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Abstract

Motivation: Inappropriate disclosure of human genomes may put the privacy of study subjects and

of their family members at risk. Existing privacy-preserving mechanisms for Genome-Wide

Association Studies (GWAS) mainly focus on protecting individual information in case–control stud-

ies. Protecting privacy in family-based studies is more difficult. The transmission disequilibrium test

(TDT) is a powerful family-based association test employed in many rare disease studies. It gathers

information about families (most frequently involving parents, affected children and their siblings). It

is important to develop privacy-preserving approaches to disclose TDT statistics with a guarantee

that the risk of family ‘re-identification’ stays below a pre-specified risk threshold. ‘Re-identification’

in this context means that an attacker can infer that the presence of a family in a study.

Methods: In the context of protecting family-level privacy, we developed and evaluated a suite of

differentially private (DP) mechanisms for TDT. They include Laplace mechanisms based on the

TDT test statistic, P-values, projected P-values and exponential mechanisms based on the TDT test

statistic and the shortest Hamming distance (SHD) score.

Results: Using simulation studies with a small cohort and a large one, we showed that that the ex-

ponential mechanism based on the SHD score preserves the highest utility and privacy among all

proposed DP methods. We provide a guideline on applying our DP TDT in a real dataset in analyz-

ing Kawasaki disease with 187 families and 906 SNPs. There are some limitations, including: (1) the

performance of our implementation is slow for real-time results generation and (2) handling miss-

ing data is still challenging.

Availability and implementation: The software dpTDT is available in https://github.com/mwgrass

green/dpTDT.

Contact: mengw1@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The continuous progress in genome technologies is rapidly reducing

the cost of human genome sequencing (online source), and has pro-

duced massive human genome data (Clarke, 2012; Church, 2005).

For example, the US government’s Precision Medicine Initiative

(Collins and Varmus, 2015) aims at developing treatments tailored

to a person’s genetic profile from a cohort of one million volunteers.

Extensive collection of genome data and the development of

advanced analysis techniques increase the probability of using

human genome data for clinical diagnosis and treatments, but it also
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leads to many privacy challenges. Many studies (Craig 2011;

Gymrek, 2013; Homer, 2008; Gutmann, et al., 2012, Wang, 2009)

demonstrated the vulnerability of exposing human genome data

without protection. For example, Lin et al. (2004) shows that as few

as 75 independent SNPs can be used to uniquely identify an individ-

ual. Given genome data without explicit identifiers, it is possible to

infer personal information (Gymrek, 2013; Sweeney, 2013). Even

aggregated genome statistics can be used to recover sensitive per-

sonal information (Homer, 2008; Wang, 2009) and many recent at-

tack models use allele frequencies (or absence/presence information

such as particular variants) to reveal an individual’s membership in

case or control groups (Clayton, 2010; Homer, 2008; Jacobs, 2009;

Sankararaman, 2009; Visscher and Hill, 2009). That is, an attacker

can discover that a particular person of interest, from whom the at-

tacker has gathered genetic information, participated in a study.

This is problematic when the participants do not want to disclose

their participation in a study. For example, in certain studies in

which the ‘controls’ are individuals with a particular diagnosis

receiving standard-of-care and the ‘cases’ are individuals with the

same diagnosis receiving a new type of treatment, it is possible to

infer whether a person of interest participated in the study (i.e. the

person has the diagnosis) and whether she was in the case or control

group when the attacker gets information about allele frequencies.

For this reason it is important to develop secure and privacy-

preserving methods (Chen, 2017; Wang, 2016; Zhang, 2015) to pro-

tect genome studies against emerging attacks (Humbert, 2013;

Malin and Sweeney, 2001, 2004).

Differential privacy (DP) (Dwork, 2006) provides a rigorous

framework to protect the genome database in the information dis-

closure phase. They introduce perturbations (i.e. noise) that make

re-identification of targeted individuals as difficult as disclosers

want (the higher the risk, the less noise is introduced and vice-

versa). DP (Dwork, 2006) provides provable quantification of the

privacy risk associated with disclosed information. Yu (2010)

studied a DP-based logistic regression method to detect SNP associ-

ations in GWAS. A DP-based genomic data dissemination model

was proposed in Wang (2014). In Johnson and Shmatikov (2013), a

DP mechanism was developed to protect the outcome of chi-square

test outcomes in GWAS. Uhler (2013) improved previous method-

ology to allow privacy-protecting release of the K most relevant

SNPs. Yu (2014) demonstrated better performance in terms of priv-

acy and utility tradeoffs, and presented formal proofs (Yu, 2014; Yu

and Ji, 2014).

However, these current privacy-preserving mechanisms in

GWAS only focus on case–control studies. As far as we know, none

of the work in GWAS considers protecting privacy in family-based

studies. Since the data are recorded and structured in the unit of a

family in these studies, it is possible that an attacker may infringe

the privacy of the whole family instead of that of just one individual.

Hence, to avoid this, we need a reliable method to protect privacy at

the family level. This paper focuses on protecting family privacy for

transmission disequilibrium test (TDT) in GWAS.

The TDT is primarily designed to account for population

stratification and detect potential Mendelian inconsistencies. It

measures the over-transmission of an allele from heterozygous

parents to an affected offspring (Spielman, 1993). It takes into ac-

count the family structure allowing for investigating heritability

questions especially powerfully in the rare diseases such as

Kawasaki disease, which cannot be addressed in the case–control

studies (Ott, 2011). TDT has been successfully applied to whole

exome sequencing studies in autism (Levin-Decanini, 2013) and

Kashin-Beck disease (Yang, 2014).

