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Epidemiologic studies are frequently susceptible to missing information. Omitting observations with missing vari-
ables remains a common strategy in epidemiologic studies, yet this simple approach can often severely bias
parameter estimates of interest if the values are not missing completely at random. Even when missingness is
completely random, complete-case analysis can reduce the efficiency of estimated parameters, because large
amounts of available data are simply tossed out with the incomplete observations. Alternative methods for mitigat-
ing the influence of missing information, such as multiple imputation, are becoming an increasing popular strategy
in order to retain all available information, reduce potential bias, and improve efficiency in parameter estimation. In
this paper, we describe the theoretical underpinnings of multiple imputation, and we illustrate application of this
method as part of a collaborative challenge to assess the performance of various techniques for dealing with miss-
ing data (Am J Epidemiol. 2018;187(3):568–575 ). We detail the steps necessary to performmultiple imputation on
a subset of data from the Collaborative Perinatal Project (1959–1974), where the goal is to estimate the odds of
spontaneous abortion associated with smoking during pregnancy.

epidemiologic studies; missing data; multiple imputation; parametric methods

Abbreviations: BMI, body mass index; CCA, complete-case analysis; CI, confidence interval; EM, expectation-maximization;
MAR, missing at random; MCAR, missing completely at random; MCMC, Markov chain Monte Carlo; MI, multiple imputation;
MICE, multiple imputation by chained equations; MNAR, missing not at random.

Epidemiologic studies are often susceptible to missing data.
Common methods for analyzing data sets containing missing
information for some variables, such as complete-case analysis
(CCA), are often inefficient, and they can severely bias param-
eter estimates if the missingness is a function of the observed
or unobserved data. Alternatively, techniques for mitigating
potential bias from incomplete data are becoming more
commonplace in the epidemiologic literature (1, 2). Multiple
imputation (MI), an estimation approach introduced by Rubin
(3), has become one of the more popular techniques, in part due
to the improved accessibility of MI algorithms in existing soft-
ware (4, 5). In this paper, we describe the assumptions, graphi-
cal tools, and methods necessary to apply MI to an incomplete
data set. We focus on data from the Collaborative Perinatal
Project (1959–1974) (6) as introduced in a companion paper by
Perkins et al. (7), where the goal is to estimate the odds of spon-
taneous abortion associated with smoking during pregnancy.

To those unfamiliar with imputation techniques, imputing
missing values can appear to be “making up data.” Indeed, simple
imputation techniques, such as replacingmissing values of a var-
iable with the average of the observed values, can bias parameter
estimates. However, ignoring missing data by removing all ob-
servations with missing values, as in complete-case or available-
case analysis (the default strategy in software packages such as
R (R Foundation for Statistical Computing, Vienna, Austria)
and SAS (SAS Institute, Inc., Cary, North Carolina)), can induce
similarly unwelcome biases. Detail about specific scenarios in
which CCAmay produce biased estimates versus unbiased es-
timates has been provided elsewhere by Bartlett et al. (8).

MI is a simulation-based procedure which replaces each miss-
ing value with a set of m > 1 plausible values, creating m com-
plete data sets that can be individually analyzed using standard
statistical procedures. The results from the m analyses are then
combined into a final estimate that incorporates the variability of
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the data plus some additional variability acknowledging uncer-
tainty about themissing values (9).

The most challenging step of MI is arguably the imputation
stage, in which the relationship between the observed and
missing parts of the data set is modeled. Often, a parametric
model such as a multivariate normal model is chosen to repre-
sent these relationships. The joint normal model is a popular
choice because it is robust to misspecification, performing
well even when the data are not jointly normally distributed.
More discussion about advantages and disadvantages of the
joint normal model can be found elsewhere (10, 11).

An alternative to the joint normal parametric model, called
multiple imputation by chained equations (MICE) (12–14),
chooses a sequence of conditional regressions that reflect
the distribution of the missing variable (e.g., logistic for binary
data, Poisson for count data). This approach can be particularly
useful when imputing data for binary, categorical, or count vari-
ables or when a joint normal assumption may impute values
outside of the feasible range.

