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Abstract

Motivation: Somatic DNA recombination, the hallmark of vertebrate adaptive immunity, has the

potential to generate a vast diversity of antigen receptor sequences. How this diversity captures

antigen specificity remains incompletely understood. In this study we use high throughput

sequencing to compare the global changes in T cell receptor b chain complementarity determining

region 3 (CDR3b) sequences following immunization with ovalbumin administered with complete

Freund’s adjuvant (CFA) or CFA alone.

Results: The CDR3b sequences were deconstructed into short stretches of overlapping contiguous

amino acids. The motifs were ranked according to a one-dimensional Bayesian classifier score

comparing their frequency in the repertoires of the two immunization classes. The top ranking

motifs were selected and used to create feature vectors which were used to train a support vector

machine. The support vector machine achieved high classification scores in a leave-one-out valid-

ation test reaching>90% in some cases.

Summary: The study describes a novel two-stage classification strategy combining a one-

dimensional Bayesian classifier with a support vector machine. Using this approach we demon-

strate that the frequency of a small number of linear motifs three amino acids in length can accur-

ately identify a CD4 T cell response to ovalbumin against a background response to the complex

mixture of antigens which characterize Complete Freund’s Adjuvant.

Availability and implementation: The sequence data is available at www.ncbi.nlm.nih.gov/sra/?

term1=4SRP075893. The Decombinator package is available at github.com/innate2adaptive/

Decombinator. The R package e1071 is available at the CRAN repository https://cran.r-project.org/

web/packages/e1071/index.html.

Contact: b.chain@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

VC The Author 2017. Published by Oxford University Press. 951

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 33(7), 2017, 951–955

doi: 10.1093/bioinformatics/btw771

Advance Access Publication Date: 5 January 2017

Discovery Note

https://www.ncbi.nlm.nih.gov/sra/?term&frac14;SRP075893
https://www.ncbi.nlm.nih.gov/sra/?term&frac14;SRP075893
https://www.ncbi.nlm.nih.gov/sra/?term&frac14;SRP075893
https://github.com/innate2adaptive/Decombinator
https://github.com/innate2adaptive/Decombinator
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw771/-/DC1
http://www.oxfordjournals.org/


1 Introduction

We have previously used short read parallel high-throughput

sequencing (HTS) to estimate T cell receptor b transcript frequencies

and sharing (Madi et al., 2014; Ndifon et al., 2012), and to explore

the global changes in the CD4þT cell receptor repertoire following

immunization of mice (Thomas et al., 2014). The latter study

focused on local features of protein sequence within the TCRb

CDR3 loop, which interacts directly with peptide antigen lying

within the MHC groove. The TCRb CDR3 encodes the largest

amount of sequence diversity, coded for by the combination of the

ends of the V and J genes, D regions, and the DJ and VD junctions

that include random nucleotide insertions. We therefore mapped the

sets of TCRb CDR3 sequences from each animal to a lower dimen-

sional feature space indexed by short stretches of contiguous amino

acids (typically triplets). Classical regularized machine learning

algorithms (e.g. Support Vector Machines) were then able to distin-

guish between TCR repertoires of unimmunized mice and mice

immunized with an extract of Mycobacterium tuberculosis

(Complete Freund’s Adjuvant, CFA) within the lower dimensional

transformed feature space. These studies suggested that short amino

acid motifs within the TCRb CDR3 region might contribute to

defining TCR specificity.

CFA contains a complicated mixture of protein and non-protein

antigens, and causes more widespread perturbations of the reper-

toire than single protein antigens. However, purified protein anti-

gens are poorly immunogenic except when given in the context of

adjuvants, which are believed to provide a danger signal which

stimulates innate immunity and hence drives effective antigen pres-

entation via T cell co-stimulation (Ibrahim et al., 1995; Janeway,

1989). We therefore wished to extend our investigation to analyze

the response to a well-studied model antigen, ovalbumin (OVA),

when delivered in the context of CFA.

The strategy adopted previously to classify between

unimmunized and immunized mice based on the frequency of short

amino acid motifs could not effectively distinguish between mice

given adjuvant with or without an additional protein antigen. This

stems from the relatively small change in repertoire composition

that is generated by a single antigen, which is not captured by our

previous approach. However, introducing an additional prior step

of feature selection using a 1-dimensional linear Bayes function in

order to filter out noise, and further reduce dimensionality, proved

successful. This significantly extends the generality of our previous

finding by demonstrating that the frequency of a small number of

linear motifs three amino acids in length can accurately identify a

CD4 T cell response to ovalbumin against a background response to

the complex mixture of antigens which are found in CFA. Small sets

of conserved amino acid strings may contribute antigen specificity

while allowing sufficient degeneracy to mount a robust immune re-

sponse in all individuals even in the context of extreme sequence

variability.

