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Genetic and environmental factors are both known to contribute to susceptibility to complex diseases. Therefore,
the study of gene-environment interaction (G×E) has been a focus of research for several years. In this article,
select examples of G×E from the literature are described to highlight different approaches and underlying princi-
ples related to the success of these studies. These examples can be broadly categorized as studies of single meta-
bolism genes, genes in complex metabolism pathways, ranges of exposure levels, functional approaches and
model systems, and pharmacogenomics. Some studies illustrated the success of studying exposure metabolism
for which candidate genes can be identified. Moreover, some G×E successes depended on the availability of high-
quality exposure assessment and longitudinal measures, study populations with a wide range of exposure levels,
and the inclusion of ethnically and geographically diverse populations. In several examples, large population sizes
were required to detect G×Es. Other examples illustrated the impact of accurately defining scale of the interactions
(i.e., additive or multiplicative). Last, model systems and functional approaches provided insights into G×E in sev-
eral examples. Future studiesmay benefit from these lessons learned.

exposure; gene-environment; genome-wide association studies; interactions; metabolism genes; pathway genes;
pharmacogenomics

Abbreviations: ALDH, aldehyde dehydrogenase; CYP, cytochrome P-450 family; FeNO, exhaled nitric oxide; FTO, fat mass– and
obesity-associated gene; GWAS, genome-wide association study; G×E, gene-environment interaction; PD, Parkinson disease.

Genetic and environmental factors are both known to con-
tribute to susceptibility to complex diseases. Studies of genetic
variation range from hypothesis-driven studies examining
a small number of candidate genes to more agnostic (i.e.,
hypothesis-free) surveys of variation across the entire genome,
or genome-wide association studies (GWASs). GWASs lever-
age patterns of linkage disequilibrium with a high density
of genetic markers to capture a large proportion of the common
genetic variation in a population. Therefore, gene-environment
interaction (G×E), defined broadly as the interplay between
gene(s) and environmental factor(s) as they affect some trait
(discussed inGauderman et al. (1)), is a focus of studies addressing
chronic diseases such as neurodegeneration, cancer, and asthma,
andmore recently also pharmacogenomics applications—the
former to better understand biological pathways to disease or
identify subpopulations susceptible to specific exposures in
human studies and the latter to contribute to “precisionmedicine”

and treatment plans tailored to the genetic makeup of patients
(2). We selected G×E examples that we knew to have been
successful in reaching these aims, illustrating different approaches
and study designs that may have contributed to success.

The purpose of this paper is to describe a spectrum of ap-
proaches and underlying principles that have been successful
for identifying G×E in order to inform future studies. These
success stories may be broadly categorized as studies of sin-
gle metabolism genes, complex metabolism pathways, broad
ranges of exposures, functional approaches and model sys-
tems, and pharmacogenomics.

SINGLEMETABOLISMGENES

Many of the genetic variants identified in G×E investiga-
tions are in metabolism genes and affect enzymatic function;
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they may increase susceptibility to an environmental exposure
and adversely affect health in exposed variant carriers. Recent
efforts have focused on studying the genetics (or in some cases,
epigenetics) of metabolism to identify single nucleotide poly-
morphisms that, by altering exposure metabolism, ultimately
alter susceptibility to disease outcomes. Some of the oldest and
best-characterized G×Es with well-established biologic rele-
vance and human health consequences are classic Mendelian
genetic diseases of single metabolism genes that depend on the
presence of common environmental (dietary or pharmacological)

agents to adversely affect health (Table 1, Lesson 1), such as phe-
nylketonuria and glucose-6-phosphate dehydrogenase (G6PD)
deficiency. Phenylketonuria is caused by a defect in the gene
encoding the enzyme phenylalanine hydroxylase, which is
needed to break down the amino acid phenylalanine. In children
with phenylketonuria, the resulting amino acid accumulation is
responsible for severe intellectual and developmental disabil-
ities, and dietary restrictions that eliminate phenylalanine intake
can minimize or prevent adverse outcomes entirely (3). Simi-
larly, glucose-6-phosphate dehydrogenase deficiency is the

Table 1. Summary of Lessons Learned FromG×EResearch Activity.

Lessons Interaction and Phenotype

1. G×E in metabolism genotypes/phenotypes are usually related to
absorption, distribution, metabolism, and excretion (ADME)
characteristics of targeted exposures. These are an obvious
place to explore biological pathways and candidate genes.