When these parametric imputation models are deemed inad-
equate to properly model the missing data, a nonparametric
imputation procedure can be applied, such as hot-deck or pre-
dictive mean matching (15–17), which draws imputed values
from the observed values in the data. Similar to MICE, these
nonparametric strategies are popular for data subject to con-
straints, because they ensure that the imputed values will fall
within a feasible range (18). In predictive mean-matching (15),
for instance, observations with incomplete data are “matched”
to those with complete data, and the missing values are drawn
from the possible set of values observed among the matched
complete cases. Thematching is then done based on all observed
covariates. These types of nonparametric approaches are popu-
lar options when a single imputation is needed, such as when
producing complete data sets for public use. In these scenar-
ios, ensuring that the imputed values are consistent with the
observed data is imperative, to avoid discrepancies (e.g.,
imputing a sex of “male” for someone who is pregnant). In
most epidemiologic studies, however, an MI approach is pre-
ferred over single imputation, because multiple imputations
can better reflect the additional parameter variation due to
uncertainty about the missing values.

Due to increasing availability of imputation techniques in
common software packages such as SAS and R, implementa-
tion of these strategies is fairly straightforward, so long as the
missing values depend only on the observed data. On the other
hand, if the missing data depend on unobserved variables (or,
more precisely, are not ignorable), then the underlying mecha-
nism of the missingness must also be modeled together with
the data (7). Models for imputations under nonignorable as-
sumptions include selection models (19, 20), pattern-mixture
models (21–23), and shared parameter models (24).

Our goal in this paper is to apply MI techniques to the data
sets presented in the companion paper (7), to replicate the pro-
cess an epidemiologic researcher might conduct when faced
with incomplete data. In a methodological challenge, Perkins
et al. (7) constructed 3 distinct data sets according to various
missingness mechanisms, which were masked from us and the
authors of another article (25). Our task involved applying
available methods for missing data to test their ability to pro-
vide appropriate inference under the specified assumptions.

Below, we briefly describe the data sets based on the informa-
tion that was made available. We detail our process of applying
MI to the incomplete data sets and present the results. Finally,
we discuss the assumptions, limitations, and common concerns
corresponding to application of MI and missing-data methods.
While there are many steps needed to conduct a thorough
analysis of incomplete data, we focus our analysis on the most
relevant points, and we suggest additional references for more
detail.

DATA

Data from the Collaborative Perinatal Project (6) served as
the complete data set on which all subsequent analyses were
based. The Collaborative Perinatal Project was a multisite US
cohort study of pregnant women (1959–1974) who were fol-
lowed throughout pregnancy andmultiple times after delivery.
Variables available for analysis included spontaneous abor-
tion status (“Abort”), defined as a spontaneous abortion occur-
ring at less than 20 weeks’ gestation; maternal smoking status
at enrollment (“Smoke”); maternal race, categorized as white,
black, or other (“Race”); maternal age at enrollment, in years
(“Age”); and maternal prepregnancy body mass index (BMI;
weight (kg)/height (m)2) (“BMI”). The goal of this analysis
was to determine the odds of spontaneous abortion for women
who smoked during pregnancy versus women who did not
smoke, as assessed by the baseline questionnaire.

This task would be straightforward if all data were complete
(and assuming no unmeasured confounding). However, when
the collected data are incomplete, additional stepsmust be taken
to reduce the potential for selection bias due to missing data. To
illustrate this idea, Perkins et al. (7) generated 3 incomplete data
sets based on the complete data from the Collaborative Perinatal
Project. As they described in their paper, the missingness mech-
anism for each data set was chosen to be missing completely
at random (MCAR), missing at random (MAR), or missing not
at random (MNAR). More detailed information about the
data and the missingness process is given in the companion
paper (7).

The type of missingness in a data set has implications for
the performance of missing-data methods. MI is effective at
providing (asymptotically) unbiased estimates of the regression
parameter of interest (e.g., log odds, log relative risk) when data
are MCAR or MAR, but not when data are MNAR (without
additional assumptions and modeling). In actual research set-
tings, however, this information is rarely available. While tests
for differentiating between MCAR and MAR data sets are
available (26), it is not possible to detect MNAR with the
observed data alone. To mimic this lack of knowledge, the data
sets were blinded with respect to the missingness-generating
process.

