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Environmental or social challenges can stimulate a cascade of coordinated physiological changes in stress
response systems. Unfortunately, chronic activation of these adaptations under conditions such as low socioeco-
nomic status (SES) can have negative consequences for long-term health. While there is substantial evidence tying
low SES to increased disease risk and reduced life expectancy, the underlying biology remains poorly understood.
Using pilot data on 120 older adults from the Health and Retirement Study (United States, 2002–2010), we examined
the associations between SES and gene expression levels in adulthood, with particular focus on a gene expression
program known as the conserved transcriptional response to adversity. We also used a bioinformatics-based
approach to assess the activity of specific gene regulation pathways involved in inflammation, antiviral responses,
and stress-related neuroendocrine signaling. We found that low SES was related to increased expression of con-
served transcriptional response to adversity genes and distinct patterns of proinflammatory, antiviral, and stress sig-
naling (e.g., sympathetic nervous system and hypothalamic-pituitary-adrenal axis) transcription factor activation.
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Abbreviations: CREB, cyclic adenosine monophosphate response element binding protein; CTRA, conserved transcriptional response
to adversity; GR, glucocorticoid receptor; HRS, Health and Retirement Study; IRF, interferon response factor; NF-κB, nuclear factor
κ-light-chain-enhancer of activated B cells; SES, socioeconomic status; TF, transcription factor; TFBM, transcription factor bindingmotif.

Editor’s note: An invited commentary on this article appears
on page 510.

Low socioeconomic status (SES) has been linked to elevated
chronic disease incidence, accelerated physical and cognitive
decline, faster rates of aging, and lower life expectancy (1–4).
Many of these processes are mediated by differential expression
of the human genome (5), and current research seeks to identify
the underlyingmolecular pathways mediating socioeconomic
gradients in health. Previous work has shown that measurement
noise, tissue-specific differences in gene expression, and vari-
ability in the cellular composition of tissue samples (e.g., differ-
ential prevalence of various leukocyte subsets) can complicate
the detection of consistent SES-related differences in gene
expression when examined at the level of individual gene

transcripts (i.e., RNA encoding a single protein) (6). Fortunately,
many of these obstacles can be overcome by adopting an
“abstractionist” or set-based analytical approach that incorpo-
rates higher-order biological themes based on biological char-
acteristics shared in common across sets of genes (7). Thus,
instead of examining SES-related differences in gene expression
on a specific gene-by-gene basis, we instead examine differen-
tial activity of specific a priori–defined sets of gene sets that
were selected to tap generalized physiological processes that
have previously been hypothesized to underlie the link between
chronic stress and disease risk.

One biological pathway through which stressful life circum-
stances may produce health differentials involves modulation of
gene expression in immune cells that contribute to the develop-
ment of chronic illnesses such as cardiovascular disease, cancer,
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and neurodegenerative diseases (5). For instance, genome-wide
transcriptional profiling studies have found that sets of genes that
are up-regulated in response to chronic stress tend to be enriched
with genes involved in inflammation, whereas those that are
down-regulated in chronic stress are enrichedwith genes involved
in immunoglobulin G antibody production and interferon-
mediated antiviral responses (8, 9). This profile—termed the
conserved transcriptional response to adversity (CTRA)—is
thought to have evolved to facilitate wound-healing and prevent
bacterial infection in the face of threatening conditions (includ-
ing social conflict), while down-regulating resource allocation
for combating viral infection (5, 9, 10). When chronically acti-
vated, however, the CTRAmay contribute to an array of chronic
neurodegenerative, metabolic, cardiovascular, and neoplastic
diseases that share a common proinflammatory pathology (5).

Population studies have also begun to examine the upstream
regulatory pathways that shape SES-related differences in gene
expression. Gene expression is fundamentally regulated by pro-
tein transcription factors (TFs) that are activated by cellular re-
ceptors (e.g., detecting stress-related neuroendocrine factors) and
subsequently bind to stereotyped DNA sequences in the human
genome to coordinately alter the transcription of multiple genes
involved in a common physiological process (e.g., inflammation)
(11). One method for investigating the transcriptional conse-
quences of low SES is to identify transcription factor bindingmo-
tifs (TFBMs) that are overrepresented (enriched) in the promotor
regions of genes that are differentially expressed as a function of
SES (6, 12). As a result, further insight into the links between low
SES and CTRA can be gained by examining whether promoter
regions of over- or underexpressed genes are enriched for specific
TFBMs that serve as targets for known biological mediators
of stress or immune responses (12). For instance, there is evi-
dence that social adversity contributes to inflammation through
increased activity of the proinflammatory nuclear factor κ-light-
chain-enhancer of activated B cells (NF-κB) family of TFs and
through reduced activity of the antiinflammatory glucocorticoid
receptor (GR). Other TFs implicated in CTRA gene expression
include reduced activity of interferon response factors (IRFs) and
increased activity of the cyclic adenosine monophosphate
(cAMP) response element binding protein (CREB)/activating
transcription factor TFs, whichmediate signaling from “fight-or-
flight” stress responses of the sympathetic nervous system (13).

