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Abstract

Motivation: As the tree of life is populated with sequenced genomes ever more densely, the new

challenge is the accurate and consistent annotation of entire clades of genomes. We address this

problem with a new approach to comparative gene finding that takes a multiple genome alignment

of closely related species and simultaneously predicts the location and structure of protein-coding

genes in all input genomes, thereby exploiting negative selection and sequence conservation. The

model prefers potential gene structures in the different genomes that are in agreement with each

other, or—if not—where the exon gains and losses are plausible given the species tree. We formu-

late the multi-species gene finding problem as a binary labeling problem on a graph. The resulting

optimization problem is NP hard, but can be efficiently approximated using a subgradient-based

dual decomposition approach.

Results: The proposed method was tested on whole-genome alignments of 12 vertebrate and 12

Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster

and compared to competing methods. Results suggest that our method is well-suited for annota-

tion of (a large number of) genomes of closely related species within a clade, in particular, when

RNA-Seq data are available for many of the genomes. The transfer of existing annotations from

one genome to another via the genome alignment is more accurate than previous approaches that

are based on protein-spliced alignments, when the genomes are at close to medium distances.

Availability and implementation: The method is implemented in Cþþas part of AUGUSTUS and

available open source at http://bioinf.uni-greifswald.de/augustus/.

Contact: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With recent technologies in whole-genome sequencing, the sequenc-

ing of entire clades of genomes is in progress. For example, the

Genome 10K Project launched in 2009 has taken on the task of

sequencing the genomes of 10 000 vertebrate species (Genome 10K

Community of Scientists, 2009). Other examples include the 5000

Insect Genome Project (i5k) (Robinson et al., 2011) and the 1000

Fungal Genomes Project of the JGI.

The annotation of genomes, in turn, is a rather slow process. An

important step is the identification of protein-coding genes.

Although many automatic tools for gene finding are available, none

of them is able to predict genes genome-wide without a substantial

rate of wrong gene structures or missing genes. For instance, a sur-

vey from 2013 (Steijger et al., 2013) suggests that even the most ac-

curate tools are merely predicting 48.53% of the genes (at least one

splice form) in Drosophila melanogaster correctly, when using only

RNA-Seq data as evidence. For a recent review on the subject, see

Hoff and Stanke (2015).

Another evidence source besides transcriptome sequence is hom-

ology. One class of methods that exploit homology uses previously

identified protein sequences from related species or from a database

and performs a spliced alignment against a target genome. Examples
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are EXONERATE (Slater and Birney, 2005) and GENOMETHREADER

(Gremme et al., 2005) that align single protein sequences to the tar-

get genome and GENEWISE (Birney et al., 2004) and AUGUSTUS-PPX

(Keller et al., 2011) that take entire protein families represented as

sequence profiles as input. These approaches depend on the correct-

ness of the input proteins, their similarity to the target clade and the

overlap of the respective proteomes. They are usually suited only as

one component of a whole-genome annotation pipeline. The

ENSEMBL pipeline, for example, uses amongst other tools

GENEWISE and EXONERATE for protein sequence-based gene predic-

tion. A second class of methods that exploit homology are compara-

tive gene finders. These methods take two or more genome

sequences as input and exploit that homolog genes have often a very

similar gene structure. By aligning the genomes of related species,

conserved regions become visible that are enriched in protein-coding

exons but also other functional DNA.

Initial comparative approaches to gene finding such as TWINSCAN

(Korf et al., 2001) simultaneously predict genes in exactly two input

genomes (e.g. of human and mouse), but are rather proofs-of-

concept and seem to play no substantial role in current genome

annotation. To take advantage of a multiple genome alignment, al-

ternative approaches restrict gene finding to a single target genome

and use an alignment between the target and multiple related gen-

omes to inform gene finding in the target. Examples are CONTRAST

(Gross et al., 2007) and N-SCAN (Gross and Brent, 2006). In particu-

lar, CONTRAST achieved striking results (58.6% sensitivity and

35.5% specificity for human on gene level). Despite the very good

performance of comparative gene finding and the potential to com-

bine homology evidence with evidence from transcriptome sequenc-

ing, CONTRAST and N-SCAN are rarely used for whole-genome

annotation. Reasons may include the fact that both require an elab-

orate parameter training specific to the set of ‘informant’ genomes,

that has to be repeated for every genome in the clade that should be

annotated, which, even if automated, leads to a running-time quad-

ratic in the number of genomes. A methodical disadvantage is fur-

ther the restriction of gene finding to a single target genome. This

has the drawback that likely gene structures in the informant gen-

omes are not taken into consideration when choosing a gene struc-

ture in the target genome.

We present a novel approach to comparative gene finding that

simultaneously identifies genes in k�2 genomes and that is suitable

for the annotation of entire clades of genomes, e.g. the runtime is

linear in the number of genomes k. We introduce a graph-theoretical

framework and formulate the problem as a binary labeling problem

on a graph. In general, exact inference in this model is not tractable,

however, we can take advantage of the special structure of the graph

that allows decomposition into two tractable sub problems: Finding

longest paths in directed acyclic graphs (DAGs), and maximum

a-posteriori probability (MAP) inference on trees. A subgradient-

based dual decomposition approach is derived for approximate in-

ference, guaranteeing an upper bound on the approximation error.