To protect privacy in TDT, we consider that an attacker might

violate the privacy of the entire family to figure out whether one

family participates in the study, and not just an individual of the

family. To protect family level privacy, we develop and analyze dif-

ferentially private (DP) mechanisms for TDT based on test statistics,

P-values and the shortest Hamming distance (SHD) scores. This is a

non-trivial extension from individual privacy-protection methods

because we need to preserve the family structure while introducing

the perturbation. Under the DP framework, we define the neighbor

datasets by replacing single family with other valid types to protect

the privacy of trios (mother, father and one child) used in TDT. We

carefully manipulate the sensitivity of the statistics to guarantee

privacy while maximizing the utility. We develop both exact and ap-

proximate algorithms to get SHD scores for TDT. To maintain both

privacy and utility (the usefulness of the method and a former defin-

ition is in the section ‘Results’), our DP methods on TDT is prefer-

able to be applied in a large cohort with sufficient number of

families. We give an illustration to apply our methods in a real

GWAS study dataset for the Kawasaki disease. On a proper cohort

size, our proposed DP mechanisms based on SHD score can preserve

higher privacy and better utility than other proposed methods for

TDT in GWAS.

1.1 Transmission disequilibrium test
TDT is a family-based association test for linkage disequilibrium

(LD). It tests at a marker locus for the LD in two alleles and as well

as more alleles from the genotypes of trio families (two parents with

one affected child) or other types of families (Spielman, 1993). In

GWAS, we do not apply TDT only in one locus but in hundreds,

thousands even hundreds of thousands loci. The process might re-

veal sensitive patient information and therefore we are proposing a

private version of TDT to protect family information. Our analysis

focuses on applying TDT to SNPs (considering two alleles) from trio

families. Other extension work can be found in the ‘Discussion’

section.

In on SNP, TDT determines whether two alleles, W and w, have

equal probability of being transmitted from the parents to their

child. Let b be the number of the Ws transmitted when w is not

transmitted and c be the number of w0s transmitted when W is not

transmitted. For example, in a family with genotype configuration

WW �Ww!WW, one parent WW transmits one W to the child

(b ¼ 1Þ while w is non-transmitted from neither of the parents

(c ¼ 0Þ. All possible parent genotypes are enumerated in the

Appendix (Supplementary Table S1). Suppose there are N independ-

ent trio-families in our study. In Table 1 we gather the allele trans-

mission (and non-transmission) information from these N families

and give the numbers of families in each type of b; cð Þ.
From Table 1, we get in one SNP from N trio-families,

b ¼ n1 � 1þ n2 � 0þ n3 � 1þ n4 � 2þ n5 � 0þ n6 � 0;

c ¼ n1 � 0þ n2 � 1þ n3 � 1þ n4 � 0þ n5 � 2þ n6 � 0;

N ¼ n1 þ n2 þ n3 þ n4 þ n5 þ n6:

Table 2 summarizes allele transmission in N trio-families. The TDT

statistic in one SNP is based on

T :¼T b;cð Þ¼ðb�sÞ2

s
þðc�sÞ2

s
¼ðb�cÞ2

bþc
; where s¼bþc

2
: (1)

In the concern of privacy, we include the families with homozygous

parents b¼ c¼0. We define T¼0=0¼0. Under the null hypothesis

that there is no linkage disequilibrium and the independence
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assumption among families, the counts b and c have binomial distri-

bution with size bþc and probability 0.5 and thus the test statistic T

in (1) approximately obeys a v2-distribution with one degree of free-

dom (Spielman, 1993). Under the alternative hypothesis, the counts b

and c become unbalanced so the hypothesis is rejected for large values

of T. Since both ðn1; ... ;n6Þ and ðb;cÞ are both sufficient statistics for

TDT, we can represent the dataset by either one of them. The exact

algorithm in the Section 2.2 is based on the representation of

ðn1; ... ;n6Þ. In the other parts of this article we consider the dataset

based on ðb;cÞ. We define the dataset in one SNP byD :¼fðb;cÞ : bþc

� 2N;b;c2Ng where N is the set of nonnegative integers. In the

studying of family-based association in GWAS, we apply TDT for

each SNP. For M SNPs, we represent the dataset D by ð b1 ; c1ð Þ; ��� ;
bM ; cMð ÞÞ and the data space isDM.

Now the family information is summarized in ðb; cÞ pairs. From

one pair, one can infer possible family genotypes and thus it leaves a

potential risk for an attacker to identify families. In the framework

of DP, Figure 1 illustrates the workflow for private data access from

DP TDT. We take the query as to get the top K significant SNPs.

The data owner first calculates the statistics Ti’s for each SNP and

next applies a DP mechanism (Laplace or exponential mechanism)

to perturb the original Ti’s. Based on the perturbed responses, the

data owner reports to the data user the top K most significant SNPs.

Our DP TDT is developed to protect the privacy of outcomes of

data analyses. Instead of exposing the data to end users, we can hide

them behind a query interface (for example, by providing results of

certain statistical tests). It has been shown that repeated queries can

lead to information leakage (Shringarpure and Bustamante, 2015).

Our model is developed to protect such information leakage using

the principled differential private criteria (Dwork, 2006).

1.2 Differential privacy model
Differential privacy (Dwork, 2006) provides guarantees on the priv-

acy of whole database against any arbitrary external attacks. In

practice, there are two main mechanisms (randomized functions)

satisfying the differential privacy definition (in Definition 1). One is

the Laplace mechanism (Dwork, 2006), which adds Laplace noise to

the original output. The Laplace parameter depends on the sensitiv-

ity of the output in Definition 2. The other one is the exponential

mechanism (McSherry and Talwar, 2007), which first assigns a

score to each pair ðdata; its outputÞ. Then, the mechanism samples

original outputs from an exponential distribution based on the score

and the sensitivity of the score function (in Definition 2).

DEFINITION 1: (Differential Privacy (Dwork, 2006)) A randomized

mechanismM is e-differentially private if, for all datasets D and D0

which differ on at most one family and for any measurable subset

S � rangeðMÞ,

PðMðDÞ 2 SÞ
PðMðD0 Þ 2 SÞ � ee: (2)

In Definition 1, D and D
0

are called the neighbors and denoted

D � D0. In our case, the dataset D gathers family information (in

terms of ðb; cÞ pairs defined in Section 1.1). Note that the exchange

of two families may affect TDT on several SNPs so we protect priv-

acy in each SNP. Parameter e is called the privacy budget. When e is

small, the probabilities in the numerator and denominator in (2) are

similar and when e ¼ 0, they are identical. If a mechanism M con-

trols the probability ratio in (2) under e, we sayM protects the priv-

acy of D under e-differentially privacy. e is the budget that has to

pay for the level of privacy. In other words, the privacy budget e can

be imagined as a pre-defined limit of information disclosure. We

provide a short sketch on its relationship with the probabilities of

type I and type II errors in any statistical test in the Appendix, within

the section ‘How privacy budgets affect probabilities of type I and

type II errors’.