Phenylketonuria and glucose-6-phosphate deficiency: single
metabolism genes× diet/pharmacological agents

CYP2D6/PON1/ALDH2with pesticide exposure for Parkinson disease

NAT2 and smoking for bladder cancer

ALDH2*2 and alcohol intake for esophageal cancer

AS3MT and arsenic for skin lesions

Genes relevant to pharmacogenomics

2. G×E discoveries can lead to environmental interventions to
prevent diseases (especially in cases where presence of both
are required for outcome).

Phenylketonuria and glucose-6-phosphate deficiency: single
metabolism genes× diet/pharmacological agents

CYP2C9/VKORC1 and warfarin for anticoagulation response

Nicotine-metabolism genes and therapy for smoking cessation

Aspirin/NSAIDs use andMGST1/IL16 for colorectal cancer

3. Temporal considerations (birth cohorts, timing of exposure, etc.)
may influence G×E findings and need to be considered.

PON1 and pesticide exposure for Parkinson’s disease

FTO and physical activity for BMI

4. Quality of exposure assessment affects detection of G×E. PON1 and pesticide exposure for Parkinson disease

FTO and physical activity for BMI

NOS2 and traffic pollution for respiratory symptoms

5. Scale studied can affect the detection of interactions. NAT2 and smoking for bladder cancer

6. Large population sizes are typically needed for G×E discovery. NAT2 and smoking for bladder cancer

FTO and physical activity for BMI (Caucasian populations)

Aspirin/NSAIDs use andMGST1/IL16 for colorectal cancer

7. Variability in exposure distribution increases the power to detect
G×E and the importance of investigating ethnically and
geographically diverse populations.

ALDH2*2 and alcohol intake for esophageal cancer

FTO and physical activity for BMI

AS3MT and arsenic for skin lesions

NOS2 and traffic pollution for respiratory symptoms

Carbamazepine ×HLA-B*1502 for Stevens-Johnson syndrome

8. No single G×Emethod is universally the most powerful. The
appropriate G×Emethod depends on underlying assumptions,
correlations between risk factors, and the true G×Emodel.

ALDH2*2 and alcohol for esophageal squamous-cell carcinoma

SeeGauderman et al. (1)

9. Studying highly exposed populations/cohorts can provide
high-quality exposure assessment.

FTO and physical activity for BMI

10q24.32 × arsenic and arsenical lesions

10. Model systems and functional approachesmay provideG×E
insights.

Genetics of lead susceptibility (Drosophilamodel)

FTO and physical activity for BMI (human tissue samples/mousemodels)

ALDH2 and pesticides for Parkinson disease (ex vivomodel system)

NOS2 and traffic pollution for respiratory symptoms (biomarker study)

Abbreviations: ALDH2, aldehyde dehydrogenase 2 gene; AS3MT, arsenite methyltransferase gene; BMI, body mass index; CYP, cytochrome
P-450 family; FTO, fat mass– and obesity-associated gene; G×E, gene-environment interaction; HLA-B, human leukocyte antigen-B; IL16, inter-
leukin 16 gene; MGST1, microsomal glutathione s-transferase 1 gene; NAT2, N-acetyltransferase 2 gene; NOS2, nitric oxide synthase 2 gene;
NSAID, nonsteroidal antiinflammatory drug;PON1, paraoxonase 1 gene; VKORC1, vitamin K epoxide reductase complex subunit 1 gene.
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most common human enzyme defect, associated with neonatal
jaundice and acute hemolytic anemia triggered by consumption
of fava beans or treatment with antibiotic and antimalarial drugs
(4). These disease phenotypes are entirely preventable and ame-
nable to environmental interventions; the outcome occurs only if
both the genetic and environmental factors are present (Table 1,
Lesson 2).