VISUALIZINGMISSINGNESS PATTERNS

Before embarking on an MI procedure, it can be useful to
visually inspect the data to better assess some of the assump-
tions necessary for MI, as well as the intended analysis—in
this case, logistic regression. It is beneficial to look at the pat-
tern of missingness, as well as histograms of the continuous
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variables, to ensure that the normality assumption is not grossly
violated. While transformations are possible for skewed vari-
ables, in many cases they are not required, sinceMI is robust to
the assumption of normality if the amount of missing infor-
mation (defined below) is low (10). Figure 1 illustrates the

missingness pattern for data set 1 in a matrix structure, where
red represent missingness and gradations of white to black
represent increasing values (shown here for data set 1). Each
line represents an individual and each column a variable, and
each subfigure is sorted by a different variable. Although it is

A)

C)

B)

D)

E) F)

Figure 1. Matrix of missingness trends in data from the Collaborative Perinatal Project, 1959–1974. Each row represents an individual observa-
tion. The data are sorted according to different variables (black race, other race, age, spontaneous abortion status (“Abort”), smoking status
(“Smoke”), and body mass index (BMI)) in order to assist with visual detection of correlation in missingness patterns, where red signifies a missing
value and gradations of white to black represent increasing values of a variable. In parts A, C, and E, data are sorted by spontaneous abortion sta-
tus, black race, and age. In parts B, D, and F, data are sorted by smoking status, other race, and BMI.
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not a formal test for determining the missingness mechanism,
this type of visual analysis can help identify potential devia-
tions from the MCAR assumption. For instance, based on this
missingness matrix, data on spontaneous abortion and BMI
tend to be missing together (lower right) and information on
spontaneous abortion tends to be missing for higher values of
smoking (upper left), suggesting that missingness may not be
completely random. The remaining panels do not appear to
provide any additional information concerning the missing-
ness relationships.

Another useful visualization is the aggregate missingness dis-
played in Figure 2 (a representation similar to that of Table 3 in
Perkins et al. (7)). Figure 2A shows the proportion of missing
values for each variable, while Figure 2B shows the missing-
data patterns (red represents missing data and blue represents
observed data), with the proportion of subjects within each pat-
tern. This figure can identify the most common pattern of miss-
ingness, which may facilitate speculation on whymissingness
may be occurring for certain patterns more frequently. The
cumulative missingness across variables illuminates the
detriment of running a CCA. There may be a small proportion
of missing values for each variable individually, but excluding
an observation due to a single missing value may drastically
reduce the number of observations available due to the
missing-data pattern. In this scenario, only 61% of subjects had

all variables observed (all blue). This type of plot can also help
identify whether the missingness pattern is monotone (i.e., there
may be ordering of the variables such that observing the jth vari-
able ensures that all variables k > j in the ordering are observed
for all j (9)). In this figure, for instance, it is not monotone
because the bottom 3 patterns indicate a necessary structure of
observed, missing, and observed, missing, which does not fit the
definition of a monotone pattern. Alternatively, a monotone
missingness pattern would display a triangular-shaped pattern.
A monotone missingness pattern can accelerate the imputa-
tion process because under a monotone structure, the Markov
chainMonte Carlo (MCMC) procedure (27) is not needed, since
there are closed forms for the posterior distributions. In the gen-
eral case of parametric MI, the MCMC procedure is necessary
for the imputation stage.

Another useful exploration of the data is to examine the
covariate distribution for complete and incomplete cases. In
Table 1, we summarize the descriptive statistics for study
participants with complete data compared with those with
incomplete data. The sample sizes for the variables in the
table differ for the incomplete cases but are the same for
the CCA, since conducting a CCA will reduce the sample
to the smallest size across variables. Additional details on
comprehensive preprocessing of data can be found else-
where (28, 29).

Figure 2. Missingness patterns in data from the Collaborative Perinatal Project, 1959–1974. A) Proportion of total missingness; B) proportion of
eachmissingness pattern. Red, missing values; blue, observed values. BMI, bodymass index.
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STATISTICALMETHODS

Generally, MI consists of 3 steps. First,m imputed data sets
are generated based on the chosen imputation strategy (e.g.,
normal model, MICE, predictive mean matching). Next, each
imputed data set (now a complete data set) is analyzed based
on the desired statistical model, such as logistic regression.
Finally, the results from each of the m imputed data sets are
combined to obtain a final estimate of the parameter of interest
(e.g., log odds ratio) and its standard error.