DEFINITION 2: (Sensitivity for the Laplace Mechanism (Dwork,

2006)) The sensitivity of a function f : DM ! R
M in the Laplace

Mechanism is the smallest number Sðf Þ such that

k f Dð Þ � f D0ð Þk1 � Sðf Þ;

for all neighbors

D � D0; and D;D0 2 DM:

DEFINITION 3: (Sensitivity for Exponential Mechanism (McSherry

and Talwar, 2007)) The sensitivity of a score function q : DM � f1;
. . . ; Mg ! R in the exponential mechanism is the smallest number

SðqÞ such that

jqðD; rÞ � qðD0; rÞj � SðqÞ;

for all neighbors D � D
0
; and D;D

0 2 DM and r 2 f1; . . . ; Mg
is the index of the SNP.

DEFINITION 4: (Laplace Mechanism (Dwork, 2006)) Releasing ðf ð
DÞ þ noiseÞ where noise has LaplaceðSðf Þ=eÞ distribution is an e-dif-

ferentially private mechanism satisfying Definition 1, where f is a

function of data, Laplaceðk ¼ Sðf Þ=eÞ has density 1
2k exp � jxjk

� �
, and

Sðf Þ is the sensitivity of f from Definition 2.

Table 2. TDT contingency table from N trio-families in one SNP

Non-transmitted allele

Transmitted allele W w Total

W a b aþ b

w c d cþ d

Total aþ c bþ d 2N

Table 1. Number of Trio-families in one SNP

b; cð Þ in one family ð1; 0Þ ð0; 1Þ ð1; 1Þ ð2; 0Þ ð0; 2Þ ð0; 0Þ

# of families n1 n2 n3 n4 n5 n6

Fig. 1. A workflow for privacy-protecting data access from DP TDT. (1) A data

user sends queries to different datasets. (2) Data owners compute the true re-

sults based on the query. (3) Instead of returning the true results, data owners

return perturbed, DP TDT results. (4) The data user compares the utility

among different datasets to prioritize requests for data. (5) The data user files

a data access application to obtain participant-level data
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DEFINITION 5: (Exponential Mechanism (McSherry and Talwar,

2007)) Let q : DM � f1; . . . ; Mg ! R be a function assigning a

score to the pair ðD; rÞ where D 2 DM and r 2 f1; . . . ; Mg is the

SNP index associated with D. Choose r from the mechanism Me
q

that has distribution

P Me
q Dð Þ ¼ r

� �
¼

exp eq D;rð Þ
2S qð Þ

� �

P
s2f1; ...; Mg exp eq D;sð Þ

2S qð Þ

� � ;

where SðqÞ is the sensitivity of q from Definition 3. ReleasingMe
q is

an e-differential privacy mechanism according to Definition 1.

Different from the Laplace mechanism, which directly adds noise

on the original output, the exponential mechanism perturbs the

probability of the outcomes by assigning scores to the original out-

puts such that the ones with high scores have higher probability to

be sampled.

2 Materials and methods

In GWAS, we are often interested in a small number of significant

SNPs. In this study, our goal is to answer the query about top K

most significant SNPs based on a privacy-preserving TDT algorithm

to avoid an attacker violating family information. Releasing differ-

entially private top K significant SNPs has been considered in

Bhaskar (2010). In GWAS case–control studies, there are several dif-

ferentially private approaches. Uhler (2013) analyzed private allelic

test and develop Laplace and exponential mechanisms based on the

test statistics and P-values. Johnson and Shmatikov (2013) took an-

other approach based on Shortest Hamming Distance (SHD). Yu

(2014), Yu and Ji (2014) and Simmons and Berger (2016) extended

and improved the SHD method in the allelic test. These previous

works are in the case–control studies to protect individuals’ privacy.

To the best of our knowledge, we are the first to analyze differen-

tially private TDT to protect the privacy of families.

Different from protecing individual information, to protect fam-

ily privacy in TDT, the algorithms and computation are more

involved. Under the framework of DP, we start our analysis from

defining neighbor families. Suppose there are N trio-families and M

SNPs. We define two neighbor datasets D, D0 by exchanging the

genotypes of exact one trio-family. For example, suppose in one

SNP, in D there is one family with WW�Ww!WW

(ðb; cÞ ¼ ð1; 0Þ) and now in D0 it changes to WW�Ww!Ww

(ðb0; c0Þ ¼ ð0; 1Þ) while D and D0 are consistent in all other families.

In this case, changing from D to D0 gives a moving direction

v
!

:¼ ðDb;DcÞ ¼ ðb0 � b; c0 � cÞ ¼ ð�1;1Þ. Considering all the family

genotypes, we obtain 18 valid moving directions between two neigh-

bor families as illustrated in Figure 2. Compared to neighbor indi-

viduals in the case–control studies, neighbor families have more

moving directions making the privacy-protection algorithms much

harder to develop. Details to obtain in the valid moving directions

are listed in the Appendix.

2.1 Differentially private mechanisms based on the

v2 � test statistics and P-values
With well-defined neighbor families, we perform sensitivity analysis

(proofs in Appendix) on the TDT test statistics and P-values, which

is the key element in applying Laplace and exponential mechanisms

under the framework of DP.

THEOREM 1: For one SNP, the sensitivity of the TDT statistic T in

(1) for N trio-families is 8ðN � 1Þ=N given a fixed N with N � 2.

Adding Laplace noise from distribution Laplaceð8ðN� 1Þ=ðeNÞÞ
to T achieves e-differential privacy. We also consider releasing dif-

ferentially private p-values, without perturbing the test statistics

first.

THEOREM 2: In one SNP, the sensitivity of p-value of v2-statistics

with one degree of freedom for TDT is Fv2
1
ð4Þð	 0:954Þ when

N � 4, where Fv2
1
ð�Þ is the cumulative density function for a v2 distri-

bution with one degree of freedom.