GENES INCOMPLEXMETABOLISMPATHWAYS

In contrast to the enzymes involved in phenylketonuria and
glucose-6-phosphate dehydrogenase deficiency, many other
metabolizing enzymes are biologically versatile and often
redundant in their actions (5), which complicates relating
any single genotype to a phenotype of interest. Nevertheless,
early G×E studies focused on polymorphic variants in metabo-
lism genes that affect enzymatic ormetabolic function of proteins
that activate or detoxify exogenous and endogenous toxins.
Examples include members of the large microsomal oxida-
tive cytochrome P-450 (CYP) superfamily of proteins (6),
N-acetyltransferase 2 (NAT2) (7), and glutathione S-transferases
(GSTs) (8) that are implicated in cancer (9), Parkinson disease
(PD) (10), andAlzheimer disease (11). For example, long before
the first familial PD gene was identified, the “poor metabolizer”
enzymatic phenotype of the cytochrome P450 2D6 (CYP2D6)
gene was the first PD candidate gene (12, 13) because the
enzyme is active in the brain region linked to PD, metabo-
lizes relevant endogenous neural compounds (14, 15), and
inactivates neurotoxins known to cause Parkinsonism in
animal models and humans (16). Many population studies
have shown an increased risk of PD for CYP2D6 poor me-
tabolizers compared with all other metabolizer types (17),
and some PD studies that include pesticide exposures also
observed G×Es for poor-metabolizer variants of CYP2D6
(18–21) (Table 1, Lesson 1).

Additionally, common variants of the paraoxonase 1 (PON1)
gene act on the toxic oxon (metabolite) of organophosphate pesti-
cides and are well characterized with regard to their influence on
enzyme activity in human serum (22, 23). Thus, in popula-
tions with chronic organophosphate exposure, carriers of slow-
metabolizer variants of the PON1 gene have been shown to be
at increased risk for PD (elderly) and developmental deficits
(children) (Table 1, Lesson 1) (24). The PD studies were con-
ducted among central California residents using records from
the California Pesticide Use Reporting System to generate long-
term organophosphate pesticide estimateswith sophisticated geo-
graphic information system tools (25). The neurodevelopmental
studies were able to rely on biomarkers of exposure collected
during short but relevant periods in pregnancy (26, 27). In these
studies, considering temporality of exposure was important due
to the potential impact on early life (i.e., neurodevelopmental
outcomes) and later-onset disease outcomes (i.e., PD) that
needed to be examined to best characterize the interactions
(Table 1, Lesson 3). Moreover, exposure-assessment approaches
used in these studies were sophisticated and robust (Table 1,
Lesson 4).

Another G×E example related to variation in metabolism
genes is one of the best-establishedG×Es in cancer: the associa-
tion of genetic variation in NAT2, smoking, and risk of bladder

cancer (28) (Table 1, Lesson 1). NAT2 catalyzes metabolism of
aromatic monamines, known bladder carcinogens found in cig-
arette smoke. Several common genetic variants in NAT2 are
related to reduced enzyme activity (29) and segregate popula-
tions into rapid-, intermediate-, and slow-acetylation phenotypes,
which affect the ability to detoxify aromatic amines. Because
tobacco smoking is a strong risk factor for bladder cancer,
and aromatic amines found in tobacco smoke are known bladder
carcinogens, reduced detoxification capacity was hypothesized
to increase susceptibility. Indeed, studies in different populations
consistently demonstrated that slow acetylation activity in-
creases risk of bladder cancer among smokers but not among
never smokers (7, 30–34). Many studies used candidate-gene
approaches focusing on the hypothesis related to the role of
NAT2 in metabolism (7, 32–34). A genome-wide interaction
analysis of smoking and bladder cancer, however, observed in-
teractions with different single nucleotide polymorphisms de-
pending onwhether the interaction was evaluated on an additive
or multiplicative scale (30), highlighting the importance of
defining the scale of measurement discussed by Gauderman
et al. (1) and by others previously (28, 35, 36) (Table 1, Lesson
5). Interestingly, the multiplicative interaction between NAT2
and smoking, even though it is supported by strong prior
knowledge, did not reach a genome-wide significance thresh-
old. The authors estimated it would require over 15,000 cases
with a 1:2 ratio of cases:controls to reach the statistical signifi-
cance threshold (i.e., large sample sizes are required to discover
G×Es without strong priors due in part to stringent significance
thresholds required for agnostic studies) (30). Meanwhile, this
interaction was observed in previous candidate-gene studies with
1,100–3,000 cases, illustrating the power of hypothesis-driven
studies compared with GWAS approaches when prior knowl-
edge exists (Table 1, Lesson 5, 6).