Dual decomposition and more generally Lagrangian relaxation has

already been applied to a variety of inference problems, e.g. for the

multiple sequence alignment problem (Althaus and Canzar, 2008),

computer vision (Komodakis et al., 2011) and natural language pro-

cessing (Rush et al., 2010). More recently, dual decomposition was

adopted for integrating RNA-Seq evidence into HMM-based gene

structure prediction (Inatsuki et al., 2016).

The proposed method is implemented as an extension to the

gene finder AUGUSTUS (Stanke et al., 2008) and in the following

referred to as AUGUSTUScgp. The required inputs are the genomes of

two or more species as well as an alignment and a phylogenetic tree

of the genomes. With no further information, AUGUSTUScgp infers

gene structures de novo by only making use of the raw genomes and

alignment information. AUGUSTUScgp incorporates evidence for nega-

tive selection by computing an estimate for the ratio of non-syn-

onymous and synonymous substitutions x¼dN=dS for all

considered candidate coding exons. Furthermore, AUGUSTUScgp can

incorporate additional evidence, e.g. from RNA-Seq and existing an-

notations. The latter is used for the special application of transfer-

ring a trusted annotation from a known genome to newly sequenced

genomes. The performance of AUGUSTUScgp for all three tasks—de

novo/evidence-based gene finding and cross-species annotation

transfer—is evaluated on two data sets, a vertebrate and a

Drosophila subclade of 12 species each, and discussed in the results

section.

Training the parameters of AUGUSTUScgp is not more expensive

than hitherto for a single genome. The species-specific parameters

are only learned for one representative in the clade (e.g. human in a

mammalian clade) with no need for retraining when more genomes

are added to the clade or removed. Apart from the species-specific

parameters there are only few extra cross-species parameters to ad-

just such as rates for exon gain and loss.

2 Methods

Here, we formally introduce the problem of comparative gene finding

using a graph and a scoring function for all possible joint gene struc-

tures in k homologous sequences. The problem is NP-hard. Therefore,

we developed an approximative algorithm based on dual decompos-

ition for determining a joint gene structure with maximal score. Given

the page constraint, we focus on the algorithmic part here.

2.1 The model of a joint gene structure
Let us first consider a single genomic sequence g. The space of all pos-

sible gene structures x in g can be modeled as paths from a source s to

a sink ‘ in a weighted directed acyclic graph, which in the following is

referred to as gene structure graph. For a conceptual example, see the

graph for sequence 1 in Figure 1. A gene structure may cover one or

several genes, or even just intergenic region. Gene structures with

overlapping transcripts, such as from alternative splicing, are not con-

sidered here. Nodes in the gene structure graph denote candidate

exons. Directed edges represent candidate introns or intergenic re-

gions and connect two nodes if they constitute a biologically meaning-

ful sequence of exons. Both candidate exons and introns are obtained

within AUGUSTUS by random sampling of gene structures from the pos-

terior distribution defined by a semi-Markov conditional random

field. The sampling of gene structures in AUGUSTUS has previously been

introduced to identify alternative transcripts (Stanke et al., 2006). In

general, sampling yields just the most likely splicing variants, which

do not sufficiently represent the space of all possible gene structures.

To account for this, two adjustments are made. First, the posterior

distribution is ‘heated’ by raising its posterior probabilities to the

power of r 2 ð0; 1� and subsequent renormalizing, PrðxÞ / ðPðxÞÞr.
As a consequence, the sampling of less likely gene structures increases

for r<1, the sample of candidate exons is more inclusive and for can-

didate exons, that are frequently sampled, their heated posterior prob-

ability Pr(x) is a more conservative estimate of the probability of

being correct than in the original distribution P.

In addition, candidate exons are inserted into the graph that

were not sampled. These are determined by all possible combin-

ations of exon boundary signals (translation start/stop and donor/

acceptor splice sites) that are within a given distance and that do not
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contain in-frame stop codons. The number of such candidate exons

is within the same order of magnitude as the length of sequence g.

To reduce run time and memory usage, candidate exons may be fil-

tered by imposing a threshold on splice site scores.

The score of each source-sink path is a sum of node and edge

weights. Both node and edge weights are real-valued functions of

the posterior probability of the exon or intron as estimated by the

relative sampling frequency of the corresponding candidate exons

and introns, respectively. Exon candidates that are not sampled, are

scored as if they have posterior probability 0. Furthermore, if extrin-

sic evidence is given, such as from RNA-Seq, then the weights indir-

ectly depend on the evidence as candidate exons and introns that are

supported by evidence typically achieve high posterior probabilities.

The problem of finding an optimal gene structure in such a single

genomic sequence, can be solved efficiently with standard algo-

rithms for longest-paths problems.