From Theorem 2, we can see that the sensitivity of P-value

(which is nearly 1) is quite large which may result in the perturbed

outputs useless. Since in GWAS what we really concern are the

SNPs in small P-values, following (Uhler, 2013), we consider a pro-

jected p-value of TDT test statistic t, defined by

PvalueprojðtÞ ¼ minfpvalueðtÞ; p
g; (4)

where p
 is a predefined threshold.

THEOREM 3: In one SNP, the sensitivity of the projected P-value

defined in (4) is j1� Fv1
2 ððt
 � 4Þ2=t
Þ � p
j for a predefined thresh-

old p
, and t
 is the quantile such that Fv2
1
ðt
Þ ¼ 1� p
 when N � 2.

From our analysis, the most sensitive case for the test statistic

corresponds to b; cð Þ ¼ 0; 2Nð Þ or ð2N; 0Þwhere b and c has the

largest difference, while the case for the p-value corresponds to

b; cð Þ ¼ 2; 2ð Þ where b and c has the smallest difference, which

agrees with the finding in Uhler (2013) in allele-frequency test. To

releasing top K significant SNPs based on test statistics andP-values,

we adapt the procedures in Bhaskar (2010) and summarize the

Algorithms 1–2.

Fig. 2. Moving directions v
! ¼ ðDb;DcÞ among all neighbor families

Algorithm 1: e-Differentially Private Algorithm for Releasing

the K Most Significant SNPs Using the Laplace Mechanism.

Input: The number K of significant SNPs to release, the data

function f (v2 statistics or P-values) for all M SNPs, the sensi-

tivity of the data function SðfÞ, privacy budget e.
Output: Top K most significant SNPs after adding noise.

1. Let fi be the data function for i-th SNP.

2. Add independent Laplace noise with parameter k ¼ 2K SðfÞ=e
to fi for M SNPs.

3. Pick the top K significant SNPs based on the noisy fi’s.
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2.2 Differential privacy based on the shortest hamming

distance score
Previous works (Johnson and Shmatikov, 2013; Simmons and

Berger, 2016; Yu, 2010, 2014) show the DP mechanism based on

the SHD score perform well in the case–control studies. We would

like to develop and analyze this method to protect family’s privacy

in conducting TDT. The formal definition of SHD score in one SNP

is in Definition 6. Johnson and Shmatikov (2013) showed that the

sensitivity of the SHD score is 1. The SHD basically counts how

many steps by moving the ðb; cÞ pair among neighbor families such

that the associated test statistic from being significant to being non-

significant or vice versa, where the significance is defined by the test

statistic is greater than or equal some predefined threshold c
 > 0.

Since we are more concerned on the significant SNPs, we assign

positive steps for the SNPs from being significant to being non-

significant and negative steps for the SNPs from being non-

significant to being significant. In this way, more significant SNPs

obtain higher scores while non-significant SNPs get lower scores. In

the exponential mechanism, the SNPs with higher scores have larger

probabilities to be sampled.

DEFINITION 6: (The SHD score (Johnson and Shmatikov, 2013))

Given a predefined threshold c
 > 0, the SHD score for i-th data

Di :¼ ðbi; ciÞ, i ¼ 1; . . . ; M; is

dSH Di;ið Þ¼
0; if Ti� c
 and 9 Di

0;Ti
0 < c


1þminD�D0 dSH Di
0;ið Þ;if Ti� c
 and @ Di

0;Ti
0 < c


�1þmaxD�D0 dSH Di
0;ið Þ; if Ti < c


8>><
>>:

where Ti ðTi
0Þ is the test statistic associated with Di ðDi

0Þ and

Di �Di
0 in DM. For i 62 f1;. . .Mg, setting dSH Di;ið Þ¼�1.

To get the SHD score in case–control studies, early work

(Johnson and Shmatikov, 2013; Yu, 2014) showed that it is a com-

putational intensive task. Based on the minor allele frequencies using

the iDASH healthcare privacy protection challenge data, Yu and Ji

(2014) speeded up the computation by assuming that the control

group is known. Later on, Simmons and Berger (2016) further im-

proved the algorithm through a convex analysis and relaxed the con-

straint about knowing the control cohort.

The key to get the SHD score for TDT is to analyze how to move

b; cð Þ pair among neighbor families affects the change of the test

statistic T ¼ ðb�cÞ2
bþc . Different from the allelic test statistic, the con-

tour of T in TDT is not a straight line but a parabola, therefore, the

change of T is no longer a constant. Hence, we have to take into ac-

count the starting point of b; cð Þ and the ending point along every

move. Besides this, in TDT, there are 18 possible moving directions

as shown in Figure 2, which makes the computation more challeng-

ing in our case. We develop two algorithms to calculate SHD score

in private TDT: one is the exact algorithm (Algorithm 3) and the

other is the approximation algorithm (Algorithm 4). In the exact al-

gorithm, we take (n1; . . . ;n6) the family numbers in each genotype

(defined in Table 1) as the input. We construct a graph of nodes

from all possible (n1; . . . ; n6)’s with fixed total family number and

connected nodes from neighbor families. The brute force searching

shortest distance in the graph gives the SHD score. We show that

our exact algorithm gives exact SHD score (in Definition 6) in

Theorem 4 with the proof in Appendix. The brute force searching

(based on dynamic programming) is slow in the large cohort studies.

To tackle its computation issue, we develop an approximate version

of SHD for TDT, which may not have a guaranteed sensitivity but

can be computed efficiently. In the approximation algorithm, we

relax the constraint on the fixed total family number and only search

the shortest distance path in the domain of b; cð Þ. If initial T from

the dataset is significant (non-significant), we move b; cð Þ in each

step along the one of 18 possible moving direction in the largest

(smallest) non-normalized directional gradient until the significance

status of T is just altered. Figure 3 depicts the SHD scores from the

approximation algorithm for 10 families in one SNP.

THEOREM 4: Algorithm 3 outputs exactly the SHD score (in

Definition 6).

