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Prediction of the growth and decline of infectious disease incidence has advanced considerably in recent years.
As these forecasts improve, their public health utility should increase, particularly as interventions are developed
that make explicit use of forecast information. It is the task of the research community to increase the content and
improve the accuracy of these infectious disease predictions. Presently, operational real-time forecasts of total
influenza incidence are produced at the municipal and state level in the United States. These forecasts are gener-
ated using ensemble simulations depicting local influenza transmission dynamics, which have been optimized
prior to forecast with observations of influenza incidence and data assimilation methods. Here, we explore
whether forecasts targeted to predict influenza by type and subtype during 2003–2015 in the United States were
more or less accurate than forecasts targeted to predict total influenza incidence. We found that forecasts sepa-
rated by type/subtype generally produced more accurate predictions and, when summed, produced more accu-
rate predictions of total influenza incidence. These findings indicate that monitoring influenza by type and subtype
not only provides more detailed observational content but supports more accurate forecasting. More accurate
forecasting can help officials better respond to and plan for current and future influenza activity.

forecast; influenza; influenza subtype; influenza type; peak intensity; peak week

Abbreviations: ILI, influenza-like illness; RMSE, root mean square error; SEIR, susceptible-exposed-infectious-recovered;
SEIRS, susceptible-exposed-infectious-recovered-susceptible; SIR, susceptible-infectious-recovered; SIRS, susceptible-
infectious-recovered-susceptible.

Local outbreaks of seasonal influenza are often associated
with the elevated incidence of more than 1 cocirculating in-
fluenza type or subtype. Indeed, influenza vaccines are often
trivalent or quadrivalent and may even be designed to confer
protection against more than 1 strain of a single influenza
type or subtype. For example, the quadrivalent version of the
2015–2016 seasonal influenza vaccine for the United States
was designed to protect against A/California/7/2009(H1N1)
pdm09-like virus, A/Switzerland/9715293/2013(H3N2)-like
virus, B/Phuket/3073/2013-like virus, and B/Brisbane/60/
2008-like virus (1). This strain composition includes 2 influ-
enza A subtypes and 2 influenza type B strains.

While local influenza incidence often manifests from infec-
tions due to more than 1 type or subtype, it is most commonly
estimated more crudely and in aggregate using influenza-like
illness (ILI). ILI is a nonspecific diagnostic category defined

by the Centers for Disease Control and Prevention as presen-
tation with fever of ≥37.8°C, a cough or sore throat, and no
determined causality other than influenza (2). In addition to
ILI, many local and state health agencies and some hospitals
carry out virological surveillance for influenza. Specimens
from selected patients presenting with ILI are laboratory con-
firmed—commonly using a rapid influenza diagnostic test or
reverse-transcription polymerase chain reaction (RT-PCR)
molecular assay. These data provide a means for distinguish-
ing influenza from infections due to other circulating respira-
tory viruses, such as coronaviruses and parainfluenza viruses.

A more specific estimate of influenza incidence can be de-
veloped by multiplying ILI by the concurrent fraction of spe-
cimens testing positive for influenza (3, 4). Our estimates
extending this method are generated by multiplying muni-
cipal and state level ILI estimates by associated regional,
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weekly laboratory-confirmed influenza positive proportions as
compiled through the National Respiratory and Enteric Virus
Surveillance System and US-based World Health Organization
Collaborating Laboratories (2); we term this metric ILI+. ILI+
provides a cleaner signal of influenza incidence and can be
used to more precisely monitor influenza incidence and trans-
mission. From a public health perspective, this greater re-
solution of infection allows better observation and more
informed response. For example, by better defining influenza
incidence in a local population, influenza antivirals and other
influenza-targeted responses might be better supplied and
more appropriately utilized.

Models of influenza also benefit from the use of a more
influenza-specific metric such as ILI+. Infectious disease
models are often designed to represent the propagation of a
single pathogen through a population. Use of ILI or another
nonspecific measure of influenza in conjunction with an in-
fluenza model provides a signal that is confounded by those
other circulating respiratory viruses. Those additional sig-
nals potentially corrupt model behavior, undermine epide-
miologic inference, and degrade generative forecasts. In our
own work, we often use ILI+ rather than ILI to produce
forecasts of influenza because it provides a cleaner signal of
influenza incidence (4, 5).