2 Materials and methods

Sample collection and sequencing 9 C57BL/6 mice were immunized

with CFA, and 9 mice were immunized with an emulsion of CFA

and OVA (Sigma, Poole, UK) in phosphate buffered saline (PBS)

(100mg/mouse). After immunization, mice were sacrificed and

spleens collected after 5, 14 or 60 days. Mice taken down at 60 days

were given a booster of Incomplete Freund’s Adjuvant (mineral oil)

emulsified with or without OVA at day 14. CD4þT cells were iso-

lated from spleens and TCRb chains from these cells were sequenced

via the protocol described in (Ndifon et al., 2012). Briefly, total

RNA was reverse transcribed with a primer specific to the TCRb

constant region, and resulting cDNA was amplified via PCR using a

set of TCRVb primers. Illumina adaptors were ligated to the prod-

uct, including indexes to identify each sample, and the sequencing

was performed using Genome Analyzer II which generates forward

and reverse 50 base pair reads. The sequence files are available at

http://www.ncbi.nlm.nih.gov/sra/?term¼SRP075893. The number

of total and unique sequences from each repertoire is shown in

Supplementary Data Figure S1.

Data preprocessing Raw sequence data was analyzed and error

corrected using a short read modification of Decombinator as

described in detail previously (Thomas et al., 2014).

Sequence features Each TCRb CDR3 sequence was mapped to a

numeric string feature. The string feature is the number of times

(term frequency) each p length substring (typically triplets, p¼3,

number of features¼203¼8000) appears in a set of TCRb CDR3

sequences (i.e. a repertoire). In order to normalize for the size of the

datasets from each mouse, 11 equal size sets of 100 000 TCRb

CDR3s were randomly selected from each mouse. The analysis was

performed both on data in which multiple identical CDR3s were re-

tained, and on data in which each distinct CDR3 was only counted

once. Similar qualitative results were obtained, but the results shown

below is on data in which relative abundance information was

retained.

One dimensional Bayesian classifier (1-DBC). 1-DBC is an ap-

plication of Bayes’ rule to compute the ratio of the log probabilities

of a feature belonging to either of two classes. The frequency of each

feature in the two classes is modelled using Gaussian distributions

based on estimates of the means and the standard deviations of the

frequency with which the feature is found in each class.

DBayes xð Þ ¼ log
P C1ð Þ
P C2ð Þ �
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where P(Ci) is the relative frequency of the feature x in the two

populations, and mi and ri are the parameters of the Gaussians fitted

for each class. If DBayes (x)>0, feature x is classified into class C1,

and if DBayes (x)<0, it is classified into class C2.

Using a leave-one-out validation strategy, we evaluated the clas-

sification accuracy of each amino acid motif in distinguishing the

two classes of repertoire, those from mice immunized with CFA

alone, or those from mice immunized with CFA and ovalbumin.

This classification accuracy was used as a score with which to rank

all the motifs.

Support vector machines (SVM). SVM algorithms seek a linear

hyperplane that separates observations from two (or more) distinct

classes. The separating hyperplane is found such that the margin be-

tween the hyperplane and the nearest observations from the training

data from each class is maximized, and the observations that define

the size of the margin are termed support vectors, lending the

method its name. Soft-margin optimization is carried out via the

introduction of slack variables (Cortes and Vapnik, 1995) to deter-

mine the optimal hyperplane for non-linearly separable data. The

data can also be transformed into a higher dimensional space, where

linear separation may be possible, using the so-called kernel trick

(reviewed in (Cristianini and Shawe-Taylor, 2000)). We have chosen

SVM since it regularizes the weight vector minimizing a combin-

ation of its 2-norm with the chosen loss function (in this case the

hinge loss). This ensures that SVM can perform well even when the

feature space is very high dimensional. SVM were implemented
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using the R ‘e1071’ (Cristianini and Shawe-Taylor, 2000) package

using linear or radial basis kernels.

3 Results

We analyzed TCRb CDR3 sequences from a total of 18 mice,

immunized with CFA emulsified with either PBS only (9 mice) or

OVA dissolved in PBS (9 mice). Following from our previous work

(Thomas et al., 2014) we created feature vectors from the frequency

of single amino acids (vector of length 20), duplets (all combinations

of two consecutive amino acids, vector of length 400) or triplets (all

combinations of three consecutive amino acids, vector of length

8000). SVM (we used both linear and radial basis kernels) were then

trained on these feature vectors as described in (Thomas et al.,

2014). Since the number of samples available was small, we tested

classification accuracy using a leave-one-out approach and com-

bined all the time points. However, the classification efficiencies

achieved in each case were poor (i.e. not much better than random).