3 Results

We are often interested in a few most significant SNPs. In most real

datasets, there is a gap between the extremely significant SNPs and

other SNPs in terms of P-value. This makes it possible to apply a DP

mechanism to maintain both utility and privacy. Under the DP

framework, we would like to apply the e-differential privacy mech-

anisms we analyzed in the previous section to protect the privacy of

releasing top K most significant SNPs in TDT. We quantify the

Algorithm 2: The e-Differentially Private Algorithm for

Releasing the K Most Significant SNPs Using the Exponential

Mechanism.

Input: The number K of significant SNPs to release, the score

function q (v2 statistics or Hamming distance score) for all M

SNPs, the sensitivity of the score function SðqÞ, privacy budget

e.
Output: K noisy significant SNPs.

1. Let S ¼1 and qi ¼the score of i-th SNP.

2. For each i 2 f1; . . . ;Mg, set the weight wi ¼ exp eqi

2KSðqÞ

� �

and pi ¼ wiPM

i¼1
wi

the probability for sampling i-th SNP.

3. Sample k elements independently from f1; . . . ;Mg with

probabilities fp1; . . . ; pMg without replacement. Add SNP k

to S and set qk ¼ �1.

4. Repeat step 2, 3 until the size of S reaches K.

Fig. 3. The SHD scores for the points in D1 from 10 families in one SNP. The

red curves are from T ¼ c*; where c* ¼ 95%� quantile of v2
1. The points

above the upper curve and below the lower curve are significant and the

points between two curves and in boundaries are non-significant. The labels

aside the points are their SHD scores from Algorithm 4
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utility by the accuracy defined by the proportion of the reported top

K significant SNPs that are correctly selected, i.e. jA \ Bj=jAj where

A is the set of true top K significant SNPs and B is the set reported

from a DP mechanism.

In a DP mechanism, there is always a tradeoff among the family

size N in TDT, the privacy budget e and the accuracy. Without the

concern of privacy, the family number determines the power of the

TDT; larger family number gives more statistically powerful of TDT

thus returns more accurate significant SNPs. Privacy budget e con-

trols the level of privacy protection (from Definition 1); smaller e
provides stronger privacy protection. An e-DP mechanism perturbs

the TDT results by adding noise (e.g. in the Laplace mechanism or

resampling the results in the exponential mechanism). Under a cer-

tain e, applying DP mechanisms on a dataset of a large family size

can lead to a more accurate result, otherwise on a dataset of a very

small family size could make the result useless. The number of most

significant SNPs to release also plays an important role in privacy

and utility. Suppose the total number of SNPs we are concerned is

M ¼ 10 000 and 10 SNPs are extremely significant. To release top

K � 10, a well-designed DP mechanism can give an almost perfect

result under a given privacy budget, but to choose a much larger K,

perturbation could reduce the gap between extremely SNPs

and others, and therefore making these DP mechanisms un-useful.

We can see this from Algorithms 1–2. A large K leads larger vari-

ances (in the Laplace noise) in the Laplace mechanism and smaller

weights on the significant SNPs in the exponential mechanism.

Hence, given a dataset, under a fixed family size, to maintain both

accuracy and privacy under the framework of DP, how powerful of

the TDT test can achieve and how much privacy of the dataset can

support (i.e. how many top significant SNPs to release) are essen-

tially determined by the data. We would like to demonstrate these

points and investigate the performance of our propose DP mechan-

isms in TDT under various settings in the simulation studies and

give a guideline for real practices.

3.1 Simulation studies
In the simulation studies, we compare various DP mechanisms for

TDT in a small cohort and a large cohort. We investigate how the

parameters ðN; M; K; eÞ affect the accuracy in the simulated two co-

horts, where N is the family number, M is the total SNPs number in

the study, K is number of selected top significant SNPs to release,

and e is the privacy budget.

To generate the simulated cohorts, suppose there are true 10 sig-

nificant SNPs associated with some disease of interest. In the small

cohort, we set family number N ¼ 150 and the SNPs number M

¼ 5000 and in the large cohort, we set N ¼ 5000, M ¼ 106. To gen-

erate the test statistic for i-th SNP, we first generate Si :¼ bi þ ci, the

sum of the bi; cið Þ pair, uniformly sampled from discrete integers

from 0 to 2N. Given Si, we generate bi from Binomial distribution

with size Si and probability 0.5 then set ci ¼ Si � bi. From bi; cið Þ’s,
the corresponding test statistics Ti’s have approximately v2

1 distribu-

tion, which simulate the case that there is no linkage disequilibrium

in those SNPs. To get the SNPs with linkage disequilibrium, we se-

lect the SNPs with top K ¼ 10 Si’s and regenerate their bi; cið Þ pairs,

where bi is from Binomial distribution with size Si and probability

0.65, then ci ¼ Si � bi. In this way, these 10 SNPs are significantly

greater than the others. To apply the exact algorithm in Algorithm

3, since its input is the family numbers in each genotype, given

bi; cið Þ for the i-th SNP, we generate a random combination of n’s

that satisfy the equations in section 1.1. We plot the top 100 largest

test statistics from two cohorts in Figure 4. In our setting, the true

significant SNPs are the top 10 largest test statistics, indicated by tri-

angles in the figure. Comparing two cohorts in Figure 4, under the

Bonferroni correction as 100 1� 0:05=Mð Þ%-quantile of v2
1 distribu-

tion, even without adding any perturbation from a DP mechanism,

from the small cohort, we can only select 8 true significant SNPs

above the threshold, while in the large cohort, the true 10 significant

SNPs are dramatically greater the non-significant SNPs and can be

picked accurately. We can expect if we would like to ask for the top

10 SNPs from the small cohort, the released results under DP cannot

have much accuracy, but from the large cohort, a well-designed DP

mechanism can maintain both the privacy and accuracy.