Imputation step

The goal of MI is to estimate parameters of interest based
on the full data set (Y), which might not be fully observed.
Here Y is shorthand notation for the entire set of data includ-
ing the outcome, the exposure of interest, confounders, and
any other auxiliary variables. When data are incomplete, the
imputation step leverages existing relationships between
variables in the observed data (Yobs), to impute the missing
data (Ymis), where Y = (Ymis, Yobs). Missing values are
imputed from the conditional distribution of the missing
data given the observed data. This first step is often the most
difficult, because it requires specification of an imputation

model, which includes specification of the conditional distri-
bution for each variable. If the number of variables in the data
set is not prohibitive, all of them could be used in the imputa-
tion model. Alternatively, wewould prioritize all variables related
to the primary and secondary analyses in addition to variables
related to the missingness.

For this analysis, we focus on parametric MI based on a
multivariate joint normal distribution. Under this assumption
of joint normality, drawing from the conditional distribution
of the missing data given the observed data is equivalent to
drawing from a joint normal distribution. In this data set, it is
clear that the assumption of joint normality does not hold
(e.g., spontaneous abortion is a binary variable). However,
MI is robust to this assumption when the data set is large and
the rates of missing information are small (10). For these analy-
ses, imputed binary variables were rounded to 0 or 1 (based on
a cutoff of 0.5) after imputation.

When choosing which variables to include in each imputa-
tion model, it is important that the imputation models contain at
least all the variables in the analysis model, and preferably more
(30). Although not available for this exercise, additional auxil-
iary variables that are predictive of the missing data can inform
the imputation procedure even when they are not considered as
predictors in the analysis model. Since we do not know the true

Table 1. Characteristics of Complete and Incomplete Cases in Each of 3 Data Sets From the Collaborative Perinatal Project, 1959–1974a

Variable
Incomplete Cases Complete Cases

No. of Persons Mean (SD) Median No. of Persons Mean (SD) Median

Data set 1

Black raceb 4,425 0.31 (0.46) 0 6,948 0.30 (0.46) 0

Other raceb 4,425 0.06 (0.24) 0 6,948 0.06 (0.24) 0

Age, years 4,425 25.73 (6.00) 25.0 6,948 24.87 (5.75) 24.0

Abortion 1,819 0.04 (0.21) 0 6,948 0.02 (0.14) 0

Smoking 1,995 0.26 (0.44) 0 6,948 0.26 (0.44) 0

BMIc 1,871 22.88 (4.42) 21.9 6,948 22.45 (3.92) 22.0

Data set 2

Black raceb 4,285 0.31 (0.46) 0 7,088 0.30 (0.46) 0

Other raceb 4,285 0.06 (0.24) 0 7,088 0.06 (0.24) 0

Age, years 4,285 25.12 (5.85) 24.0 7,088 25.26 (5.87) 24.0

Abortion 1,748 0.04 (0.20) 0 7,088 0.03 (0.18) 0

Smoking 1,894 0.24 (0.43) 0 7,088 0.26 (0.44) 0

BMI 1,821 22.50 (3.97) 21.6 7,088 22.61 (4.14) 21.8

Data set 3

Black raceb 5,361 0.32 (0.47) 0 6,012 0.30 (0.46) 0

Other raceb 5,361 0.06 (0.24) 0 6,012 0.06 (0.24) 0

Age, years 5,361 25.21 (5.83) 24.0 6,012 25.2 (5.89) 24.0

Abortion 2,283 0.10 (0.30) 0 6,012 0.01 (0.11) 0

Smoking 2,017 0.26 (0.44) 0 6,012 0.28 (0.45) 0

BMI 2,515 22.68 (3.98) 21.7 6,012 22.51 (3.98) 21.7

Abbreviations: BMI, bodymass index; SD, standard deviation.
a Data were obtained fromPerkins et al. (7). Values are proportions unless otherwise indicated.
b Represents a complete variable.
c Weight (kg)/height (m)2.
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missingness mechanism, we use the same model across the 3
data sets, expecting (asymptotically) unbiased estimates for the
MAR andMCAR data sets, and perhaps reduced bias (relative
to the CCA) for theMNAR data set. Sensitivity analyses using
different imputation models or procedures that consider the
missingness process unknown can help assess the robustness of
the chosen imputation procedure (31, 32).