Now, let us consider a syntenic region consisting of k homologous

sequences. In general, there will be many, sometimes overlapping syn-

tenic regions between the genomes or a subset of the genomes, each of

which is an instance of the proposed method. These regions of synteny

are determined within AUGUSTUScgp by merging compatible alignment

blocks in the input alignment to larger blocks of synteny. Note, how-

ever, that this is not a trivial task in itself, especially in cases where the

genome assemblies are highly fragmented. Ideally, the syntenic regions

are large enough to contain one or more genes. Let GiðVi;EiÞ be the

gene structure graph of sequence gi (i 2 f1; ::;kgÞ with node set Vi and

edge set Ei. The gene structure graphs are now combined into a single

graph by connecting homologous candidate exons via phylogenetic trees

as follows: Let � denote an equivalence relation on V ¼ [k
i¼1Vi, such

that for u 2 Vi; v 2 Vj; i 6¼ j; u � v if and only if both start and end

positions of candidate exons u and v map to the same positions in the

alignment and are in the same reading frame. The relation � partitions

V into a set of equivalent classes, each of which is referred to as a hom-

ologous exon candidate tuple (HECT). All elements in a HECT are can-

didate exons that are putative homologs, meaning that they are believed

to be derived from a common ancestor. The elements of singletons are

candidate exons with no homologs in the other sequences. All exons in

a HECT are linked by a phylogenetic tree by merging them with their

counterparts (e.g. leaf nodes) in the tree. The tree is a copy of the input

species tree in which the leaf node of species i is pruned if the HECT

does not contain an exon candidate of species i.

Let GðV [ A;EI [ EPÞ denote the joint gene structure graph, in

which V ¼ [k
i¼1Vi, A is the set of all ancestral exons (interior nodes

of the phylogenetic trees), EI ¼ [k
i¼1Ei is the set of all ‘intron’ or

‘intergenic’ edges (blue/solid edges in Fig. 1) and EP is the set of all

phylogenetic edges (orange/dashed edges in Fig. 1) in G. The joint

gene structure graph comprises all possible gene structures of all k

sequences (Fig. 1). Loosely speaking, the aim is to choose exactly

one gene structure, or equivalently, one source-sink path si
 ‘i, for

each sequence gi; i ¼ 1; ::; k. In the following, such a collection of k

paths is also called a joint gene structure. In mathematical terms a

joint gene structure is an assignment x ¼ ðx1; . . . ;xnÞ 2 X � f0; 1gn;

n ¼ jVj þ jAj of all nodes in G. Observe that this formal definition

of a joint gene structure includes the choice of ancestral exons. A

node v is assigned to 1 if it is part of the joint gene structure and 0

otherwise. We will also say that v is active if xv¼1 and inactive if

xv¼0. Likewise, an edge ðu; vÞ 2 EI is active if both u and v are ac-

tive and there is no path from u to v that passes through active nodes

other than u and v. The subset X is the set of all assignments that

obey the path property, e.g. each source node has exactly one outgo-

ing active edge, each sink node has exactly one incoming active edge

and all other nodes have an equal number (0 or 1) of incoming ac-

tive edges and outgoing active edges.

The score SðxÞ of a joint gene structure x has two components, a

horizontal, species-specific score hðxÞ and a vertical, cross-species

score vðx):

SðxÞ ¼ hðxÞ þ vðxÞ: (1)

The horizontal score is the sum over all weights of active nodes

v 2 V and active edges e 2 EI. The node and edge weights are the

ones from gene finding in a single genomic sequence as described

above. The vertical score is a sum over the trees in the graph, a func-

tion of the labels of all nodes in HECTs and can be split into a fea-

ture score and an evolutionary score. The feature score is a linear

combination of different features of homologous candidate exons

including selective pressure (estimated by x¼dN=dS), phylogenetic

diversity (sum of branch lengths in the tree that connects a HECT)

and conservation (average Shannon entropy across all alignment col-

umns in a HECT). It rewards candidate exons that show signs of

negative selection (x�1) and are conserved even across the more

distant species. The coefficients of the linear combination are calcu-

lated using logistic regression. The evolutionary score is based on a

continuous-time Markov process and assesses the evolutionary his-

tory of a joint gene structure in terms of exon gain and loss events

along branches in the tree (see Fig. 1). Similar models have been

used previously for intron evolution (Cs}urös, 2006). In this model,

the gain or loss of an exon is generally expensive and penalized de-

pending on the branch length and two rates for exon gain k>0 and

exon loss l>0. As a consequence, all candidate exons in a HECT

are encouraged to agree on one assignment. If not, assignments are

preferred that can be explained with few exon gain or loss events

that are rather along long branches than along short branches.

2.2 Dual decomposition
Finding an optimal joint gene structure x* that maximizes the scor-

ing function in (1), i.e.

Sðx�Þ ¼ max
x

SðxÞ; (2)

Fig. 1. The joint gene structure graph G for a set of k homologous sequences.