The present study examines the leukocyte transcriptional
alterations associated with major socioeconomic influences
that have been found to affect health outcomes in adults. We
hypothesized that low SES would be associated with a signifi-
cant increase in expression of previously defined CTRA indi-
cator genes. Further, genes that are empirically up-regulated in
association with low SESwould be characterized by high prev-
alence of TFBMs linked to proinflammatory activation (NF-κB
family) and sympathetic nervous system signaling (CREB
family) and low prevalence of TFBMs for the antiinflamma-
toryGR and interferon-stimulated response elements (ISRE).

METHODS

Sample description

Participants were a subsample of individuals enrolled in the
Health and Retirement Study (HRS) who provided venous

blood samples, including a PAXgene RNA Tube sample
(Qiagen, Valencia, California) that was subsequently ana-
lyzed as part of a transcriptomics pilot study. The HRS is a
longitudinal prospective study of members of the US popula-
tion over age 50 years and their spouses. It is conducted by the
University ofMichigan, under the sponsorship of the National
Institute on Aging. The pilot sample consisted of about 200
participants randomly selected from a group of 1,000 respon-
dents living in 13 areas who had completed a face-to-face
interview in either 2006 or 2008 and who responded to the
2010 interview. Selected respondents were asked to provide a
blood sample in the near future and at the time of the inter-
view; 16% declined to participate, and an additional 15% did
not complete the blood draw. The final completion rate was
69% (122 respondents). Of these 122, our final analytical sam-
ple included 120 individuals. One participant was excluded
based on missing data for SES, and the other was excluded for
not yielding suitable quantities of high-quality (intact) RNA
(described below).

Low socioeconomic status

SES in adulthoodwas estimated based on self-reports of cur-
rent educational and financial status. Low SES was classified
from educational attainment and poverty status assessed over 5
waves. From wave 6 (2002) on, measures of current family
poverty status were available via the RAND HRS files, based
on threshold levels from the US Census Bureau. Participants
were given a score of 0, 1, or 2 for poverty status. Scores of
2 corresponded to participants who were classified as being
below poverty at any of the 5 waves. A score of 1 was assigned
to participants who were never below the poverty level but
who were at less than twice the poverty level for at least 1
wave. Participants who were always classified as being at least
twice the poverty level were given a score of 0. Next, 1 point
was added to these scores if participants also had less than a
high school education (reported having less than 12 years of
schooling). These scores (ranging from 0–3) were then used to
create 2 categories—low SES in adulthood (a score of 2 or 3)
versus middle to high SES in adulthood (a score of 1 or less).

Transcriptional profiles

Blood samples were collected into PAXgene RNA Tubes and
shipped overnight to a central lab for storage at−80°C. RNAwas
extracted in parallel for all samples using an automated nucleic
acid processing system (Qiagen QIAcube), and all samples were
tested for suitable mass and purity (by spectrophotometry on an
ND-1000 instrument; NanoDrop Technologies,Wilmington Del-
aware) and for suitable RNA integrity (by capillary electrophore-
sis on a TapeStation instrument; Agilent, Santa Clara, California).
Overall, 121 of the total 122 PAXgene samples yielded suitable
quantities of high-quality (intact) RNA, and these samples were
subject to genome-wide transcriptional profiling using Illumina
HT-12 v4 bead arrays (Illumina Inc., San Diego, California) in
the UCLA Neuroscience Core Laboratory using standard target
synthesis (TotalPrep; Ambion Inc., Austin, Texas) and hybridiza-
tion/scanning protocols (Illumina). Transcript abundance values
were quantile normalized and log2-transformed for analysis. Data
were posted asGEOGSE68526.
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Statistical analysis