Similar poor results were achieved using frequencies of V or J re-

gions, or a combination thereof.

In order to improve SVM performance, we introduced a prior

feature selection step to limit the number of features used, and to po-

tentially reduce noise. In order to avoid any possibility of including

training data at the test step we used a double leave-one-out strat-

egy. One repertoire sample was first set aside as the eventual SVM

test sample (we refer to this as the ‘outer’ leave-one-out repertoire).

Then each remaining repertoire sample was excluded in turn (the

‘inner’ leave-one-out repertoire) and the remaining (n-2) samples

were used to calculate the means and variance of the frequency of

each p-tuplet in the two classes, CFA alone and CFA plus OVA.

These parameters were used to calculate DBayes (x) for each p-

tuplet and hence classify the ‘inner’ left-out repertoire in turn. The

accuracy of the p-tuplet, tested for its ability to correctly classify all

‘inner’ leave-one-out repertoires, constituted the 1-DBC score. Since

11 subsamples were used from each repertoire, and each subsample

created a slightly different set of feature scores, we averaged the

scores of each feature across all subsamples. The ranked average

1-DBC score for p¼2 is plotted in Figure 1a. Similar results were

obtained for p¼1, p¼3, and p¼4.

We then selected varying numbers of features in decreasing

ranked order of 1-DBC score to train an SVM using all samples ex-

cept the original ‘outer’ leave-one-out sample. Finally, this SVM was

used to classify the original ‘outer’ test sample. The results for p¼1,

2, 3 and 4 are shown in Figure 1b. The qualitative pattern observed

is the same for all size p-tuplets. The classification accuracy rises ini-

tially with increasing number of features. However, the accuracy

quickly reaches a maximum, and then decreases as the number of

features increases. The best overall accuracy is seen with triplets as

observed previously (Thomas et al., 2014), and further analysis

focuses on these motifs.

The optimum number of features observed in Figure 1b is deter-

mined post facto and cannot therefore be used to determine the

number of features to use a priori. In order to select the number of

features to use independently of the classification results obtained,

we took advantage of the pronounced elbow seen within the first 20

features in the feature score plots (Fig. 1a). We determined the pos-

ition of this elbow by visual inspection, and then set the number of

features used in the SVM to this value. The results obtained are

shown in Table 1. In general, classification results for each reper-

toire were quite stable to sampling (i.e. classification accuracy was 0

or 100%). One repertoire was consistently misclassified irrespective

of method used.

We wanted to determine whether the increased classification ac-

curacy we observed was simply a function of using a smaller number

of features, or whether the 1-DBC score in fact selected more in-

formative features. We therefore compared the classification effi-

ciency observed using different numbers of features selected by their

1-DBC score, with the results obtained using 100 repeated random

samples of the same number of features. As shown in Figure 1c (and

Supplementary Data Fig. S2), using the features selected by 1-DBC

score reached>90% accuracy, outperforming the random sets of

features for small numbers of features (up to about 50). For a larger

number of features accuracy declines to the average accuracy

observed using randomly selected features, which was around 60%.

We wished to compare the performance of our repertoire classifi-

cation with previous published methods. To our knowledge, our

previous publication (Thomas et al., 2014) is the only one which

seeks to classify TCR repertoires directly. Using the methods used in

this previous study (initial clustering of triplets using Kidera factors,

followed by an SVM) and the same data as analyzed in Table 1, we

obtained an accuracy of 77% (cf 94% in Table1). An SVM using all

8000 triplet features (i.e. with no preclustering) performed worse,

with an accuracy of 67%. Finally, we used Random Forest classifi-

cation, which has been shown to perform well on high dimensional

Fig. 1. (a) The ranked 1-DBC classification efficiency for all amino acid du-

plets. Each line represents the trajectory for a different ‘outer’ leave-one-out

selection. (b) Classification accuracy using an SVM trained on increasing

numbers of p-tuples. The p-tuples were selected on the basis of decreasing

classification accuracy in the 1-DBC. (c) Comparison of (b) to classification ac-

curacy using an SVM trained on increasing numbers of randomly selected

triplets (box and whiskers plot shows median, inter-quartile range and range

for 100 different random samples). Solid black line shows means of random

features. Red line shows the performance of triplets selected on the basis of

decreasing classification accuracy in the 1-DBC (as in b). (d) The relative pos-

itional distribution of the top twelve ranked triplets (by 1-DBC classification

score) along the CDR3. The histograms show the percent times that each trip-

let starts at that relative position, using a sample of TCRb CDR3s from all rep-

ertoires combined. Since the TCRb CDR3s are of different length, the starting

position of each feature is calculated as a proportion of the CDR3 length
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datasets where overfitting is often a problem. Using the R package

randomForest we obtained a maximum accuracy of 67%. Thus the

combination of feature selection and SVM outperforms several cur-

rent state-of-the-art high dimensional classification methods on this

dataset.