Nodes represent candidate exons. Blue/solid edges represent candidate in-

trons or intergenic regions. Each path from the source si to the sink ‘i is a pos-

sible gene structure in sequence i. Homologous candidate exons are at the

same time leaf nodes of phylogenetic trees (orange/dashed edges and

nodes). A joint gene structure is sought: a binary labeling (filled, empty) of all

nodes in G, whose restriction on the extant nodes (blue/solid) defines a col-

lection of k paths si
 ‘i ; i ¼ 1; . . . ; k (highlighted)
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is an NP-complete problem, even if the vertical score is assumed to be

a simple parsimony score penalizing exon gain and loss only. This can

be shown by a reduction from the 3-colorability problem (proof omit-

ted). For this reason, an approximative approach, known as dual de-

composition, has been adopted, that makes use of the observation

that the problem in (2) is decomposable into two easy sub problems:

max
yh ;z

hðyh; zÞ; (3)

max
yv ;z

vðyv; zÞ: (4)

Here, the assignment x is partitioned into three disjoint assignments

x ¼ ðyh; yv; zÞ, where yh is an assignment of all candidate exons

fv 2 V j@a 2 A : ða; vÞ 2 EPg with no homologs in the other species

(blue/solid nodes in Fig. 1), yv is an assignment of all ancestral exons

a 2 A (orange/dashed nodes in Fig. 1), and z is an assignment of all

homologous candidate exons fv 2 Vj9a 2 A : ða; vÞ 2 EPg (mixed

colored/solid and dashed nodes in Fig. 1). Problem (3) (blue/solid sub-

graph in Fig. 1) maximizes over the horizontal score and is equivalent

to finding an optimal gene structure in each of the k sequences indi-

vidually. It can be solved efficiently with an algorithm for longest-

path problems. Problem (4) (orange/dashed subgraph in Fig. 1) maxi-

mizes over the vertical score and is equivalent to finding an optimal

assignment of nodes in a set of disjoint trees. This can also be solved

efficiently, for example with a variant of Felsenstein’s pruning algo-

rithm (Felsenstein, 2003). However, maximizing over the sum of the

horizontal and vertical score (e.g. problem (2)) is hard, due to the

complicating variables z that couple the two sub problems.

The Lagrangian Dual problem

An equivalent formulation of problem (2), in which each sub

problem has its own copy of complicating variables, is

max
yh ;yv ;zh ;zv

hðyh; zhÞ þ vðyv; zvÞ; s:t: zh¼zv: (5)

The constraint zh¼zv ensures that the two sub problems agree on

their copies of complicating variables. In the next step, Langrangian

relaxation is applied by dropping the constraint and moving it into

the objective function:

LðkÞ ¼ max
yh ;zh

hðyh; zhÞ þ k>zh

� �
þmax

yv ;zv

vðyv; zvÞ � k>zv

� �
; (6)

where k 2 R
jzj is the set of Lagrange Multipliers, which can be regarded

as penalty for violating the constraint zh ¼ zv, and LðkÞ is the

Lagrangian Dual function. Since the Lagrangian Dual function is an

upper bound on Sðx�Þ for any k, the tightest upper bound, e.g. the set of

Lagrange Multipliers k� that minimizes the Lagrangian Dual function

Sðx�Þ 	 Lðk�Þ ¼ min
k

LðkÞ

is sought. This is also known as the dual problem. Note that the

Lagrangian Dual function is convex but, in general, not differenti-

able. Thus, gradient descent methods are not directly applicable. A

method similar to gradient descent for minimizing convex non-

differentiable functions is the subgradient method. Given an initial

k0 (e.g. k0 ¼ 0), it generates a sequence of Lagrange Multipliers fktg
by following the update rule

ktþ1 ¼ kt � atg
t;

where at 2 R>0 is the step size at iteration t and gt is a subgradient

of LðkÞ at kt that can be efficiently computed by solving the two sub

problems in (6). The complete algorithm is given in Figure 2.

The algorithm terminates either if in any iteration t the con-

straint zt
h ¼ zt

v is met or when the maximum number of iterations T

has been reached. In the first case, an optimal joint gene structure

xexact ¼ ðyt
h; y

t
v; z

t
hÞ has been found. In the second case, an approxi-

mative joint gene structure can be obtained as follows: In each iter-

ation t, a potential joint gene structure xt
p can be recovered from the

dual solution. If zt
h 6¼ zt

v, i.e. when we have two inconsistent label-

ings of the exon candidates that are also leaf nodes in a tree, we

chose to give precedence to the labeling zt
h, because it represents to-

gether with yt
h biologically valid gene structures in each of the spe-

cies. We therefore chose in line 10 the optimal ancestral labeling for

the labeling zt
h of the leaf nodes. The potential joint gene structure

xapprox ¼ xt0

p ; t0 ¼ argmaxT
t¼0Sðxt

pÞ with highest score over all iter-

ations is our best guess and at most

� :¼ min
T

t¼1
LðktÞ � SðxapproxÞ

below the optimum.