In an initial estimation analysis, the relationship between low
SES and expression of individual genes was quantified. This
was done using standard linear statistical models adjusting for
age, sex, race/ethnicity, body mass index, disease prevalence
(diabetes, cardiovascular disease, cancer, or stroke), smok-
ing status, weekly alcohol consumption, and the relative preva-
lence of 5 major leukocyte subsets, estimated using abundance
of RNA for cardinal markers of monocytes (CD14), natural
killer cells (CD16/FCGR3A, CD56/NCAM1), CD4+ and CD8+
T-lymphocyte subsets (CD3D, CD3E, CD4, CD8A), and B lym-
phocytes (CD19). Next, our 2 primary substantive hypotheses
were tested using bioinformatics analyses based on inputs from
the estimation analysis. To test associations between SES and
the a priori–specified set of 53 CTRA indicator genes, we com-
puted a contrast score (weighted +1 for 19 proinflammatory
genes and −1 for 31 antiviral and 3 antibody-related genes) and
assessed its sampling variability by bootstrap resampling of resi-
duals from initial linear-model estimation analyses as previously
described (14). To assess potential activity of 4 a priori–specified
proinflammatory, antiviral, and neuroendocrine-related tran-
scription control pathways, we identified all gene transcripts
showing >1.2-fold differential expression between low-SES
and middle/high-SES individuals and quantified the prevalence
of transcription factor–binding DNAmotifs within the upstream
regulatory region (promoter) of genes that were up-regulated
versus down-regulated based on data from the Transcription
Element Listening System (TELiS) database (www.telis.ucla.
edu), as previously described (11). Effect-size thresholding was
used for consistency with previous research in this area (14) and
has been shown to yield more replicable gene lists than does
thresholding based on P values (15–18). Analyses focused spe-
cifically on hypotheses involving SES-related up-regulation of
the proinflammatory NF-κB family (detected by TRANSFAC
DNAmotif V$CREL_01), the antiviral interferon response fac-
tor family (V$ISRE_01), and the neuroendocrine-related CREB
family (V$CREB_02) and GR (V$GR_Q6). Statistical testing
of (log-transformed) ratios of DNAmotif prevalence in up- ver-
sus down-regulated genes was based on bootstrap standard er-
rors as described above. To assess confounding by prevalent
disease and leukocyte subset distributions, ancillary analyses
omitted each of these covariates and reestimated SES associa-
tions with CTRA gene expression and TF activity. This sample
had 80% power to detect small/moderate-sized associations
( f 2 ≥ 0.65) atP < 0.05, assuming amultiple regression analysis
with control for 12 weakly correlated covariates with variance
inflation factor of <2 (Web Figure 1, available at https://
academic.oup.com/aje).

RESULTS

Sample characteristics

As shown in Table 1, the final pilot sample (n = 120) ranged
in age from 48 to 95 years, with a mean of 73.3 (standard devia-
tion, 9.8) years, and just over half the sample (56%) was female.
Approximately 90% of respondents self-identified their race as
non-Hispanic white, 5% (n = 6) self-identified as non-Hispanic
black, and 5% (n = 6) self-identified as Hispanic. On average,

participants had a body mass index of 27.9 (standard deviation,
7.1). About 9% (n = 11) of participants had ever smoked, and
on average participants drank 2.37 alcoholic beverages per
week. Prevalence rates for diabetes, cardiovascular disease, can-
cer, and stroke in our sample were 28%, 33%, 17%, and 16%,
respectively. Finally, 16% (n = 19) were classified as having
low SES in adulthood.

Differential gene expression by SES

SES-related differences in leukocyte gene expression were
quantified by genome-wide transcriptional profiling of 34,581
transcripts from venipuncture blood samples. Results identified
141 genes that were differentially expressed at a 1.2-fold differ-
ence or greater for individuals with low SES versus those with
middle/high SES, after adjusting for age, sex, race/ethnicity,
body mass index, disease prevalence, smoking status, weekly
alcohol consumption, and the relative prevalence of 5 major
leukocyte subsets. Of these, 67 genes were up-regulated in in-
dividuals with low SES, and 74 were down-regulated among
low-SES individuals. While results from differential expres-
sion analysis point to the potential for SES to alter transcrip-
tion, it doesn’t provide insight into the biological pathways
for which SES is relevant.