Our group has been issuing real-time forecasts of influenza
in the United States using ILI+ since the 2012–2013 season
and posting these forecasts on a dedicated web portal (http://
cpid.iri.columbia.edu/) since the 2013–2014 influenza season.
Our forecasting approach uses a mathematical model-inference
system in which a core compartmental model describing the
propagation of influenza through a local population is opti-
mized using data assimilation methods and real-time ILI+.
The optimization is performed in order to constrain the model
state variables and parameters to best represent the local out-
break as it has thus far manifested. The central idea is that if
the model can represent the outbreak as thus far observed,
model-simulated forecasts will be more likely to represent
future epidemic trajectories (4, 6–9).

While ILI+ discriminates between influenza and other
respiratory viruses, it still often represents an amalgamated
signal of more than 1 cocirculating influenza virus type or sub-
type. In the present study, we explored whether further de-
composition of the ILI+ metric into its constituent type and
subtype signals improves forecast accuracy. We used the
laboratory-confirmed influenza positive rates separated by
type and subtype to create type- and subtype-specific
estimates of influenza incidence. We then used these data to
optimize type-specific and subtype-specific model simulations
and generate retrospective type-specific and subtype-specific
forecasts. We demonstrated that this further discrimination
and representation of influenza activity generally improves
model forecast accuracy.

METHODS

We generated retrospective weekly municipal forecasts
for 95 cities and 50 states in the United States during the
2003–2004 through 2014–2015 influenza seasons. Due to
the 2009 pandemic influenza outbreak, the 2008–2009 and

2009–2010 seasons were excluded from this analysis. De-
scriptions of the observations, models, data assimilation
methods, and analysis conducted are provided below.

Influenza incidence data

Forecasts and analyses were generated at the state and
municipal levels for the United States. State and municipal
estimates of ILI were obtained from Google Flu Trends
(10, 11). Previously, we have generated more specific esti-
mates of influenza incidence by multiplying the weekly
Google Flu Trends ILI estimates by regional weekly
laboratory-confirmed influenza positive proportions from
the Department of Health and Human Services as com-
piled through the National Respiratory and Enteric Virus
Surveillance System and US-based World Health Or-
ganization Collaborating Laboratories (2). This combined
metric, ILI+, provides a more specific measure of influ-
enza incidence that removes much of the signal due to
other cocirculating respiratory viruses (3, 4).

The influenza positive proportions are additionally discri-
minated by type and subtype: influenza A/H1N1, A/H3N2,
and B. A weekly average of 651 samples were tested in each
Health and Human Services region during the study period,
yielding robust estimates of positive proportions. We used
this information to generate type- and subtype-specific inci-
dence estimates, termed hereafter H1N1+, H3N2+, and B+.
As in the case of ILI+, we multiplied the weekly Health and
Human Services regional positive proportion for each type
or subtype by an associated state or municipal weekly ILI
estimate to generate an influenza type- or subtype-specific
incidence estimate.

For type A influenza, there were often many samples in
the National Respiratory and Enteric Virus Surveillance
System and US-based World Health Organization Collabo-
rating Laboratories record for which subtyping was either
not performed or not able to be performed. Rather than omit
these data, we instead apportioned them among A subtypes
in a ratio consistent with subtyped samples for that week. If,
for instance, in a given Health and Human Service region
and week, 180 samples were positive for H1N1, 20 samples
were positive for H3N2, and 30 samples were not subtyped,
those 30 samples would be distributed in a 9 to 1 ratio be-
tween H1N1 and H3N2, such that the adjusted estimates be-
come 207 samples positive for H1N1 and 23 samples
positive for H3N2. Those adjusted estimates would then be
divided by the total number of specimens tested and multi-
plied by within-region state and municipal Google Flu
Trends ILI estimates for that week to generate H1N1+ and
H3N2+ estimates.