The well-established interaction between a variant in the
aldehyde dehydrogenase (ALDH) 2 gene (ALDH2) and alcohol
on risk of esophageal squamous-cell carcinoma (37–41) high-
lights several other considerations. Alcohol is oxidized to form
acetaldehyde, a carcinogen. ALDH2 detoxifies acetaldehyde to
acetate. The ALDH2*2 allele slows this detoxification process
(Table 1, Lesson 1). The obvious hypothesis—that an increase
in risk due to alcohol consumption will be larger among indi-
viduals who carry the ALDH2*2 allele—has been borne out in
observational studies (38–41). Originally studied as a candi-
date gene, the ALDH2*2 allele has also been “rediscovered”
via GWAS, using both a marginal approach (testing for asso-
ciation without considering effect modification by alcohol
intake) and using a G×E approach (41). There are 2 particulari-
ties to the ALDH2 example worth noting. First, the ALDH2*2
allele is common in East Asian populations but quite rare in
European-ancestry populations. This underscores the impor-
tance of conducting studies in ethnically diverse populations—
not only can this increase diversity of environmental exposures,
it can increase diversity of genetic exposures (Table 1, Lesson 7).
Second, ALDH2*2 is associated with exposure. Individuals who
carry an ALDH2*2 allele experience an unpleasant flushing reac-
tion to alcohol and are less likely to drink regularly or heavily
(37). This gene-environment correlation has implications
for downstream analysis. Tests that assume that genotype
and environmental exposure are independent—such as the
case-only test, a method to test association between genetic
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and environmental factors within exposed and unexposed cases
only—can be more powerful than tests that do not make this
assumption when the assumption holds (42). Although this
assumption may be reasonable for many (or most) tested var-
iants (42), when it is violated, tests assuming gene-environment
independence can have inflated type I error rates or decreased
power. In the case of ALDH2*2, because the gene-environment
correlation and G×E act in opposite directions, the case-only
test failed to detect the ALDH2*2-alcohol interaction at a nomi-
nal level of association in a study where the standard logistic
regression test of interaction including controls was highly sig-
nificant (43). As this example illustrates, the most appropriate
method or approach for analyzing G×E can be highly depen-
dent on an understanding of underlying assumptions and corre-
lations between risk factors. As discussed in more detail in
Gauderman et al. (1) and McAllister et al. (44), no single G×E
method is universally the most powerful approach, and effi-
ciency depends on the hypothesis tested and underlying true
G×E model (Table 1, Lesson 8).

VARIATIONOF EXPOSURE LEVELS

Low exposure variability may be one key factor for not being
able to identify G×E (45). A wide range of exposure levels
among study participants provides greater statistical power
for identifying G×E (1) and an opportunity to contrast different
models (e.g., linear, threshold, age-specific) to understand how
exposure affects the gene-trait relationship.

A compelling example of the benefits of targeting a popula-
tion with both high- and low-exposure scenarios comes from a
study of interaction between physical activity and the fat mass–
and obesity-associated gene (FTO) onwaist circumference con-
ducted in a multicenter study in India (46). The study included
2 sites, one in northern India (New Delhi) and the other in
southern India (Trivandrum), each including close to 500 indi-
viduals. The population in Delhi had low levels of physical
activity, similar to what is typically observed in Caucasian pop-
ulations. In contrast, the population in Trivandrum had a wide
range of physical activity levels and included individuals with
high or low activity. The original association between FTO
genetic variation and obesity, generated primarily in Cau-
casian populations (47–49), was replicated in the Delhi pop-
ulation but not the Trivandrum population. However, in
Trivandrum, an interaction was detected between physical
activity and FTO—the association between FTO variant and
obesity was strongest in individuals with low physical activity
and diminished gradually with increasing levels of physical
activity. This pattern of interaction has been replicated in
studies conducted in Caucasian populations (50). However,
due to a narrower range of physical activity, a much larger
sample size (n > 200,000) was required for this interaction
to achieve statistical significance (Table 1, Lesson 6). This
example demonstrates the advantages of having robust mea-
sures of environmental factors and a wide range of exposure
levels for identifying G×E, with strong variation in exposure
increasing the power to detect G×E. Studying geographically,
culturally, or sociologically diverse populations may make it
more likely to observe variations in exposure (Table 1, Lessons
4, 7, 9). Another study showed that the influence of a common

FTO variant on body mass index varies across birth cohorts,
calendar time periods, and life cycles (51), illustrating the impor-
tance that temporal considerations may have for G×E studies
and demonstrating that global or local environmental changes
over time can modify the observed allelic penetrance of genetic
risk factors for complex traits (Table 1, Lesson 3).