The imputation process for our example is composed of 2
distinct steps. First, an expectation-maximization (EM) algo-
rithm (33) is applied to calculate starting values for the mean
of each variable, as well as a covariance matrix characteriz-
ing the correlations between the variables in the assumed
joint normal distribution. Although this first step could be
bypassed by choosing random starting values for the mean
and variance matrix, the starting values calculated by the EM
algorithm can improve convergence of the second compo-
nent of the MI. In addition, the EM algorithm provides infor-
mation about the convergence of the procedure, which can
be used to estimate the convergence speed of the subsequent
MCMC procedure. This step can be achieved by specifying
the “EM” statement in PROC MI in SAS, or in R by using the
“norm” package (34) (see theWebAppendix, available at https://
academic.oup.com/aje, for example code).

The second step of the imputation procedure applies an
MCMC process using a data augmentation method, prior to
imputing the m values for each missing value. In the MCMC
procedure, we simulate draws ofY(mis), μ, and Σ from their joint
posterior distribution given Y(obs). Given the current random
draws Y(t)

(mis), μ(t), and Σ(t), we first draw, for instance, the
“smoke” variable given all observed data and the parameters
(μ andΣ) using the conditional normal distribution with mean

( ) = γ̂ + γ̂ + γ̂
+ γ̂ + γ̂ + γ̂

E Smoke Race: black Race: other

Age BMI Abort,
0 1 3

4 5 6

where γ̂ is initially estimated via the EM step and then itera-
tively estimated in the imputation step (I-step) of data augmenta-
tion. We then estimate the parameters of the normal distribution
(μ and Σ) in the posterior step (P-step). Repeating the I-step and
P-step many times generates a sequence of random draws from
the data and its parameters. This data augmentation portion of
the imputation step can be specified using the NITER option in
theMCMC statement of PROCMI or using the “norm” package
in R (34). In all analyses, we used the default normal-inverse
Wishart prior distribution. Each run of the data augmentation
algorithm produces a single imputed data set for use in the stan-
dard statistical analysis. This entire imputation procedure, includ-
ing the EM step and the data augmentation step, is performed m
times to produce them imputed data sets. More details about the
imputation process can be found elsewhere (4, 9, 10, 28, 29).

Analysismodel

Once them imputed data sets have been created, the analy-
sis step is straightforward. The model is the same model we
would use if we had complete data. In this case, the model of
interest is a logistic regression model with spontaneous abor-
tion as the binary outcome and smoking status as the expo-
sure of interest, adjusting for race, age, and BMI:

( ( = )) = β + β + β
+ β + β
+ β

PLogit Abort 1 Smoke Race: black

Race: other Age

BMI.

0 1 2

3 4

5

Our main interest is the coefficient corresponding to the
“smoke” variable (β1). This model is applied to each of the
m imputed (completed) data sets separately. Estimates and cor-
responding standard errors are stored to later be combined into a
final result.

Combining results

Since we imputed the data m times (in our case, m = 100),
we get 100 sets of estimates and their variances. We combine
these results using Rubin’s rules (3) as follows: Let Q be the
population quantity of interest and Q̂ be its estimate, with
estimated varianceU. In the absence ofYmis, we have random
versions or imputations, …( ) ( )Y Y, , m

mis
1

mis , fromwhich we calcu-

late the imputed-data estimates ˆ = ˆ ( )( ) ( )Q Q Y Y,
j j

obs mis and their
estimated variances = ( )( ) ( )U U Y Y,j j

obs mis , = …j m1, , . The

overall estimate of Q is ¯ = ∑ ˆ− ( )
Q m Q

j1 . To obtain a standard
error for Q̄, we calculate the between-imputation variance

= ( − ) ∑ ( ˆ − ¯)− ( )
B m Q Q1

j1 2 and the within-imputation var-
iance ¯ = ∑− ( )U m U j1 . B is essentially the variance of the 100
log odds ratio estimates, while U is the average of the 100
estimated variances. The estimated total variance is then

= ( + ) + ¯−T m B U1 1 , and tests and confidence intervals
are based on a Student’s t approximation ( ¯ − ) ~Q Q T t/ v
with degrees of freedom

=
( − )

( + )−
−

v
m

m B

T

1

1

1
.1

1 2⎡
⎣⎢

⎤
⎦⎥

Adjustments to the degrees of freedom are presented else-
where (35–37) and are compared by Wagstaff and Harel (38).
These combining equations and degrees of freedom are com-
puted automatically in most statistical packages (39–41).