Gene contrast analysis

To determine whether low SESwas associatedwith increased
expression of the CTRA gene expression profile, we analyzed
an a priori–specified contrast of 53 previously identified CTRA
indicator genes (19 proinflammatory transcripts weighted+1, 3

Table 1. Characteristics From the Pilot Sample (n = 120), Health
and Retirement Study, United States, 2002–2010

Variable No. of
Participants % Mean

(SD)

Age, years 73.3 (9.8)

Sex (female) 67 55.8

Race/ethnicity

Non-Hispanic white 108 90.0

Non-Hispanic black 6 5.0

Hispanic 6 5.0

Bodymass indexa 27.9 (7.1)

Ever smoked 11 9.2

Alcohol consumption,
no. of beverages/week

2.3 (5.0)

Disease prevalence

Diabetes 34 28.3

Cardiovascular disease 39 32.5

Cancer 20 16.7

Stroke 19 15.8

Low adulthood SES 19 15.8

Abbreviations: SD, standard deviation; SES, socioeconomic status.
a Bodymass index was calculated as weight (kg)/height (m)2.
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antibody-related genes weighted−1, and 31 interferon-related
genes weighted−1; transcripts listed inWeb Table 1). Results
(Figure 1) showed that low SESwas associated with significant
elevation in expression of the overall CTRA profile—charac-
terized by increased proinflammatory gene expression and
decreased antibody and antiviral gene expression (gene con-
trast = 0.151; standard error, 0.048;P = 0.0029). Similar results
emerged in analyses that omitted control for prevalent disease
(contrast = 0.194; standard error, 0.051; P = 0.0048) or leuko-
cyte subset distributions (contrast = 0.152; standard error,
0.049; P = 0.0029).

Transcription control pathways

To identify transcription control pathways that may have
contributed to the empirically observed differences in gene
expression, we conducted Transcription Element Listening
System–based bioinformatics analysis of the prevalence of 4
specifically hypothesized TFBMs within the promoters of all

genes showing >1.2-fold differential expression as a function
of SES (Figure 2). Genes up-regulated in association with low
SES showed an overrepresentation of TFBMs for the proin-
flammatory NF-κB family of transcription factors (fold differ-
ence = 1.81; P = 0.038) and the CREB family of transcription
factors that mediate sympathetic nervous system signaling (fold
difference = 2.27; P = 0.028), and an under-representation of
TFBMs for IRFs (fold difference = 0.30; P = 0.009). How-
ever, low SES was not linked to any significant asymmetry in
GR TFBM distribution (fold-difference = 1.12; P = 0.292).
Comparable associations were observed in ancillary analyses
that omitted control for prevalent disease (NF-κB fold differ-
ence = 1.77, P = 0.033; CREB fold difference = 2.31, P =
0.018; IRF fold difference = 0.30, P = 0.006; and GR fold
difference = 1.19, P = 0.291). Absent control for leukocyte
subsets, IRF TFBMs continued to show significant asymmetry
(fold difference = 0.35; P = 0.007) but NF-κB (fold differ-
ence = 1.25; P = 0.397) and CREB (fold difference = 1.23;
P = 0.535) were both rendered nonsignificant.
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Figure 1. Conserved transcriptional response to adversity gene expression in 120 older adults as a function of high/middle versus low socioeco-
nomic status (SES), Health and Retirement Study, United States, 2002–2010. Plotted data are residualized on age, sex, race/ethnicity, body mass
index, prevalent disease (diabetes, cardiovascular disease, stroke, and cancer), smoking, heavy alcohol consumption, and 8 mRNA indicators of
leukocyte subset prevalence. Data represent raw contrast values (log2 RNA expression units) (A) and rank-transformed contrast values (to
address outliers) (B).
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DISCUSSION

Low SES has been linked to reductions in life expectancy and
higher age-specific rates of heart disease, cancer, diabetes, neuro-
degenerative diseases, and frailty (5, 19, 20). Yet much is still
unknown regarding the underlying biology that enables social dis-
parities to “get under the skin.”Our results show that by the time
of late adulthood, low-SES individuals—those at or near the pov-
erty limit and/or with less than a high school education—show
notable differences in leukocyte gene expression profiles relative
to members of higher socioeconomic groups. Specifically, low-
SES individuals show greater expression of the CTRA gene
expression program previously observed in individuals exposed
to extended periods of threat, uncertainty, or adverse life circum-
stances (8).