Epidemiologic models

Four different models were used to generate forecasts.
All 4 forms are perfectly-mixed, absolute humidity–
driven compartmental constructs with the following
designations: 1) susceptible-infectious-recovered (SIR);
2) susceptible-infectious-recovered-susceptible (SIRS);
3) susceptible-exposed-infectious-recovered (SEIR); and
4) susceptible-exposed-infectious-recovered-susceptible
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(SEIRS). The differences among the model forms align with
whether waning immunity (which allows recovered indivi-
duals to return to the susceptible class) or an explicit period
of latent infection (the exposed period) is represented.

Because the SEIRS model is the most detailed, we present
it here. All other forms are derived by reduction of these
equations, which are as follows:

α= − − − − β( ) − ( )dS

dt
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where S is the number of susceptible people in the popula-
tion, t is time, N is the population size, E is the number of
exposed people, I is the number of infectious people, N-S-E-I
is the number of recovered individuals, β(t) is the contact
rate at time t, L is the average duration of immunity, Z is the
mean latent period, D is the mean infectious period, and α is
the rate of travel-related importation of influenza virus into
the model domain.

The contact rate, β(t), is given by β(t) = R0(t) ÷ D, where
R0(t), the basic reproductive number, is the number of sec-
ondary infections the average infectious person would pro-
duce in a fully susceptible population at time t. Specific
humidity, a measure of absolute humidity, modulates trans-
mission rates within this model by altering R0(t) through an
exponential relationship similar to how absolute humidity has
been shown to affect both survival and transmission of the in-
fluenza virus in laboratory experiments (12), specifically:

( ) = + ( − ) ( )− ( )R t R R R e , 4aq t
0 0min 0max 0min

where R0min is the minimum daily basic reproductive num-
ber, R0max is the maximum daily basic reproductive number,
a = 180, and q(t) is the time-varying specific humidity. The
value of a is estimated from the laboratory regression of in-
fluenza virus survival upon absolute humidity (13). Simula-
tions were performed with fixed travel-related seeding of
0.1 infections per day (1 infection every 10 days).

The models used in this study were all perfectly mixed,
had no age structure, and did not account for differential
mixing or multiple modes of transmission. While including
such processes might make the models more realistic, for the
purposes of generating accurate forecasts, as well as for the
present comparison, model parsimony rather than complex-
ity is necessary. A higher-dimensional model with more fea-
tures, such as age classes, cannot be as effectively optimized
unless there are more abundant observations available.
Because we did not have age-discriminated observations of
incidence with which to validate the performance or fore-
casts of more complicated models, we built off prior work
and used simpler, more parsimonious models.

Specific humidity data

Specific humidity data were compiled from the Phase 2
data set of the North American Land Data Assimilation Sys-
tem. These gridded data are available in hourly time steps on a
0.125° regular grid from 1979 through the present (14). Local
specific humidity data for each of the 95 cities and 50 states
included in these forecasts were assembled for 1979–2002
and averaged to daily resolution. A 1979–2002 (24-year) daily
climatology, a 24-year average of specific-humidity condi-
tions for each day of the year, was then constructed for each
city and used as the daily specific-humidity forcing input (in
equation 4) for all retrospective forecasts.

Data assimilation

Three ensemble filter methods—the ensemble Kalman
filter (15, 16), the ensemble adjustment Kalman filter (17),
and the rank histogram filter (18)—were used in conjunction
with influenza incidence data to optimize the compartmental
models prior to forecast. All ensemble filter simulations were
run with 300 ensemble members.

The ensemble filter algorithms were used iteratively to up-
date ensemble model simulations of observed state variables
(influenza incidence) to better align with observations (ILI+).
These updates were calculated upon halting the ensemble in-
tegration at each new observation, per the specifics of each
filter algorithm, as described below. Cross-ensemble covaria-
bility was used for all 3 filters to adjust both the unobserved
state variables and model parameters (4, 6, 17). The posterior
was then integrated to the next observation and the process
was repeated. Through this iterative updating process, the en-
semble of simulations provided an estimate of the observed
state variable (i.e., influenza incidence), as well as the unob-
served variables and parameters (e.g., susceptibility and mean
infectious period).