We compare the performance of the DP mechanisms for TDT in

terms of accuracy under a certain privacy budget e and the number

K of releasing most significant SNPs. Our proposed DP mechanisms

for TDT include: the Laplace and exponential mechanisms based on

test statistics, the exponential mechanisms based on p-values and

projected p-values, and the exponential mechanism based on the

shortest Hamming distance (SHD). We set the privacy budget e from

0.1 to 3 and the releasing number K ¼ 1;3;5; 10. We get the sensi-

tivities for the mechanisms based on test statistics, P-values and pro-

jected P-values from Theorem 1-3, and the SHD score from

Algorithm 3–4. To release top K most significant SNPs, we apply

the Laplace mechanism from Algorithm 1 and the exponential

Algorithm 3: Exact Algorithm to calculate the SHD score in

one SNP.

Input: Information regarding one SNP and the threshold c


for T.

Output: The SHD score in one SNP.

1. Compute (n1; . . . ; n6) defined in Table 1.

2. Construct a graph of nodes as f n
0

1; . . . ; n
0

6

� �
:
P

ni ¼
P

ni
0g

where two nodes are connected if
P

ni � n
0
i

�� �� ¼ 2.

3. Compute T ¼ n1 þ 2n4 � n2 � 2n5ð Þ2=ðn1 þ n2 þ 2n3 þ 2

n4 þ 2n5Þ for all the nodes.

4. Find nodes which have a) T > c
 and b) a neighbor with

T � c
. Put them in a set S:

5. If ðn1; . . . ; n6) has T > c
, compute its shortest distance to S

and take it as its score; otherwise compute the distance and

then use 1–distance as the score. Dijkstra algorithm solves

this.

Algorithm 4: Approximation Algorithm to calculate the SHD

score in one SNP.

Input: Information regarding one SNP and the threshold c


for Ti.

Output: The SHD score in one SNP.

1. Get bi; cið Þ for Ti.

2. If Ti < c
, move bi; cið Þ to the direction among the valid

moving directions in the domain that maximizes the non-

normalized directional gradient until Ti is just above or

equals c
 then dSHð bi; cið Þ; iÞ ¼ �ð# of stepsÞ; if Ti � c
,

move bi; cið Þ to the direction among the valid moving direc-

tions in the domain that minimizing the non-normalized

directional gradient until Ti is below c
 then

dSHð bi; cið Þ; iÞ ¼ ð# of stepsÞ � 1.
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mechanism from Algorithm 2. In the small cohort, the exact algo-

rithm takes about 4 hours and used up 38.5 GB memory on a

3.0 GHz 8-Core Intel Xeon E5 machine. (We are planning to de-

velop a more efficient version for the exact algorithm.) Due to the

computation complexity in the current version of the exact algo-

rithm, we only apply the DP mechanism based on the SHD scores

from the exact algorithm in the small cohort.

From the performance in the small cohort in Figure 5 and the

large cohort in Figure 6, DP mechanisms based on P-values and

projected P-values are almost useless due to their high sensitivities

(see Theorem 2–3). The Laplace mechanism and the exponential

mechanism based on the test statistics perform comparably. From

both small and large cohort, the DP mechanism based on the SHD

outperforms the others, and in the small cohort, the method from

the exact algorithm performs slightly better than the one from the

approximation algorithm. In the small cohort, since there is not a

significant gap between the significant SNPs and non-significant

ones from Figure 4, releasing top K ¼ 3; 5; 10 SNPs, even under a

large privacy budget, the performance of a DP mechanism is hard

to have a great accuracy. When K ¼ 1, the DP mechanism based

on SHD achieves accuracy around 0.8 under e ¼ 1:5 while the DP

mechanisms based on the test statistics requires e > 3 for the same

level of accuracy. In the large cohort, since there is a big gap be-

tween the significant SNPs and the others from Figure 4, we can

ask for more top significant SNPs under a certain level of privacy

protection and accuracy. The DP mechanism based on SHD

achieves accuracy more than 0.8 under a small e ¼ 0:5 across all

K � 10.

3.2 Real data
We apply our proposed DP mechanisms for TDT in the study of a

rare disease—Kawasaki Disease (KD) (Shimizu, 2011). In this

datast, we have 187 KD families. After filteation, we get 906 SNPs

of ponential interest. We would like to report top K most significant

SNPs under DP. From the comparison of applying the DP

Fig. 4. Top 100 largest TDT test statistics in the simulated data. The left panel is from a small cohort (with family number N¼150 and SNPs number M¼5000)

and the right panel from a large cohort (with N¼5000 and M¼106). The triangle points are the true top 10 significant SNPs. The horizontal dashed lines are the

thresholds at 100(1–0.05/M)%-quantile of v2
1 distribution, where M¼5000, 106 in left and right panels respectively
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mechanisms to TDT to the small and large cohorts in the simulation

studies, we can expect the small size of this real dataset makes the

problem of protecting familiy-based information challenging. We

just want to show a real world application here.

Since the DP mechanism on the Shortest Hamming Distance

(SHD) outperforms the other proposed mechanisms from simulation

studies, we only apply this method to the real dataset. To get SHD

scores, we use both exact and approixmation algorithms (Algorithm

3–4). The exact algorithm took about 4.2 hours to compute the

SHD for this real dataset. Due to the small size of the data, it could

be hard to ensure both high coverage accurage and privacy protec-

tion as shown in the simulations. We relax the cirterion a little bit.

Instead of concerning whether the top K truly significant SNPs have

been selected, we are interested in the average rank difference be-

tween the reported top K significant SNPs and their true ranks. We

measure the utility by rank error, defined by 1
K

PK
k¼1

jRk � kj where Rk

is the rank of reported k-th significant SNP under DP. We set the

privacy budget e ¼ 3; 5 and the number of significnat SNPs to re-

lease K ¼ 3; 5. We set the threshold as 95%-quantile of chi-squared

distribution with one degree of freedom for the SHD score. We re-

port the average utilitites in Table 3 from 200 repeated procedures.

From Table 3, the utilities from these two methods in calculating the

SHD scores are similar. Comparing the utilities under K ¼ 3; 5, to

maintain a certain of privacy protection and utility, our small datset

is more suitable for releasing very few most significant SNPs, this

pattern was also observed from the simulation studies. From the

rank error in Table 3, when K ¼ 1 and e ¼ 3, the reported most sig-

nificant SNP is among the truly top 10 most signifiant SNPs with

high probability and when K ¼ 1 and e ¼ 5, the reported SNP is ei-

ther the true top one SNP or the top two for most of the time.