Choosing a good step size is crucial for convergence and speed of

convergence. If the sequence of step sizes fatg is diminishing and

non-summable, i.e.

lim
t!1

at ¼ 0;
X1

t¼0

at ¼ 1;

convergence of the dual problem is guaranteed (Nedic and

Bertsekas, 2001). Thus

lim
t!1

LðktÞ ¼ min
k

LðkÞ:

For the choice of the step size, see Supplementary S1. The complexities

of the longest path search and pruning algorithm are OðjEIj þ jVjÞ
and OðjVjÞ, respectively. In our implementation jEIj ¼ OðjVjÞ al-

though the number of intron candidates grows quadratically with the

number of exon candidates. This is achieved by introducing at most

two auxiliary nodes for each exon candidate. Therefore, the runtime

for determining an optimal or near optimal joint gene structure is pro-

portional toOðTðjEIj þ jVjÞÞ.

3 Results

3.1 Implementation
The proposed algorithm is implemented as an extension to the gene

finder AUGUSTUS and is available at http://bioinf.uni-greifswald.de/

Fig. 2. The dual decomposition algorithm for finding an optimal or near opti-

mal joint gene structure x
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augustus/ starting with the 3.1 release. Improvements to the vertical

scoring function are an ongoing development and will be included in

future releases. In order to call AUGUSTUS in CGP mode, the following

three inputs are required: a set of two or more genomes, each in

Multi-FASTA format, an alignment of the genomes in MAF format

and a phylogenetic tree in NEWICK format describing the evolu-

tionary relationship of the genomes. Each genome may be supple-

mented with extrinsic evidence (e.g. transcriptome data or existing

annotations) in GFF format, if available. The outputs are GFF files

with the gene predictions for each input genome. To keep the mem-

ory usage as low as possible, AUGUSTUS has a database API that

allows the storage and retrieval of genome and evidence data from

either a MYSQL or an SQLITE database. AUGUSTUS has no multi-

threading support. Instead, it is recommended to split the alignment

file into smaller chunks and then to run AUGUSTUS on each chunk in

parallel. Auxiliary tools are available to join gene sets of different

runs.

3.2 Datasets
We tested our method on two subclades, one of vertebrates and one

of drosophilas, each containing species with different genetic dis-

tances to each other.

For the Drosophila experiments the current genomes releases of

D. melanogaster and 11 other Drosophila species (Drosophila 12

Genomes Consortium, 2007) were downloaded from FlyBase

(http://flybase.org). For a complete list of the species and genome re-

leases used, see Supplementary S2. All genomes were soft-masked

with REPEATMASKER (Smit et al., 2015) using the standard Repbase

Drosophila library and TRF (Benson, 1999). An alignment of the

masked genomes was built with PROGRESSIVE CACTUS (Paten et al.,

2011). Both PROGRESSIVE CACTUS and AUGUSTUScgp require a phylogen-

etic tree as input with branch lengths in units of number of nucleo-

tide substitutions per site. A detailed description of the tree

reconstruction can be found in Supplementary S3.

For the vertebrate experiments, the soft-masked genomes of

human (hg38), rhesus (rheMac3), mouse (mm10), rat (rn6), rabbit

(oryCun2), dog (canFam3), cow (bosTau8), armadillo (dasNov3),

elephant (loxAfr3), tenrec (echTel2), opossum (monDom5) and

chicken (galGal4) were downloaded from the UCSC Genome

Browser database (http://genome.ucsc.edu) and a 12-way alignment

of the genomes extracted from the UCSC MultiZ (Blanchette et al.,

2004) 100-way alignment. A phylogenetic tree of the species was ex-

tracted from the guide tree used during alignment construction.

We evaluated the accuracy of the vertebrate predictions on

human and mouse and the Drosophila predictions on D. mela-

nogaster, which have the most mature annotations in the respective

clades. Table 1 gives an overview of the reference gene sets. Each

reference annotation was quality filtered by removal of questionable

transcripts (e.g. with in-frame stop codon, splice site pairs other

than GT-AG, GC-AG or AT-AC, missing start or stop codon or a

coding sequence (CDS) length not a multiple of 3) with the filtering

tool GENE-CHECK from the UCSC Genome Browser group. The con-

ventional accuracy measures sensitivity and specificity of the

prediction on gene, exon and nucleotide level were calculated using

the EVAL PACKAGE (Keibler and Brent, 2003). The evaluation was

done on protein coding regions (CDS) only, although AUGUSTUS pre-

dicted untranslated regions (UTRs) in the RNA-Seq-based experi-

ments, as well. An exon is classified as correctly predicted if both its

boundaries coincide with a reference exon on the same strand. A

gene is counted as correct if it matches the coding region of one

splice form of a reference gene exactly.

3.3 De novo performance
As RNA-Seq data is readily available for most genomes, we only

briefly summarize the results for de novo gene finding. A detailed

discussion can be found in Supplementary S4. As shown in

Supplementary Table S2, the new comparative approach

AUGUSTUScgp is more accurate than the standard version of AUGUSTUS

that predicts genes in a single genome only, and N-SCAN, a previous

system for de novo gene finding. On exon level it is even competitive

with CONTRAST, which is arguably still the most accurate de novo

method for human and fly.