Additional description of the filters is provided in the Web
Appendix 1 (available at http://aje.oxfordjournals.org/). Fur-
ther details on the application of the ensemble filters to infec-
tious disease models are provided in Shaman and Karspeck
(6) and Yang et al. (7). For information on scaling of obser-
vations to modeled incidence, see Web Appendix 1.

Forecasts

The recursive updating of model state variables and para-
meters, carried out by the filtering process, was meant to
align these characteristics to better match the observed epi-
demic trajectory of influenza incidence. The premise is that
if the model can be optimized to represent incidence as thus
far observed, it stands a better chance of generating a fore-
cast consistent with future conditions.

In practice for each city and season, we initiated our model
simulations and data assimilation on week 40 of the calendar
year. Each week, the ensemble of simulations was updated
using a given filter. For weeks 45–64 of each flu season, fol-
lowing assimilation of the latest ILI+, H1N1+, H3N2+, or B+
observation, the posterior ensemble was integrated into the fu-
ture to generate a forecast for the remainder of the season. All
12 combinations of the 4 models (SIR, SIRS, SEIR, SEIRS)
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and 3 filters were used to generate separate forecasts of ILI+,
H1N1+, H3N2+, and B+.

Initial parameter values for all runs were chosen ran-
domly from the following uniform ranges: R0max ~ U[1.3,
4]; R0min ~ U[0.8, 1.2]; Z ~ U[1,5] in days; D ~ U[1.5, 7] in
days; L ~ U[1,10] in years. Initial state variable values—E
(0), I(0) and S(0)—were chosen randomly from the week 40
state values generated through 10,000 multiyear free simula-
tions of the compartmental models. For all runs the popula-
tion size, N, was 100,000. To account for the stochastic
effects of the randomly chosen initial conditions, each
model-filter combination was run 5 separate times for each
location, thus generating 60 separate ensemble forecasts for
each week and location. The mean trajectory of each of
these 60 forecasts was then averaged to provide a single
average forecast. Findings were then further verified through
analysis of forecasts segregated by model and/or filter.

Analysis of accuracy

Two types of analysis were conducted. The first assessed
accuracy among different respective observed outcomes
(specific type/subtype vs. ILI+). That is, forecasts generated
for H1N1+, H3N2+, or B+ incidence were evaluated for ac-
curacy against H1N1+, H3N2+, or B+ observations, re-
spectively, for the period of forecast. Similarly, forecasts for
ILI+ incidence were evaluated for accuracy against ILI+
observations for the period of forecast. The accuracy of fore-
casts of the dominant type/subtype was then compared with
that of the ILI+ forecasts.

The second analysis compared forecast accuracy with the
same ILI+ outcome. For this evaluation, the accuracy of ILI+
predictions made following optimization with ILI+ was
compared with the summed predictions of H1N1+, H3N2+
and B+. Inclusion in the latter summation required that a
type/subtype comprise at least 5% of total incidence for a
given locality during each of the 3 weeks prior to the fore-
cast. Consequently, for the second analysis, some compari-
sons were between predictions made with ILI+ and only the
dominant type/subtype (when the other type/subtypes were
each <5%), whereas others added the predictions for 2 or
more types/subtypes.

For each of these analyses, we assessed the accuracy
of predictions of peak timing and peak magnitude using
absolute error—the absolute value of “predicted” minus
“observed.” In addition we calculated the root mean square
error (RMSE) of forecast trajectories 2, 4, and 8 weeks into
the future. For the first analysis, the prediction of different
targets (e.g., ILI+ vs. H3N2+) complicated the comparison
of peak magnitude prediction error and forecast trajectory
RMSE, because observed ILI+ incidence is generally larger
than that of any single type/subtype. To account for this dif-
ference, we scaled ILI+ peak magnitude prediction error
and RMSE values by the fraction made up by the observed
dominant type/subtype. We also calculated the fraction of
peak timing forecasts that were accurate within 1 week (be-
fore or after) and the fraction of peak-intensity forecasts that
were accurate within 25% (above or below) of the observed
magnitude.