Another approach to achieving an adequate range of expo-
sures is to examine a highly exposed population. Long-term ex-
posure assessment on a study population highly exposed to a
specific agent from the environmentmay provide unique insights
for characterizing G×E if the population is well-characterized
longitudinally. Inorganic arsenic is a known human carcino-
gen (52), and natural or man-made contamination of ground
water used as drinking water in several regions across the
globe makes this exposure a serious global health issue (53,
54), particularly in Bangladesh where >57 million people are
exposed at levels exceeding the limit recommended by the
World Health Organization (55, 56). A GWAS approach was
used to identify genetic polymorphisms associated with an
“arsenic-metabolism efficiency” phenotype, and these variants
were found to affect risk of arsenical skin lesions (57). Arsenic-
metabolism efficiency can be measured in urine as ratios of
arsenic metabolites to total arsenic. Dimethylarsinic acid, the
end metabolite, is most readily excreted in urine, and indi-
viduals with high concentrations of dimethylarsinic acid are
viewed as more efficient metabolizers, at lower risk of arsenic
toxicity (58–62). The recent GWAS (57) identified 2 indepen-
dent association signals for dimethylarsinic acid concentrations
in a 10q24.32 region containingAS3MT, a gene involved in arse-
nicmethylation, consistent with several candidate-gene studies
(reviewed in Agusa et al. (63)). The low-efficiency alleles at
these 2 single nucleotide polymorphisms were independently
associated with increased risk for arsenical skin lesions. Further-
more, the association between arsenic exposure and skin-lesion
risk was weaker among individuals with high-efficiency 10q24.32
genotypes than among those with low-efficiency genotypes
(64). This example illustrates the strength of using a highly
exposed population with sufficient variation in exposure
(Table 1, Lesson 7) and using high-quality exposure measures
to identify G×E (Table 1, Lesson 9). This example further illus-
trates the strength of studyingmetabolism pathways of an expo-
sure to identify genetic variants that influence disease (Table 1,
Lesson 1).

MODEL SYSTEMSAND FUNCTIONALAPPROACHES

Replication has been a cornerstone of genetic association stud-
ies, and the requirement for independent replication contributed
to the success of GWAS (65, 66). In examples described above,
particularly NAT2 × smoking with bladder cancer, FTO ×
physical activity with bodymass index, andALDH2 × alcohol
with esophageal cancer, interactions were replicated multiple
times in different populations. However, as discussed in the
other articles in this group (1, 44, 67) and previously, there are
many challenges to replication in the G×E context, and what
constitutes appropriate replication in theG×E context is currently
being debated (28, 68, 69). Functional approaches can comple-
ment and support population-based epidemiologic studies by
providing potential mechanistic insights to observed findings
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(Table 1, Lesson 10) (70) and are described in Ritchie et al. (67).
These approaches includemodel systems, in vitro experiments,
and biomarker measurements. They may also provide addi-
tional evidence for an interaction in situations where replica-
tion in another independent population is not possible due to
lack of availability of an appropriate replication population,
such as in studies of a rare disease or environmental exposure
(28, 68).

Chronic lead exposure and genetic polymorphisms affect-
ing lead processing and excretion functions provide an exam-
ple in which functional approaches helped to validate genetic
associations that were difficult to resolve with human data
(71–73). Although genetically driven variations in human
susceptibility to adverse health effects from lead toxicity is
a well-appreciated phenomenon (74, 75), studies trying to
establish the genetics of human susceptibility have been chal-
lenging due to the variety of clinical symptoms elicited by lead
toxicity. Moreover, studies with chronic low levels of lead ex-
posures require long-term exposure assessments that account
for life-cycle susceptibility, such as during pregnancy and early
childhood, which are difficult in human populations. Using
Drosophila melanogaster, researchers used mutants to assess
functional causality of candidate genes and were able to iden-
tify a genetic network related to lead susceptibility, building
upon known genes previously identified in human GWAS
(76) (Table 1, Lesson 10).