3.4 Performance with RNA-Seq data
It is a good policy to combine information from many different sour-

ces of evidence. AUGUSTUS allows for integration of different types of

extrinsic evidence including transcriptome data (RNA-Seq, cDNA,

ESTs), protein sequences, and existing annotations. In AUGUSTUScgp

extrinsic evidence is species-specific and can be provided for each or

a subset of the genomes. To see how well AUGUSTUScgp performs with

extrinsic evidence, we conducted several experiments incorporating

RNA-Seq data for 1 to a maximum of 4 input genomes. For the ver-

tebrate clade paired-end RNA-Seq reads for human, rhesus, mouse

and chicken and for the Drosophila clade for D. mel, D. sim, D. pse

and D. vir were obtained from the Sequence Read Archive (www.

ncbi.nlm.nih.gov/sra) and mapped to the corresponding (unmasked)

genomes with STAR (Dobin et al., 2013). The resulting spliced align-

ments were filtered by coverage (minimum 80% of read length) and

percentage identity (minimum 92%). If a read mapped to multiple

locations, only the unique best alignment (in terms of coverage and

percentage identity) for that read was kept, i.e. the best alignment

was also discarded if the second best was almost equally good.

Table 2 shows the results for the RNA-Seq-based experiments.

When only using RNA-Seq evidence for the target species (e.g. pre-

diction in human with human as RNA-Seq source), AUGUSTUScgp is

more accurate compared to AUGUSTUS using the same evidence.

Using exclusively RNA-Seq evidence of non-target genomes shows

only moderate improvements over the de novo AUGUSTUScgp predic-

tions and the effectiveness of the RNA-Seq evidence decreases with

an increasing distance of the source species to the target species, e.g.

incorporating RNA-Seq evidence for the remote chicken has almost

no influence on the prediction in human or mouse. This is generally

to be expected, as the evidence can only be carried over to genes

common to both the target and the source, but not to genes that are

exclusive to the target genome. The best results for human and

mouse are obtained when using the combined RNA-Seq evidence

for human, rhesus, mouse and chicken (see ‘4 vert’ in Table 2).

This suggests, that evidence coming from different species is comple-

mentary, which is certainly also related to the fact that the RNA-Seq

libraries were derived from different tissues for different species.

The same can be observed in the Drosophila experiments.

Combining the D. mel evidence with the RNA-Seq evidence of the

close D. sim (‘2 Dros’ in Table 2) increases the accuracy over

using D. mel evidence only. However, beyond that, there are no

Table 1. Overview of reference gene sets after quality filtering with

GENE-CHECK (only protein-coding genes/transcripts (Txs) are

counted)

Species Source Txs Genes Txs per Gene

Human RefSeq (hg38) 38850 18744 2.07

Mouse RefSeq (mm10) 29613 20126 1.47

D. melanogaster FlyBase (r6.04) 21436 13785 1.56
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significant improvements, when further adding RNA-Seq evidence

of the more distant flies D. pse and D. vir (‘4 Dros’ in Table 2).

Note, however, that such RNA-Seq data is still likely to improve the

AUGUSTUScgp accuracy on genomes close to D. pse and D. vir.

3.5 Liftover of existing annotations
An increasingly important strategy in genome annotation is the

transfer of trusted annotations of previously existing genomes to

newly sequenced genomes with a reasonable degree of sequence

similarity. Approaches such as EXONERATE, GENEWISE and

GENOMETHREADER (GTH) incorporate splicing models to align known

protein sequences of close relatives to the target species. AUGUSTUScgp

can also transfer annotation evidence from one or more source gen-

omes to the other genomes—via the genome alignment. To achieve

this, the annotations are compiled into CDS and intron ‘hints’ simi-

lar to other extrinsic data. As a result, CDS exons and introns that

are supported by such hints have higher posterior probabilities,

which implicitly makes their orthologs in the other species also more

likely. Note that, in contrast to protein homology-based strategies

for annotation liftover, AUGUSTUScgp can identify new genes and gene

structures different from the source gene.

To test the performance of AUGUSTUScgp for annotation liftover,

we conducted several experiments with different pairs of target and

source genomes. The source species were selected based on their

genetic distance to the target and the completeness of their annota-

tions. The vertebrate annotations were obtained from the RefSeq

database and the Drosophila annotations from FlyBase. In the case

of chicken, we added the Ensembl annotation, as the RefSeq set con-

tained only around 6000 protein-coding genes.

For comparison with protein spliced-alignment approaches, we

ran EXONERATE and GTH with the same target-source pairs.

EXONERATE performed slightly worse than GTH, when transferring

annotations within the fly clade (Supplementary S5.1). For this rea-

son and due to the runtime requirements we chose not to run

EXONERATE on the vertebrate genomes (about 300 times the size of

fly genomes). GTH, in turn, is considerably faster (in our experiments

77 times faster than EXONERATE) by indexing the target genome via

enhanced suffix arrays.