The twelve triplets with the maximum 1-DBC score are exam-

ined further in Figure 1d. Since the CDR3s are of different length,

the starting position of each feature is calculated as a proportion of

the CDR3 length. Four of the 12 triplets were found predominantly

at the beginning or end of the TCRb CDR3 sequence, while 8 out of

12 of the triplets were found in the central region of the TCRb

CDR3. The 4 triplets at the extremes of the CDR3s shared sequence

identity with the ends of germline V or J genes. However, no individ-

ual V or J genes were enriched in OVA or CFA repertoires

(Supplementary Data Fig. S3).

4. Discussion

The computational pipeline described above tackles a challenging

task, namely to distinguish between the global TCR repertoires of

mice immunized with CFA alone and CFA plus OVA. CFA contains

many different proteins, and contains a large number of possible T

cell epitopes. In contrast, ovalbumin is a single protein which con-

tains at most two or three I-A restricted CD4 T cell epitopes

(Shimonkevitz et al., 1983). Furthermore, the enormous size of the

potential T cell repertoire and the complex non-germ line muta-

tional process which creates this repertoire means that even genetic-

ally identical mice will contain largely disparate sets of receptors

(Madi et al., 2014; Murugan et al., 2012). Despite this the pipeline

was able to demonstrate good classification accuracy, by consider-

ing not individual TCRs or TCRb CDR3s, but by analyzing the fre-

quency of very short amino acid motifs or even the usage of

individual amino acids within the repertoire taken as a whole.

The key to improving classification accuracy was the introduc-

tion of a prior feature selection step, before employing a more clas-

sical high dimensional classification tool such as SVM. The SVM

algorithm contains a 2-norm regularization element, which in theory

should limit the overfitting due to the high dimensionality of the fea-

ture sets used. The SVM alone, however, gave poor performance.

The Bayes classifier used on single features similarly could not ac-

curately classify the repertoires, since individual features provide

very weak learners, and makes the assumption of a Gaussian distri-

bution for feature frequencies. Nevertheless the classifier works well

as a kind of filter, separating ‘useful’ from ‘noisy’ features. Prior fea-

ture selection presumably reduces the noise and forces the SVM clas-

sifier to focus on those features with the maximum information

content.

In agreement with our previous study, triplets out-performed

both shorter (singlets or duplets) or longer (quadruplets) features.

Interestingly, some triplets with the highest scores were predomin-

antly located towards the C or N terminals of the TCRb CDR3

loops. These regions are, at least in part, often coded by the ends of

the genomic V or J sequences that survived exonucleolytic processes

during recombination. This observation is therefore in agreement

with many reports that specific V regions are amplified selectively in

certain antigen specific responses e.g. (Davis et al., 1995; Kedzierska

et al., 2004). However, at least in this model, the frequencies of V

and J alone were not sufficient for classification. Thus more complex

parameters, such as combinations of V and J usage or convergent

evolution of CDR3 sequences (Madi et al., 2014; Miles et al., 2011;

Quigley et al., 2010) must contribute to antigen specificity.

Our results demonstrate that specific antigen immunization,

even in the context of co-exposure to complex other antigen mix-

tures, gives rise to changes in TCR repertoire which are coherent,

conserved and recognizable. The success of classification methods

using fairly simple low level features of protein sequence offer hope-

ful indications for applying this sort of approach to analysis of clin-

ical samples for the prognosis, diagnosis or stratification of patients

in the context of both infectious and non-infectious (e.g. cancer,

autoimmunity, transplantation) disease.

Funding

Mattia Cinelli is supported by a studentship from Microsoft Research. This

research was funded by studentships from the UK MRC and the EPSRC and

supported by the National Institute for Health Research UCL Hospitals

Biomedical Research Centre. This research was supported by grants from the

Minerva Foundation with funding from the Federal German Ministry for

Education and Research, the I-CORE Program of the Planning and Budgeting

Committee and the Israel Science Foundation.