For all analyses, lead time was defined as the week of
forecast initiation minus the week of the simulated ensemble
mean trajectory peak. Negative values correspond to fore-
cast of a future peak—for example, −4 indicates outbreak
peak incidence is forecast to occur 4 weeks in the future. We
used the Wilcoxon signed-rank test to determine whether
the forecasts generated using the dominant type/subtype and
summing approach significantly improved accuracy over
the ILI+ forecasts.

RESULTS

Optimization with and prediction of the dominant
type/subtype

For peak-week timing, specific predictions of the domi-
nant type or subtype in a given locality and week yielded
lower error than those optimized and targeted to ILI+
(Figure 1A). That is, predictions of individual type/subtype
(H1N1+, H3N2+, B+) peak timing were on average more
accurate at all lead times than predictions of ILI+ peak tim-
ing. This advantage was most pronounced at longer leads.
Across all seasons and leads, forecast error was reduced on
average by 0.419 weeks (P < 0.001). This finding held
when stratified by filter type (Web Figure 1) or model form
(Web Figure 2). Indeed, all 3 filters and all 4 model forms
demonstrated a statistically significant reduction of error
when optimizing and targeting the dominant locally circulat-
ing type/subtype (P < 0.001).

As an alternate metric, we often quantify the fraction of
peak-week forecasts that are accurate within 1 week of the
observed peak. Across all locations, years, and model filter
combinations, optimization with and prediction of the dom-
inant type/subtype provided a greater fraction of accurate
peak-week predictions than forecasts generated and target-
ing ILI+ (Figure 1B).

For peak intensity, specific predictions of the dominant
type or subtype yielded lower error than those optimized and
targeted to ILI+ for short leads (−3 to +1 weeks, Figure 2A);
at leads of −5 to −7 weeks, forecasts targeted to ILI+ had sig-
nificantly lower error. Similar to peak-week timing, we often
quantify the accuracy of a peak-intensity forecast by using
the fraction of forecasts accurate within 25% of the observed
peak magnitude (Figure 2B). For this metric, the forecasts
optimized to and predicting the dominant type/subtype pro-
duced a larger fraction accurate within 25% of the observed
peak magnitude than the forecasts optimized to and predict-
ing ILI+ for all leads but one (−6 weeks lead), and they were
statistically significant for leads −2 to +1 weeks. Similar find-
ings were evident when the forecasts were stratified by filter
or model type (Web Figures 3 and 4).

Prediction of ILI+

We next examined forecast accuracy with respect to the
same observed ILI+ target. Forecasts made using 1 or more
types/subtypes (summed) had RMSE over the following 2, 4,
and 8 weeks that was statistically equivalent to or lower than
predictions made following optimization with ILI+ (Table 1).
For example, when the peak was predicted to be 2–4 weeks in
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the future, RMSE over the next 4 weeks was lower for the
summed forecasts (Web Figure 5).

Longer-lead forecasts of both peak timing and peak intensity
were improved when individual type/subtype forecasts were
summed. Indeed, the fraction of peak-timing forecasts accurate
within 1 week was significantly higher for −5- to −8-week
lead summed predictions (Figure 3). Similarly, the fraction of

peak-intensity forecasts accurate within 25% of the observed
peak magnitude was higher for the −2- to −8-week lead
summed predictions, and significantly higher for −3- to
−5-week leads. However, for both metrics the ILI+ predictions
were significantly more accurate at shorter lead times (−2 to
0 weeks for peak timing; 0 weeks for peak intensity).