Figure 3 shows the results when choosing mouse as target and

different non-mouse vertebrates as sources. The accuracy of GTH de-

creases rapidly with an increasing distance of the source to the tar-

get species. In particular the sensitivity decreases, e.g. when

choosing the remote chicken as source, the sensitivity drops to 27%.

This is to be expected, as protein-spliced alignment approaches en-

tirely depend on the alignability of the source proteins to the target

genome. AUGUSTUScgp also looses accuracy with an increasing dis-

tance, however, when the source and target are too distant to align

with, the de novo model is still effectively exploiting conservation

and synteny to closer species in the clade. Combining the protein se-

quences of rat, human, cow and chicken does not increase the accur-

acy of GTH over the accuracy obtained for the single best/closest

source species (rat). In the fly experiments with D.mel as target,

even a loss in accuracy is observed for both GTH and EXONERATE

when adding the protein sequences of four more distant drosophilas

(D. pse, D. wil D. vir and D. gri) to the D. ana protein set

(Supplementary S5.1). Whereas the sensitivity stays approximately

the same, there is an extreme loss in specificity, suggesting that most

of the correctly predicted exons are already covered by the D. ana

proteins, whereas more distant flies merely introduce false positive

exons. AUGUSTUScgp, in turn, shows in all experiments an increase in

both sensitivity and specificity, when combining annotations, albeit

only a very modest. When choosing human as target, the results are

similar with the exception that both GTH and AUGUSTUScgp yield

poorer results with rat as source than with mouse, although both

have the same genetic distance to human (Supplementary S5.2).

This clearly demonstrates that beside the genetic distance, also the

completeness of the annotation is crucial. The RefSeq annotation of

rat has, for example, more than 50 000 fewer CDS exons than the

RefSeq annotations of mouse and human.

Table 2. Sensitivity (Sn) and specificity (Sp) of the RNA-Seq-based whole-genome predictions of D. mel, human and mouse at gene, exon

and nucleotide (Nuc) level (values are given in %). The source column refers to the species for which RNA-Seq evidence was incorporated

for gene finding. The sources ‘4 vert’, ‘2 Dros’ and ‘4 Dros’ refer to the combined RNA-Seq evidence for (human, rhesus, mouse, chicken),

(D. mel, D. sim) and (D. mel, D. sim, D. pse, D. vir), respectively

RNA-Seq Source Gene Sn Gene Sp Exon Sn Exon Sp Nuc Sn Nuc Sp

D. melanogaster

AUGSTUS D. mel 68.01 73.26 76.46 90.20 93.39 97.57

AUGSTUScgp D. mel 71.88 72.20 79.27 89.09 96.46 97.49

AUGSTUScgp D. sim 67.10 67.43 77.64 86.67 95.96 97.71

AUGSTUScgp 2 Dros 74.33 73.13 80.22 89.74 96.77 97.57

AUGSTUScgp 4 Dros 74.46 73.18 80.31 89.79 96.79 97.56

Human

AUGSTUS Human 52.43 37.31 81.69 81.65 89.67 85.66

AUGSTUScgp Human 61.30 50.96 87.62 86.80 92.23 89.66

AUGSTUScgp Rhesus 52.00 44.17 86.43 84.63 91.64 89.04

AUGSTUScgp Mouse 49.21 44.07 86.11 84.89 91.56 89.17

AUGSTUScgp Chicken 46.42 41.98 85.41 84.46 91.09 89.18

AUGSTUScgp 4 vert 66.19 53.97 88.31 87.43 92.73 89.72

Mouse

AUGSTUS Mouse 55.28 41.00 86.62 81.53 89.61 80.74

AUGSTUScgp Mouse 55.81 52.17 86.98 87.39 86.07 88.90

AUGSTUScgp Human 42.43 45.93 84.77 86.53 84.17 90.26

AUGSTUScgp Rhesus 42.26 45.69 84.65 86.51 84.12 90.25

AUGSTUScgp Chicken 40.26 43.86 84.18 86.06 83.89 90.16

AUGSTUScgp 4 vert 59.00 54.86 87.55 88.05 86.45 89.03

Bold values represent the best results for the respective target species.
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As shown in Figure 3, transferring the annotation from a remote

species like chicken to mouse with AUGUSTUScgp has no gain in accur-

acy over the de novo prediction. Based on the above findings on the

vertebrate and fly clade, it can be roughly estimated for two arbi-

trary species with known protein sequence similarity (e.g. from

BLASTP), whether a genome alignment between the species is pos-

sible and a gain in accuracy can be expected from annotation trans-

fer (Supplementary S5.3 for assistance).