Insights into the underlying mechanisms related to the FTO
gene and interaction with physical activity for obesity pheno-
types was provided in a series of mechanistic studies. Energy
balance is known to be modulated by both food consumption
and physical activity as well as by the dissipation of energy as
heat through constitutive heat generation (thermogenesis) in
mitochondria-rich brown adipocytes in brown fat and through
inducible thermogenesis in beige adipocytes in white fat.
Thermogenesis is triggered in part by response to exercise and
partially controlled by mitochondria. Functional studies have
recently shown that one of the common FTO alleles associated
with obesity phenotypes can repress mitochondrial thermo-
genesis in adipocyte precursor cells (77, 78). This leads to a
developmental shift from energy-dissipating beige adipocytes
to energy-storing white adipocytes with repression of basal
mitochondrial respiration and increased lipid storage. These
functional studies provide some biological evidence for the
interaction of FTO and physical activity in generating obe-
sity. These predictions were further functionally validated
with knockdown and overexpression of FTO and other regu-
lators in human patient tissue samples and mice models (77,
78) (Table 1, Lesson 10).

Furthermore, functional studies of PD have helped to eluci-
date findings from human genetic association studies. Pesti-
cide exposure was suggested as an environmental risk factor
for PD, although the mechanism was unknown. ALDH plays
a key role in neuronal protection by metabolizing biogenic
amine-related aldehydes (e.g., 3,4-dihydroxyphenylacetal-
dehyde) and by protecting neurons against aldehyde- and
oxidative stress–related neurotoxicity (79) (Table 1, Lesson 1).
Therefore, researchers used an ex vivo model system to identify
several pesticides that inhibited enzyme activity of ALDH
(Table 1, Lesson 10). These same pesticides were associated
with an increased risk of PD in a population-based study, and

genetic variation in ALDH2 appeared to modulate PD risk
due to these pesticide exposures (80).

Identifying a plausible biological mechanism using biomar-
kers can also help validate human-population study findings,
as illustrated by G×E in asthma. Exhaled nitric oxide (FeNO)
levels are known biomarkers of airway inflammation that are
predictive of childhood asthma (81). Researchers found that
common, inducible nitric oxide synthase 2 (NOS2) promoter
haplotypes combined with residential traffic-related exposure
appeared to interact to affect exhaled FeNO levels in children,
presumably becauseNOS2 is induced by environmental expo-
sures (82). Previously, common genetic variants and promoter
haplotypes of NOS2 were associated with childhood exhaled
FeNO values (81). Moreover, exposure to residential traffic
and allergens were independently associated with elevated
FeNO levels (82). The discovery of this G×E (NOS2 promoter
haplotypes × traffic exposure) benefited from a large, well-
characterized population with substantial variation in exposure
levels (Table 1, Lessons 4 and 7). In addition, higher FeNO
levels were associated with elevatedNOS2mRNA in the bron-
chial epithelium of asthmatics after allergen exposure (83).
Although this G×E finding needs replication, the biomarker
study correlating higher FeNO levels with higherNOS2 expres-
sion suggests a plausible biological mechanism of how ubiqui-
tous air pollutants and genetic variation might drive a biological
pathway relevant to inflammation that could contribute to
asthma (Table 1, Lesson 10).

PHARMACOGENOMICS

There are several lessons to be learned from pharmacoge-
nomic G×E studies that may be applied more broadly to G×E
studies of complex diseases. Pharmacogenomics, which spe-
cifically examines the role of genetic variation in various
drug-response phenotypes (84–86), can use either targeted
or untargeted G×E approaches, with the drug as the envi-
ronmental exposure and drug-response phenotype as the
outcome (87). Variations in drug response may cause some
individuals to require a higher dose while others require a lower
dose because of increased sensitivity or adverse side effects.
For example, common genetic variants in cytochrome P450
2C9 (CYP2C9) and vitaminK epoxide reductase complex sub-
unit 1 (VKORC1) genes contribute to variability in patients’ re-
sponses to treatment with the anticoagulant warfarin, explaining
as much as 18%–30% of the response variability observed in
European populations (88) (Table 1, Lesson 2). Notably, many
successes in pharmacogenomics have been observed, despite
challenges of small population sizes and rarity of adverse events
(85, 86, 89), due to the fact that the environmental agent (i.e.,
drug) is known, easy to measure, and is often associated with a
well-defined outcome phenotype, such as lowering blood pres-
sure (85). In addition, for many pharmaceuticals, the mecha-
nism of action and metabolic pathways are well understood,
making targeted studies with a prior hypothesis more success-
ful than agnostic GWAS studies, particularly given the usual
small population sizes of these studies, and making findings
from such studies easy to interpret (Table 1, Lesson 1).