We also examined how the differences between ILI+ and
summed prediction accuracy changed across seasons and
among cities versus states. Significant improvement of fore-
cast accuracy was evident in some seasons (2007−2008,
2010−2011, 2011−2012, and 2012−2013) but not in others
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Figure 1. Accuracy of the prediction of peak-week timing for influ-
enza, evaluated for all 95 cities and 50 states, all 10 seasons, and all
12 model-filter combinations, United States, 2003–2015. A) Box and
whisker plots show the median (thick horizontal line), 25th and 75th
percentiles (the bottom and top extent of the box), and extrema (the
whiskers) of the absolute error of peak-week timing predictions. The
black diamonds indicate the mean absolute error for each box and
whisker. Error at all leads was significantly lower (P < 0.05) for opti-
mization with and prediction of the dominant local type/subtype (i.e.,
H1N1, H3N2, or B). B) Fraction of forecast peaks accurate within 1
week of the observed peak. Accuracy at leads −8, −7, −6, −1, 0, and
1 was significantly higher (P < 0.05) for the optimization with and pre-
diction of the dominant local type/subtype. The predictions are strati-
fied by forecast lead. Negative values indicate mean trajectory
forecast of a future peak; positive values indicate mean trajectory
forecast that the peak has passed. ILI+, optimization with and predic-
tion of influenza-like illness estimates multiplied by regional weekly
laboratory-confirmed influenza positive proportions.
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Figure 2. Accuracy of the prediction of peak intensity for influ-
enza, evaluated for all 95 cities and 50 states, all 10 seasons, and
all 12 model-filter combinations, United States, 2003–2015. A)
Relative error of predictions stratified by forecast lead. Error at
leads −3, −2, −1, 0, and 1 was significantly lower (P < 0.05) for
the optimization with and prediction of the dominant local type/sub-
type (i.e., H1N1, H3N2, or B), whereas error at leads −7, −6, and
−5 was significantly lower (P < 0.05) for the optimization with and
prediction of influenza-like illness estimates multiplied by regional
weekly laboratory-confirmed influenza positive proportions (ILI+).
B) The fraction of forecasts accurate within 25% of the observed
peak magnitude. Accuracy at leads −2, −1, 0, and 1 was signifi-
cantly higher (P < 0.05) for the optimization with and prediction of
the dominant local type/subtype.

Am J Epidemiol. 2017;185(5):395–402

Type- and Subtype-Specific Influenza Forecast 399

http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kww211/-/DC1


(Web Table 1). In addition, at both the city and state level a
similar pattern of improved accuracy was evident (Web
Table 2).

Parameter estimates

We have previously used the SIRS model in conjunction
with data assimilation methods and ILI+ estimates of inci-
dence in the United States to infer critical epidemiologic para-
meters associated with influenza transmission dynamics (19).
While not the principal focus of this study, we found similar
estimates for the SIR, SEIR, and SEIRS models additionally
used here (Web Figures 6–8). Indeed, the parameters are quite
plausible. The mean infectious period, D, was estimated to be
approximately 4.75 days for the SIR and SIRS models (lower
during large H3N2 outbreaks), and slightly lower for the SEIR
and SEIRS models, and overall matched well with published
challenge-study estimates of viral-shedding duration (20). The
effective reproductive number, Re, maximizes between 1.3
and 1.8, depending on the season, dominant type/subtype, and
model. It tends to be higher for H3N2 and the SEIR and
SEIRS models (Web Figure 7). The basic reproductive num-
ber falls between 2.4 and 2.8 for all models (Web Figure 8).

DISCUSSION

The choice and use of a particular metric for monitoring
and forecasting infectious disease incidence should be dictated
by the informational content and public health relevance of
that metric. As the cost of laboratory confirmation of influenza
infection decreases and the ease and rapidity of these assays
increases, these data will become more abundant and available
at localized scales. We argue that this more plentiful identifica-
tion of circulating influenza virus by type and subtype, and ul-
timately by strain, will provide an important, richer picture of
influenza activity. Monitoring and forecasting this incidence

will enable better targeting of type- or subtype-specific inter-
ventions, many of which likely have yet to be designed.

Our first analysis showed that prediction of peak week
and intensity by influenza type and subtype was generally
more accurate than optimization with and prediction of ILI+.
Our second analysis showed that for longer lead times, the
peak timing and intensity of ILI+ was more accurately pre-
dicted using the sum of separate type and subtype forecasts
than with forecast using a single model following optimiza-
tion with ILI+. Overall, these findings indicated that type-
and subtype-specific forecasts can be used to predict both
type- and subtype-specific incidence as well as the aggregate
ILI+ signal. In the future, if testing resolution and ease im-
prove so that strain-specific typing is provided abundantly,
accurate strain-specific forecasts should be possible.