Imagine in practice, a researcher asks a query on this dataset and

she would like to know a few most significant SNPs under DP TDT.

She sets K, the number of most significant SNPs she would like to

explore, and takes a privacy budget e that bounds the error that she

can tolerate. Since this is a small cohort, if she sets K too large and e
too small, we will suggest her recruiting more patients into the study

to guarantee both privacy and utility of our reported results under

DP. Or we can suggest her reducing the number of K in order to get

a reasonable answer. Under a proper K and e, for example, K ¼ 1

and e ¼ 3, the user will get the top most significant SNP

‘rs12569527’ under DP with a high probability. Athough outcomes

of such a test-run may not be directly used for scientific discovery,

our point is that the user will get a sense how the dataset is likely to

be useful through her exploratory analysis, and can therefore decide

on whether it is necessary to gain access to those data through the

Institutional Review Board (IRB) application. This is the key idea of

our proposed framework, which is illustrated in Figure 1.

4 Discussion and conclusion

In this paper, we make the assumption that an attacker intends to

violate family information. We apply the Laplace and the exponen-

tial mechanisms, two major e-differentially private mechanisms, to

achieve differentially private TDT in GWAS. However, there are

still some limitations in the proposed method.

The proposed methods and the individual protected methods in

Uhler (2013), Yu (2014) and Yu and Ji (2014) only focus on defin-

ing two neighbor datasets by exchanging one family/individual.

Other ways of generating neighbor datasets can be used. To get the
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Fig. 6. Performance comparison of DP mechanisms for TDT in terms of accuracy under various privacy budgets and numbers of NSP to release in a large cohort

with family size N¼5000 and SNP number M¼106. (The curve labels are the same as in Figure 5.)

Table 3. Utility of the DP mechanism based on the SHD score calcu-

lated from exact and approximation algorithms for TDT in

Kawasaki disease dataset

Method: Exp. Mech. SHD Exact Alg. Approximation Alg.

K e Rank error Rank error

K ¼ 1 e ¼ 3 6.2 6.0

e ¼ 5 0.8 0.8

K ¼ 3 e ¼ 3 190.8 187.5

e ¼ 5 65.9 73.3
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SHD score, we developed both exact and approximation algorithms.

The approximation algorithm is efficient, but the sensitivity of the

SHD score is not guaranteed to be 1 any more. We are planning to

develop a more efficient version of the exact algorithm.

The choice of privacy budget e, as we discussed in the section of

‘Results’, depends on the trade-offs among family size, privacy and util-

ity. Since there is no explicit formula to quantify the relationship among

those three quantities, the setting of e depends on the context and on the

application. How to pick a proper e is still an open question.

The proposed method protects privacy for trio-families. We can

further develop privacy-preserving methods to the extended TDT on

the families with more than one child and testing more alleles in a

marker locus (Spielman, 1993) in the same manner. However, more

discussion on the changes of two neighbor datasets should be con-

sidered. Furthermore, TDT is based on a v2 test statistic and it has

good asymptotic properties when the counts b and c are large.

However, when the counts are small, TDT may lose some detection

ability. In this case, other tests such as the Binomial exact test and

continuity correction may be considered. Recently there are modi-

fied TDTs (Ewens and Spielman, 2004; Wittkowski and Liu, 2002)

that can be more powerful under some circumstances. Hence, we

can choose different TDT tests and then apply our privacy-

preserving mechanisms to obtain higher utility. Additionally, in

practice, real data always involve missing data and there are several

imputation techniques to get more information. How to properly

use imputation techniques in a privacy-preserving manner still needs

further investigation.

Our analysis does not consider the correlation structure of SNPs

but note that a DP mechanism does not depend on the correlation

among SNPs to guarantee DP. However, to better use the dataset, if

the dataset involves highly correlated SNPs, one can apply the DP

TDT to the tag SNPs, the representatives in each correlated block

(Gabriel et al., 2002); otherwise it might not be interesting that the

reported top K most significant SNPs come from the same correlated

block. Similar to (Johnson and Shmatikov, 2013), we can extend

our DP mechanisms to TDT on the correlated SNPs.

Overall, from our simulation experiments and application in the

Kawasaki Disease dataset, by applying TDT to trio-families in GWAS

and defining the neighbor datasets by exchanging family genotypes,

we found that the exponential mechanism based on the shortest

Hamming distance score preserves both higher utility and privacy

than the other proposed methods to protect family-based information.

Contribution statement

Analysis in the methods: M.W.; Algorithms: M.W., Z.J., S.W, X.J.;

Data Processing and software: M.W., J.K., H.Y.; Editing and revi-

sing the manuscript: M.W., L.OM., X.J.

Acknowledgements

We would like to thank the A.E. Bonnie Berger and the two anonymous re-

viewers for their editing work and helpful suggestion. We thank Jane C.

Burns MD for contributing the Kawasaki Disease trio genotype data for this

project. MW would like to thank the training from UCSD.

Funding

This work was supported by the Patient-Centered Outcomes Research

Institute (PCORI) under contract ME-1310-07058, the National Institute of

Health (NIH) under award numbers R00HG008175, R01HG008802,

R01HG007078, R01GM114612, R01GM118574, R01GM118609,

U01EB023685, U54HL108460 and National Library of Medicine (NLM)

R00LM011392, R21LM012060.

Conflict of Interest: none declared.

References

(onlince source) ‘HiSeqTM Sequencing Systems’ from Specification Sheet in

IlluminaVR Sequencing, in the link https://www.illumina.com/systems/

sequencing-platforms/hiseq-x.html

Bhaskar,R. et al. (2010) Discovering frequent patterns in sensitive data. In:

Proceedings of the 16th ACM SIGKDD International Conference on

KnowledgeDiscovery and Data Mining – KDD ’10, 2010, p. 503.

Chen,F. et al. (2017) PRINCESS: Privacy-protecting Rare disease

International Network Collaboration via Encryption through Software

guard extensionS. Bioinformatics, btw758.

Church,G. (2005) The Personal Genome Project. Mol. Syst. Biol., 1, no. 1.

