For such a pair, the co-expression of the two

genes is strong if the delay in time is taken into account, but can be

weak if only simultaneous association is considered. Unfortunately,

such “time” information is not available in gene expression meas-

ured by microarrays or (bulk-based) RNA-Sequencing data, and

thus correlation-based GCNs constructed using these data have lim-

ited ability to capture these regulatory relationships between genes,

which are of equal, if not greater, interest than simultaneous expres-

sions. A pioneering extension of the regular RNA-Sequencing tech-

nique, single-cell RNA-Sequencing (scRNA-Seq) is able to capture

this time information in an indirect way. scRNA-Seq measures the

gene expression profile of each individual cell, and hundreds to

thousands of cells in a single run. These cells are at different time

points of their cell cycles, and these time points can be estimated

based on the idea that expression profiles are similar in cells at

similar time points. These estimated time points are called

“pseudotime,” and a few algorithms have been developed for the es-

timation (Campbell and Yau, 2015; Campbell et al., 2015; Trapnell

et al., 2014; Reid and Wernisch, 2015).

2 Methods

We propose an algorithm called LEAP (Lag-based Expression

Association for Pseudotime-series) for the computation of gene co-

expression that takes into account the possible lags in time. LEAP

sorts cells according to the estimated pseudotime (without consider-

ing branching), and then computes the maximum correlation of all

possible time lags. This maximum correlation is used as the statistic

to replace the traditional Pearson’s correlation coefficient for con-

structing the network, and the statistical significance of this statistic

is measured by the false discovery rate calculated using

permutations.
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LEAP works by calculating the correlation of normalized

mapped-read counts over varying lag-based windows. Given Xi;t

and Xj;t, the normalized and log-transformed number of reads

mapped to genes i and j (e.g. log ðRPKMþ 1Þ and log ðTPMþ 1Þ,
where RPKM and TPM stand for reads per kilobase million and

transcripts per million, respectively.), across experiments t 2 f1; . . . ;

Tg ordered by pseudotime, we examine windows of size s (we use s

¼ 2T=3 for our real data example). For a given lag

l 2 f0; 1; . . . ;T � sg, we take the series Xi;0 ¼ fxi;1; . . . ; xi;sg and

Xj;l ¼ fxj;lþ1; . . . ; xj;lþsg, and find their Pearson’s correlation

qijl ¼
covðXi;0 ;Xj;lÞ

stdðXi;0ÞstdðXj;lÞ. We estimate this for all gene pairs across all

l 2 L ¼ f0;1; . . . ;T � sg, keeping the maximum absolute correl-

ation (MAC) found, q�ij, where

q�ij ¼ max
l2L
jqijlj:

We use q�ij as the measurement of the strength of co-expression be-

tween gene i and gene j. By maximizing over all possible time lags,

q�ij can often be larger than the regular measure of co-expression

(Pearson’s correlation coefficient without considering time lags).

Another difference is that in general the gene pairs (i, j) and (j, i) do

not have the same MAC, i.e. q�ij 6¼ q�ji. This is because q�ij measures

the co-expression when gene j’s expression is simultaneous or

delayed compared to the expression of gene i. Thus, q� is able to

capture directional relationships. This directional relationship likely

implies regulatory relationship: let l� ¼ argmaxl2Ljqijlj, then q�ij > 0

with l� 6¼ 0 suggests gene i enhances gene j, q�ij < 0 with l� 6¼ 0 sug-

gests i inhibits gene j, and l� ¼ 0 suggests that gene i and gene j are

both regulated by a third gene (Munsky et al., 2012).

To measure the statistical significance of the q� matrix we in-

clude a function to estimate the false discovery rate (FDR). We per-

mute each gene i’s normalized expression counts K times, creating

xi;t;0; . . . ;xi;t;K. Then for each permutation k, we estimate q�ijk. For a

cutoff C, the number of observed significant results is given by

Nobserv
C ¼

Pn
i¼1 Iq�

ij
�C, where I is the indicator function, and the aver-

age number of significant results across K permutations is

Nperm
C ¼ 1

K

PK
k¼1

Pn
i¼1 Iq�

ijk
�C. Finally, an estimate of the FDR is given

by dFDR ¼ Nperm
C =Nobserv

C .

Our implementation of LEAP using R is highly efficient. When

calculating q�ij, we use a matrix computation with warm start to give

q�ij for all gene pairs simultaneously. When doing permutations for

estimating FDR, we randomly subsample genes at each permutation,

which accelerates the computation dozens of folds with little loss of

accuracy. For a dataset with 500 genes and 500 cells, LEAP takes

about one minute to complete (with 100 permutations) on a regular

laptap using a single core.

3 Results

To test LEAP’s performance, we use a scRNA-Seq dataset that con-

sists of 564 Mus musculus dendritic cells (Shalek et al., 2014). We

use logðxþ 1Þ transformed TPM (transcripts per million) values as

the gene expression, and we refine the dataset to the most highly ex-

pressed genes using mean expression and relative interquartile range

(IQR) cutoffs of 15 and 1.3, respectively, resulting in 557 genes. The

pseudotime was estimated using Monocle (Trapnell et al., 2014),

which works by first mapping the gene expressions to low-

dimensional space and then finding the longest path along a min-

imum spanning tree of the cell’s locations. The resulting

pseudotimes were kept for the 512 cells from the same state and

used to sort the cells, compute q�ij, and estimate FDR using a set of

thresholds C 2 ð0; 1Þ.
To check the ability of LEAP in detecting biologically true regu-

latory relationships, we use the Mus musculus network available

through FunCoup, an online database that infers functional associ-

ations from publications (Schmitt et al., 2013). For performance

comparison, we also compute a regular Pearson-correlation-based

network without considering time lags.

Table 1 shows for several cutoff values C, the number of identi-

fied associations and correctly identified known associations based

on the FunCoup network by LEAP (Ntotal
LEAP and Nknown

LEAP ), the number

of non-zero time lags among these known associations (Nknown
l�>0 ), the

number of time lags that are greater than 50 among known associ-

ations (Nknown
l�>50 ), and the estimated FDR ( dFDR). For comparison of

performance, we also compute a regular Pearson-correlation-based

network without considering time lags and give its number of identi-

fied and correctly identified known associations (Ntotal
simple and

Nknown
simple ). It is clear that LEAP discovers much more gene regulatory

associations as it is able to take the time lag into account. For ex-

ample, under FDR cutoff 0.05, LEAP discovers 9508, compared to

2367, known associations.

4 Conclusion

Regular correlation-based GCNs only describe simultaneous gene

co-expressions. By using the time information that is virtually freely

available in scRNA-Seq data, we developed a method LEAP that is

able to capture associations that were hidden by the time lags. The

asymmetric associations detected by LEAP more likely reflect regu-

latory relationships as they describe which gene follows another

gene in expression. As an R package, LEAP is simple to use and

computationally efficient. It also generates output compatible with

popular analysis packages such as WGCNA (Langfelder and

Horvath, 2008) to facilitate further inference based on the network.
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