3.6 Effectiveness of dual decomposition
In the vertebrate experiments, dual decomposition was applied to

approximately 10 000 syntenic regions in 97% of which an exact so-

lution was found (on average after 150 iterations). In all other cases

the approximation error � :¼ minT
t¼0LðktÞ � SðxapproxÞ was less than

1.2% of the initial error �0 :¼ minT
t¼0LðktÞ � Sðx0

pÞ when stopping

after 2500 iterations. For the Drosophila clade (
4500 syntenic re-

gions), a similar convergence speed and approximation error was

observed.

Table 3 shows the runtime (sum of CPU times over all threads)

and memory requirements of AUGUSTUScgp. The values before the

slash refer to de novo gene finding and cross-species annotation

transfer, and the values after the slash to gene finding with RNA-Seq

evidence, which in general is more expensive as a model for UTRs is

included in this case. For parallelization, the genome alignment is

split into smaller alignment chunks.

4 Conclusion

In this article we presented a novel approach to comparative gene

finding that is suitable for gene structure annotation of entire clades.

Its novelty is that it simultaneously identifies genes in multiple gen-

omes. Previous gene finding systems were either limited to exactly

two genomes or restricted the prediction and gene structure model

to a single target genome. Unlike the target-informant approach that

requires a repetitive training of parameters for each and every gen-

ome to be annotated, parameters only have to be trained for a single

representative in the clade. Beside the CDS of a gene, our approach

can also predict UTRs. This is particularly useful when incorporat-

ing RNA-Seq evidence that gives unspecific hints about both coding

and non-coding parts of genes.

As a tendency, our approach favors gene structures that are in

agreement across the genomes. Thus, it is likely to produce more

consistent gene sets than the ones obtained from the individual an-

notation of each genome. This is particularly important when the

objective of study is to investigate the genomic differences of several

species within a clade.

The results show that the new multi-species version of AUGUSTUS

is more accurate than the standard single-species version. In the

de novo category where only genome evidence is used it compares

favorably with N-SCAN. On exon level, it is even competitive with

CONTRAST. Although CONTRAST still achieves the most accurate

de novo predictions for human and fly, it appears to have no prac-

tical relevance for current whole-genome annotation. AUGUSTUScgp,

in turn, is developed specifically for the increasingly important clade

annotation problem with an eye towards practical aspects, e.g. effi-

cient scalability for a large number of genomes in the clade, as few

clade-specific parameters as possible, etc.

In evidence-based gene finding our findings are, that the effect-

iveness of RNA-Seq evidence decreases with an increasing distance

of the source species to the target species. When having RNA-Seq

evidence for the target species itself, there is only modest benefit

from RNA-Seq evidence from other species in the clade. This may,

however, be different for other clades and libraries.

Annotation can be transferred using AUGUSTUScgp from one gen-

ome to another via the multiple genome alignment. A previously

existing option to do this is the alignment of the source proteins (or

transcripts) to the target genome. Genome alignments however have

the advantage that the context around the exons and genes is also

used to identify what is homolog. For example, initial coding exons

can be very short and therefore very difficult to align correctly in a

protein alignment, even if the genomes are similar, whereas a gen-

ome alignment may have no difficulty when the neighboring UTR or

intron is also alignable. At very large distances, however, where gen-

ome alignments are hardly or not at all possible, protein (family)

homology searches are still useful, at least to identify conserved do-

mains of the gene.

The dual decomposition approach has proven to be a well-suited

framework to efficiently obtain good approximate and even mostly

exact solutions to the formal optimization problem of comparative

gene finding.

A common weakness of gene predictors is to distinguish between

correct candidate exons and partly correct candidate exons that only

differ from each other by a few base pairs. When, for example, clas-

sifying all exons in D. mel as correctly predicted that overlap a true

Table 3. Runtime and memory requirements of AUGUSTUScgp

Clade Drosophilas Vertebrates

Runtime 20/28 CPU days 1/1.6 CPU year

Max size of alignment chunks 100MB 60MB

Total number of chunks 72 1558

Max memory per alignment chunk 4GB/4GB 5GB/10GB

Processors 2.83 GHz 2.8–3.2 GHz

Fig. 3. F1 scores (harmonic mean of sensitivity and specificity) on exon level

for transferring the annotation from a non-mouse vertebrate genome (source)

to the mouse genome (target). Values are given for different source genomes

with an increasing distance to the target (horizontal axis). The rightmost data

points are the accuracies, when using the combined annotations of all source

genomes, e.g. rat, human, cow and chicken. AUGUSTUScgp uses a whole-gen-

ome alignment between mouse and 11 other vertebrates as well as annota-

tion evidence (CDS and intron hints) for the source genome(s)
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exon by at least 80% of the length of the longer one, AUGUSTUScgp

achieves de novo an exon sensitivity of 89.94%. In other words,

around ð89:94%� 76:37%Þ=ð100%� 76:37%Þ 
 57% of the false

negative reference exons are close to correctly predicted. We con-

tinue to work on the vertical scoring function in order to improve

the precision of exon boundary prediction, using the multiple gen-

ome alignment. Improving the detection of start and stop bounda-

ries, in particular, may reduce the number of falsely joined genes

and further improve gene level accuracy.
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