Another product of the MI combining rules is the estimate of
the rate of missing information due to Ymis, λ̂ = ( ¯ + )B U B/ .
This rate reflects the impact of the missingness on inference for
a particular analytical model and does not tend to decrease as
the number of imputations increases (3). A large value of this
parameter indicates that the missing values contain a lot of
information about the parameter of interest. Even if a variable
has no missing values, its rate of missing information could still
be nonzero, due to correlations with other predictors. Additional
information about the rates of missing information and some
extensions can be found elsewhere (42–44).

Assumptions

MI is a parametric procedure, since we make distributional
assumptions about the data, similar to maximum likelihood
(9) or Bayesian analysis (27). In our case, we assume that the
data have a joint normal distribution and that the parameter
of interest has a normal distribution, which holds in our case
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because we are interested in a regression coefficient, which
is approximately normal in large samples (9).

Rubin (45) introduced concepts regarding how to find the
minimum condition under which the missingness process does
not need to be modeled (in likelihood or Bayes analyses)—in
other words, when standard MI is valid. For that to occur, 2
assumptions must hold. First, the MAR or MCAR assump-
tions must be valid. Second, the parameter estimates used
for imputation and those estimated in the analysis model must
be independent (distinct). Together, these 2 assumptions imply
ignorability, whichmeans that themissingnessmodel necessary
under MNAR can be ignored and the observed data will be
sufficient.

DATAANALYSES: RESULTS

For each of the example data sets, the goal is to estimate the
log odds ratio of the association between maternal smoking
status and spontaneous abortion. In each analysis, we apply
the same imputation procedures as outlined previously, where
100 imputed data sets were produced for each analysis.

Table 2 provides the summarized results from the 3 data
sets, comparing CCAwith MI after combining results from a

separate logistic regression on each of the 100 imputed data sets
into a single point estimate and confidence interval. Estimates
of the log odds ratio, its standard deviation, its 95% confidence
interval, and rates of missing information (λ) are reported.

Based on these results, the estimated odds of spontaneous
abortion for women who smoke during pregnancy compared
with those who do not are different depending on the ana-
lyzed data set. The log odds ratio estimates are 0.262 (95%
confidence interval (CI): −0.05, 0.57) in data set 1, 0.311
(95% CI: 0.05, 0.57) in data set 2, and 0.133 (95% CI:
−0.21, 0.47) in data set 3. Looking at the rates of missing
information (Table 2), there is 35% missing information in
data sets 1 and 3 but only 14% missing information in data
set 2. It is important to remember that approximately 20% of
observations on smoking are missing. This suggests that the
model has more difficulty estimating the parameters in data
sets 1 and 3 than in data set 2. These results emphasize the
fact that inference based on multiply imputed data sets de-
pends on the underlying missing-data mechanism.

Results from data set 2 indicate that women who smoke dur-
ing pregnancy have 36% higher odds of spontaneous abortion
(exp(0.311) = 1.36) than women who do not smoke during
pregnancy. Results from data sets 1 and 3 showed similarly
increased odds of spontaneous abortion among women who

Table 2. Log Odds Ratio Estimates for Risk of Spontaneous Abortion According to Maternal Smoking During Pregnancy in Analyses Using
Complete Cases andMultiple Imputation, Collaborative Perinatal Project, 1959–1974a