An important lesson from pharmacogenomics studies relates
to the importance of studying diverse populations, because
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considerable variation in drug response across ethnicities
has been observed. In many cases, this variation is due to
frequencies of genetic variants depending on population
ancestry (85). For example, in East and Southeast Asian popu-
lations, a strong association of carbamazepine-induced Stevens-
Johnsons syndrome was reported for the human leukocyte
antigen-B (HLA-B)*1502 allele (OR = 84.75; 95% CI: 42.53,
168.91;P = 8.96 × 10−5), while no associations were observed
in Japanese or Caucasian patients (90). To date, a majority of
GWAS and pharmacogenomics studies have been conducted
in populations of European descent. Performing genetic studies
on populations of diverse ancestrywill likely provide further in-
sights into disease mechanisms and ensure that all populations
derive benefits from pharmacogenomics research (91) (Table 1,
Lesson 7).

G×E findings in pharmacogenomics may also be applied to
disease prevention, such as smoking cessation. Evidence sug-
gests that both nicotinic receptor α5 subunit (CHRNA5) and
cytochrome P450 2A6 (CYP2A6) genotypes influence smoking
cessation success and response to pharmacotherapy. In a large
smoking-cessation trial, the effectiveness of smoking-cessation
pharmacotherapy and medication efficacy was dependent on
CHRNA5 haplotype (92). Similar pharmacogenomic interac-
tions were observed in patient responses to nicotine replace-
ment therapy with CHRNA5 (93) and CYP2A6 genetic variants
(94). An additional study reported that the prescription medica-
tion varenicline was more efficacious than nicotine patches and
depended on the CYP2A6 genotypes for slow metabolizers,
while the effect of the common drug bupropion on smoking
relapse did not seem to be affected by CYP2A6 genotype–
driven nicotine metabolism (94, 95). These studies support the
notion that personalized smoking-cessation intervention based
on genotype may increase the effectiveness of such treatments
(Table 1, Lesson 2).

In another example of G×E in pharmacogenomics, related
to disease prevention, researchers performed an agnostic genome-
wide G×E gene-discovery study in colorectal cancer patients
who regularly used either aspirin, nonsteroidal antiinflammatory
drugs, or both. Use of aspirin and/or nonsteroidal antiinflamma-
tory drugs was associated with reduced risk of colorectal cancer
in individuals with TT genotypes of MGST1 (for microsomal
glutathione s-transferase 1) and higher risk among those with
the TA or AA genotypes (90). Meanwhile, regular use of aspi-
rin and/or nonsteroidal antiinflammatory drugs was associated
with lower risk of colorectal cancer among individualswith inter-
leukin 16 (IL16) AA genotypes but not with the less-common
genotypes. These results may have implications for targeting
populations at risk of colorectal cancer for specific intervention
efforts, such as treatment with nonsteroidal antiinflammatory
drugs and/or aspirin, based on genetic information (Table 1,
Lesson 2). To detect these interactions, the investigators com-
bined data from 10 observational studies for a total of 8,634
cases and 8,533 controls. Even with this large sample size,
only a few interactions were observed (Table 1, Lesson 6).

CONCLUSIONS

The characteristics of the above examples illustrate several
important lessons for G×E research. First, studying variants

that are known to disrupt exposure metabolism is a promising
strategy for identifying disease-related variants that interact
with exposure. Other pathways where mechanisms of exposure
action are well understood (e.g., pharmacogenomics) may also
be successful approaches. Second, studying G×E in human
studies designed to characterize a specific exposure (such as
arsenic or specific pesticides) over an extended period and
in a large population will provide opportunities to use high-
quality exposure measures, to study a wide range of exposure
levels, and to examine longitudinalmeasures of exposure. Impor-
tantly, using carefully collected and comprehensive exposure
data with a wide variation among study participants increases
statistical power for G×E detection. Yet even with high-quality
exposure assessment, many of these studies required large pop-
ulation sizes for the G×E discovery. In addition, G×E research
should include diverse populations representing many geo-
graphic areas, cultures, and ethnicities. Finally, functional
studies—includingmodel systems, laboratory studies, or biomar-
kers measured in human tissues—may lend valuable insights
to G×E findings, complementing large-scale, population-based
epidemiologic findings.
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