Conflict of Interest: none declared.

References

Cortes,C. and Vapnik,V. (1995) Support-vector networks. Mach. Learn., 20,

273–297.

Cristianini,N. and Shawe-Taylor,J. (2000) Support Vector Machines.

Cambridge University Press, Cambridge.

Davis,M.M. et al. (1995) T-cell receptor V-region usage and antigen specifi-

city. The cytochrome c model system. Ann. N. Y. Acad. Sci., 756, 1–11.

Table 1. The classification accuracy of combined 1-BDC and SVM

on all repertoires analyzed1

Singles Duplets Triplets Quadruplets

Day5_1 100 100 100 100 OVA_1

Day5_2 100 100 100 100 OVA_2

Day5_3 90.9 100 100 100 OVA_3

Day14_1 100 100 100 100 OVA_4

Day14_2 100 100 100 100 OVA_5

Day14_3 100 100 63.6 60 OVA_6

Day60_1_1 100 100 100 0 OVA_7

Day60_1_2 81.81 100 100 100 OVA_8

Day60_1_3 100 100 100 100 OVA_9

Day5_4 100 100 100 60 CFA_1

Day5_5 100 18.1 100 100 CFA_2

Day5_6 100 100 100 60 CFA_3

Day14_4 0 0 0 20 CFA_4

Day14_5 100 100 100 100 CFA_5

Day14_6 90.9 100 100 60 CFA_6

Day60_1_4 0 0 72.7 0 CFA_7

Day60_1_5 100 100 100 100 CFA_8

Day60_1_6 0 90.9 100 100 CFA_9

Accuracy

(by majority vote)

83 89 94 83

# of features 17 17 12 11

1The results of the SVM classifier using the top features ranked according

to 1-DBC score. The number of features used is shown in the last row. Each

row shows the % correct classification for one left-out repertoire, using 11

samples of 100 000 TCRb CDR3s from that repertoire as test (solid back-

ground indicates misclassified cases). The penultimate row shows the overall

classification efficiency, where the classification of each mouse is made by ma-

jority vote.

954 M.Cinelli et al.

Deleted Text:  
Deleted Text:  
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw771/-/DC1
Deleted Text: s
Deleted Text: ; Madi <italic>et<?A3B2 show $146#?>al.</italic>, 2014
Deleted Text: s
Deleted Text: s
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: ; Miles <italic>et<?A3B2 show $146#?>al.</italic>, 2011
Deleted Text: s
Deleted Text: s


Ibrahim,M. a. et al. (1995) The injured cell: the role of the dendritic cell system

as a sentinel receptor pathway. Immunol. Today, 16, 181–186.

Janeway,C.A. (1989) Approaching the asymptote? Evolution and revolution

in immunology. Cold Spring Harb. Symp. Quant. Biol., 54, 1–13.

Kedzierska,K. et al. (2004) Conserved T cell receptor usage in primary and re-

call responses to an immunodominant influenza virus nucleoprotein epitope.

Proc. Natl. Acad. Sci. U. S. A., 101, 4942–4947.

Madi,A. et al. (2014) T-cell receptor repertoires share a restricted set of public

and abundant CDR3 sequences that are associated with self-related immun-

ity. Genome Res., 24, 1603–1612.

Miles,J.J. et al. (2011) Bias in the ab T-cell repertoire: implications for disease

pathogenesis and vaccination. Immunol. Cell Biol., 89, 375–387.

Murugan,A. et al. (2012) Statistical inference of the generation probability of

T-cell receptors from sequence repertoires. Proc. Natl. Acad. Sci. U. S. A.,

109, 16161–16166.

Ndifon,W. et al. (2012) Chromatin conformation governs T-cell receptor Jbeta

gene segment usage. Proc. Natl. Acad. Sci. U. S. A., 109, 15865–15870.

Quigley,M.F. et al. (2010) Convergent recombination shapes the clonotypic landscape

of the naive T-cell repertoire. Proc. Natl. Acad. Sci. U. S. A., 107, 19414–19419.

Shimonkevitz,R. et al. (1983) Antigen recognition by H-2-restricted T cells. I.

Cell-free antigen processing. J. Exp. Med., 158, 303–316.

Thomas,N. et al. (2014) Tracking global changes induced in the CD4 T-cell re-

ceptor repertoire by immunization with a complex antigen using short

stretches of CDR3 protein sequence. Bioinformatics, 30, 1–8.

Feature selection using a one dimensional naı̈ve Bayes’ classifier 955


	btw771-TF1
	OP-CBIO160778_p954.pdf
	btw771-TF1