Variable
Complete Case Multiple Imputation

Estimate SE 95%CI Estimate SE 95%CI λ

Data set 1

Intercept −5.696 0.695 −7.06,−4.33 −5.201 0.390 −5.965,−4.437 0.157

Smoking −0.853 0.401 −1.64,−0.07 0.262 0.158 −0.048, 0.571 0.348

Black race 0.565 0.233 0.11, 1.02 0.259 0.131 0.003, 0.515 0.059

Other race −0.173 0.528 −1.21, 0.86 0.401 0.231 −0.052, 0.853 0.060

Age, years 0.052 0.018 0.02, 0.09 0.047 0.010 0.028, 0.066 0.083

BMIb −0.007 0.028 −0.06, 0.05 0.011 0.016 −0.021, 0.043 0.287

Data set 2

Intercept −4.954 0.403 −5.74,−4.16 −5.109 0.372 −5.838,−4.381 0.090

Smoking 0.331 0.140 0.06, 0.60 0.311 0.133 0.051, 0.571 0.144

Black race 0.319 0.140 0.04, 0.59 0.357 0.126 0.11, 0.604 0.050

Other race 0.338 0.258 −0.17, 0.84 0.346 0.232 −0.109, 0.801 0.044

Age 0.072 0.010 0.05, 0.09 0.064 0.009 0.046, 0.083 0.060

BMI −0.018 0.016 −0.05, 0.01 −0.013 0.015 −0.043, 0.016 0.123

Data set 3

Intercept −5.709 0.589 −6.86,−4.55 −5.208 0.430 −6.051,−4.364 0.187

Smoking −0.069 0.265 −0.59, 0.45 0.133 0.172 −0.205, 0.471 0.350

Black race 0.390 0.210 −0.02, 0.80 0.233 0.141 −0.044, 0.509 0.053

Other race 0.649 0.325 0.01, 1.29 0.424 0.241 −0.048, 0.896 0.043

Age 0.057 0.015 0.03, 0.09 0.056 0.010 0.036, 0.077 0.072

BMI 0.004 0.023 −0.04, 0.05 −0.005 0.018 −0.041, 0.031 0.295

Abbreviations: BMI, bodymass index; CI, confidence interval; SE, standard error.
a Data were obtained fromPerkins et al. (7).
b Weight (kg)/height (m)2.

Am J Epidemiol. 2018;187(3):576–584

582 Harel et al.



smoked during pregnancy, although this association was
not statistically significant for these data sets. Note that
under a CCA, the estimated coefficient can be almost entirely
an artifact of the missing-data mechanism. For instance, in
data set 1, the odds of spontaneous abortion actually appear
to be lower for women who smoke during pregnancy. This
result in particular highlights the importance of moving
away from CCAs and towards principled methods for deal-
ing with missing data, such as MI.

DISCUSSION

In this article, we treated all 3 data sets in the same man-
ner. In practice, a researcher will have only 1 data set and
may follow the steps above to analyze it using MI. While the
variation of MI chosen to analyze a data set may not alter, it
can be helpful to evaluate the missingness distribution and
make the most reasonable assumption (MCAR, MAR, or
MNAR). In particular, if data may be MNAR, we highly rec-
ommend sensitivity analyses to evaluate the impact of these
assumptions (46).

Several common concerns remainwhen applyingMI tomiss-
ing data. For instance, one issue concerns how much missing-
ness is too much, or at what point MI fails. Another related
problem is the number of imputations needed (which increases
as the amount of missing information increases). Unfortu-
nately, there is no clear threshold that is generalizable across
all settings, although some discussions on the topic are avail-
able (28, 42–44, 47, 48).

Another issue is whether to choose the MICE or multivari-
ate normal approach.While robust to nonnormality, multivari-
ate normal imputation is susceptible to imputing values that
may not lie within the support of the variable being imputed
(49). For instance, a binary variable may be imputed to have a
value of 0.233 or −0.567. If this is the case for exposure vari-
ables, this discrepancy may not be a concern (50). However,
for an outcome variable, it may be necessary to retain the
original format (e.g., binary). In that case, MICE works well to
retain missing variables on their original scale. However, since
MICE imputations are not necessarily proper (28), rounding the
imputed outcome and using the multivariate normal approach
may be preferable when the data set is large and the rates of
missing information are small (10). On the other hand, when
imputing interaction terms, it is recommended to form the inter-
action term and then impute it directly, even if the resulting im-
putations do not match the multiple of the imputed individual
terms (51).

When imputing longitudinal data or survival data, methods
exist but can be more complicated. For longitudinal data, one
strategy is to restructure the data into a wide format and run
standard MI. Another approach is to use mixed-effect models
using the PAN library in R, which was built for panel data.

In this article, we assumed that our imputation model was
proper, meaning that the distribution from which the missing
values were drawn was equivalent to a Bayesian posterior dis-
tribution (3). We also assumed that our model was congenial
to the analysis model, such that the same variables in the anal-
ysis and imputation models were used (52). These assump-
tions are preferred but not required; in particular, one of the

main advantages of MI over other missing-data procedures is
the ability to use auxiliary variables in the imputationmodel that
are related to the missingness process but are not needed for the
analysismodel.More discussion of the impact of proper imputa-
tions and congeniality can be found elsewhere (4, 53).

MI is a parametric approach to handling incomplete data
which provides consistent estimates of parameters of interest
under the ignorability assumptions. The evidence supporting
the advantages of imputation procedures like MI is growing.
Although CCAmay appear to be the most straightforward, the
possibility of bias due to informative missingness and possible
remedies should be explored.With the increasing availability of
imputation procedures in standard software packages, simple
CCA should no longer be the norm for epidemiologic research.
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