Clarke,L. et al. (2012) The 1000 Genomes Project: data management and

community access. Nat. Methods, 9, 459–462.

Clayton,D. (2010) On inferring presence of an individual in a mixture: a

Bayesian approach. Biostatistics, 11, 661–673.

Collins,F. and Varmus,H. (2015) A new initiative on precision medicine.

N. Engl. J. Med., 372, 793–795.

Craig,D. et al. (2011) Assessing and managing risk when sharing aggregate

genetic variant data. Nat. Rev. Genet., 12, 730–736.

Dwork,C. (2006) Differential privacy. Int. Colloq. Autom. Lang. Program,

4052, 1–12.

Dwork,C. et al. (2006) Calibrating noise to sensitivity in private data analysis.

Theory Cryptogr, 3876, 265–284.

Ewens,W. and Spielman,R. (2004) The TDT is a statistically valid test: com-

ments on Wittkowski and Liu. Hum. Hered., 58, 59–60.

Gabriel,S. et al. (2002) The structure of haplotype blocks in the human gen-

ome. Science, 296, 2225–2229.

Gymrek,M. et al. (2013) Identifying personal genomes by surname inference.

Science, 339, 321–324.

Gutmann,A. W. et al. (2012) Privacy and progress in whole genome sequenc-

ing. In: Presidential Committee for the Study of Bioethical 2012.

Homer,N. et al. (2008) Resolving individuals contributing trace amounts of

DNA to highly complex mixtures using high-density SNP genotyping micro-

arrays. PLoS Genet., 4, e1000167.

Humbert,M. et al. (2013) Addressing the concerns of the lacks family:

Quantification of kin genomic privacy. In: Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security, pp. 1141–1152.

Jacobs,K. et al. (2009) A new statistic and its power to infer membership in a

genome-wide association study using genotype frequencies. Nat. Genet., 41,

1253–1257.

Johnson,A. and Shmatikov,V. (2013) Privacy-preserving data exploration in

genome-wide association studies. In: Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data min-

ing - KDD ’13, p. 1079.

Levin-Decanini,T. et al. (2013) Parental broader autism subphenotypes in

{ASD} affected families: relationship to gender, child’s symptoms, {SSRI}

treatment, and platelet serotonin. Autism Res., 6, 621–630.

Lin,Z. et al. (2004) Genomic research and human subject privacy. Science,

305, 183.

Malin,B. and Sweeney,L. (2001) Inferring genotype from clinical phenotype

through a knowledge based algorithm. In: Proceedings of the Pacific

Symposium on Biocomputing, pp. 41–52.

Malin,B. and Sweeney,L. (2004) How (not) to protect genomic data privacy in

a distributed network: using trail re-identification to evaluate and design

anonymity protection systems. J. Biomed. Inform., 37, 179–192.

McSherry,F. and Talwar,K. (2007) Mechanism Design via Differential

Privacy. In: 48th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’07), pp. 94–103.

Ott,J. et al. (2011) Family-based designs for genome-wide association studies.

Nat. Rev. Genet., 12, 465–474.

3724 M.Wang et al.

https://www.illumina.com/systems/sequencing-platforms/hiseq-x.html
https://www.illumina.com/systems/sequencing-platforms/hiseq-x.html


Sankararaman,S. et al. (2009) Genomic privacy and limits of individual detec-

tion in a pool. Nat. Genet., 41, 965–967.

Shimizu,C. et al. (2011) Transforming growth factor-b signaling pathway in

patients with Kawasaki disease. Circ. Cardiovasc. Genet., 4, 16–25.

Shringarpure,S. and Bustamante,C. (2015) Privacy leaks from genomic

data-sharing beacons. Am. J. Hum. Genet., 97, 631–646.

Simmons,S. and Berger,B. (2016) Realizing privacy preserving genome-wide

association studies. Bioinformatics, 32, 1293–1300.

Spielman,R. et al. (1993) Transmission test for linkage disequilibrium: the in-

sulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J.

Hum. Genet., 52, 506.

Sweeney,L. et al. (2013) Identifying Participants in the Personal Genome Project

by Name (A Re-identification Experiment). Computers and Society, arXiv.

Uhler,C. et al. (2013) Privacy-preserving data sharing for genome-wide associ-

ation studies. J. Priv. Confidentiality, 5, 137–166.

Visscher,P. and Hill,W. (2009) The limits of individual identification from

sample allele frequencies: theory and statistical analysis. PLoS Genet., 5,

e1000628.

Wang,R. et al. (2009) Learning your identity and disease from research papers.

In: Proceedings of the 16th ACM conference on Computer and communica-

tions security – CCS ’09, 2009, pp. 534–44.

Wang,S. et al. (2014) Differentially private genome data dissemination

through top-down specialization. BMC Med. Inform. Decis. Mak., 14, S2.

Wang,S. et al. (2016) HEALER: homomorphic computation of ExAct Logistic

rEgRession for secure rare disease variants analysis in GWAS. Bioinformatics,

32, 211–218.

Wittkowski,K. and Liu,X. (2002) A statistically valid alternative to the TDT.

Hum. Hered., 54, 157–164.

Yang,Z. et al. (2014) Whole-exome sequencing for the identification of suscep-

tibility genes of Kashin-Beck disease. PLoS One, 9, e92298.

Yu,F. and Ji,Z. (2014) Scalable privacy-preserving data sharing method-

ology for genome-wide association studies: an application to iDASH

healthcare privacy protection challenge. BMC Med. Inform. Decis. Mak.,

14, S3.

Yu,F. et al. (2010) Differentially-private logistic regression for detecting

multiple-SNP association in GWAS databases. In: Domingo-Ferrer ( J.ed.)

Privacy in Statistical Databases. vol. 8744, Springer International

Publishing, Cham, pp. 170–184.

Yu,F. et al. (2014) Scalable privacy-preserving data sharing methodology for

genome-wide association studies. J. Biomed. Inform., 50, 133–141.

Zhang,Y. et al. (2015) FORESEE: Fully Outsourced secuRe gEnome Study

basEd on homomorphic Encryption. BMC Med Inf. Decis Mak., 15, S5.

DP TDT in GWAS 3725