CTRA, which is characterized by increased proinflamma-
tory gene expression and decreased expression of antiviral and
antibody genes, is hypothesized to be an evolutionarily adap-
tive response to social threat. Under socially hostile environ-
ments, it may have been more advantageous for our ancestors
to up-regulate inflammatory defenses to aid in wound-healing
via fight-or-flight signaling while deemphasizing resources
involved in antiviral defense (9). Unfortunately, when chroni-
cally activated in response to the persistent adversity associated
with low SES, this functional genomic signature of social stress
may contribute to pathogenesis of disease (21). Prolonged
inflammatory signaling can damage extracellular molecules and
bystander cells (22) and act as a tumor promotor (23). For these
reasons, inflammation has been implicated as a central cause of
human aging—accelerating the development of atherosclerosis,
diabetes, Alzheimer’s disease, and a number of cancers (5, 21,
24). Finally, the impaired interferon and antibody components of

the CTRA profile may also contribute to infectious disease risk
by reducing host resistance to viral pathogens and lowering anti-
body response after vaccination (25, 26).

Differential gene expression as a function of SES may stem
from activation of specific TFs in response to stress signaling.
Indeed, results from promoter-based bioinformatics analysis
suggest that the differences observed here may stem from
increased activity of NF-κB and CREB family TFs, as well as
reduced activity of IRF family TFs. These results are consistent
with studies from both human and animal models, which have
shown that exposure to social stress is often accompanied by in-
creases in circulating levels of proinflammatory cytokines (9,
10). The distinctive patterns of transcription factor activation
suggest the association of low SES and physiologic activity may
operate through immunoregulatory pathways (NF-κB and IRF)
with some additional contribution from the sympathetic nervous
system–related CREB pathway. Primary analyses reported here
show that these associations occur on a per-cell basis (i.e., after
control for variations in the prevalence of specific cell typeswithin
the circulating leukocyte pool) and are independent of disease sta-
tus (e.g., history of diabetes, cardiovascular disease, stroke, or can-
cer). Ancillary analyses that did not control for disease history
foundvirtually identical results, suggesting that differential pathol-
ogy is not a major mediator of the relationships observed here.
Stress biology can regulate gene expression in the circulating leu-
kocyte pool through per-cell changes in gene transcription and by
altering the development and relative prevalence of specific cell
subpopulations within the circulating leukocyte pool (6, 13). Pri-
mary analyses controlled for individual differences in cell subpop-
ulation prevalence in order to focus on per-cell associations.
Ancillary analyses that did not control for cell subpopulation
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markers found similar up-regulation of the overall CTRA gene
expression profile and similar down-regulation of IRF activity.
However, no significant SES-related differences in NF-κB or
CREB activity emerged (association point estimates regressed
partially toward null, and standard errors were not notably
affected), suggesting that variations in cell prevalence may
partially confound estimates of some SES-related transcription
control pathways. Future research using isolated cell popula-
tions will be needed to help clarify the respective roles of dif-
ferential cell development versus per-cell gene regulation in
mediating the CTRA correlates of low SES.

There are limitations to this study which need to be acknowl-
edged. Given that this analysis was conducted using a pilot
sample from the HRS, our sample size may have limited our
statistical power to detect significant differences. Given the lim-
ited sample size available, this study focused solely on a priori
hypotheses derived from the previous research literature on the
CTRA and SES-related differences in inflammatory gene expres-
sion (8, 9, 13, 14, 27). As such, the present analyses may have
missed some transcriptomic correlates of SES.Discovery of addi-
tional genes and gene sets that relate to SES is an important topic
for future research in larger samples. Finally, as these genomics-
basedmeasures become available in larger samples, it will be im-
portant to test causal models hypothesizing mediation of social
gradients in health by transcriptional alterations in CTRA-related
genes or activation of specific TFs. The associations estimated
here derived from an observational study, and this design cannot
rule out reverse causation (e.g., wherein the health or behavioral
consequences of differential gene expression cause poverty).

Our study was strengthened by the population being exam-
ined, which was sampled at random from a large multiethnic,
nationally representative study of older adults. We also were
able to capitalize on the longitudinal nature of HRS by taking
into consideration poverty status over a number of years
(2002–2012). Overall, this study provides additional insight
into the nature of gene transcriptional dynamics that may con-
tribute to social gradients in health.
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