It is not surprising that the type- and subtype-specific forecasts
generally outperformed those made using ILI+. Our compart-
mental models are designed to represent the transmission of a
single pathogen in a local population. As data are pared to be
more reflective of a single strain, removing the signal of other
cocirculating influenza types and subtypes, the observations are
more in line with model dynamics, and model simulation and
forecast accuracy should improve. In the future, the forecasts
might be improved further if the observations can also capture
asymptomatic and mild infection incidence on a per capita basis.

Some specific features of the findings remain to be resolved.
The summed forecasts significantly outperformed the ILI+
forecasts at longer lead times but not once the peak was pre-
dicted to be near (Figure 3). It may be that near the predicted
peak, the aggregate ILI+ signal is pronounced enough to
produce a better forecast and that the combined uncertainty
of the individual type/subtype forecasts compounds when
summed to generate a less accurate prediction. For peak
intensity, the dominant type/subtype forecasts generally out-
perform ILI+ (Figure 2); however, there are some longer-
lead exceptions (e.g., lead of −6 weeks). We do not know

Table 1. Influenza Forecast Accuracya by Type and Subtype, United States, 2003–2015

All Summed Forecastsb Dominant Type/Subtype Onlyc ≥2 Types/Subtypesd

RMSE 2 weeks 18.86 NSe 18.03

RMSE 4 weeks NSe NSe NSe

RMSE 8 weeks NSe NSe NSe

Peak week correct 15.28 NSe 15.07

Peak week error 15.79 NSe 15.58

Peak intensity correct 16.61 13.02 16.24

Peak intensity error 18.89 NSe 17.98

Abbreviations: ILI, influenza-like illness; RMSE, root mean square error.
a Wilcoxon signed-rank test (a measure of the distance of the median difference in errors from zero) comparing

predictions of optimized influenza-like illness estimates (ILI+) made following model training with ILI+ to predictions
of ILI+ made as the sum of optimized predictions specific to type/subtype (H1N1, H3N2, and/or B). All numbers indi-
cate lower error for the summed forecasts. Predictions are compared for all 95 cities and 50 states in the United
States, all 10 seasons (2003–2015, excluding pandemic outbreaks), and all 12 model-filter combinations.

b Differences over all forecasts.
c Differences for summed forecasts that used only the dominant type/subtype.
d Differences for summed forecasts that used ≥2 types/subtypes.
e P > 0.01.
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whether these exceptions reflect a real underlying process or
are merely a statistical anomaly.

The use of type- and subtype-specific observations does not
resolve certain issues associated with model misspecification.
The compartmental models used here are highly idealized,
perfectly mixed constructs representing a single pathogen.
Cross-protection between cocirculating types, subtypes, or
strains is not accounted for in these models and may be a
source of simulation and forecast error. All seasons included
in this study had at least 2 types/subtypes in circulation, and
the years with significant improvement (Web Table 1) had

either H3N2 and B or all 3 types/subtypes in circulation.
Clearly, independent forecast of each of these types/subtypes
can be summed to produce a more accurate forecast of future
ILI+ at certain leads; however, there may be interactions
among circulating types/subtypes, which, if represented, might
improve forecast accuracy further. An alternate approach might
use a single model construct depicting multiple cocirculating
types/subtypes. The data assimilation and observations might
then be used to estimate levels of cross-protection among the
simulated types/subtypes. Such a forecast construct needs to
be developed and tested.

The effects of other features, such as the school calendar
and age-specific contact patterns, also need to be incorpo-
rated into the core dynamic models and tested for their im-
pact on forecast accuracy. Inclusion of such effects is a
logical next step for determining whether such increased
model complexity improves prediction further; however, for
some of these features, richer more detailed observations
may be required. As more dynamical features are repre-
sented and the observations needed to constrain such simu-
lations become available, forecast accuracy should continue
to improve. An analogous continual improvement of fore-
cast accuracy has been observed over many decades for nu-
merical weather prediction (21).

Overall, the results indicated that our current methods are
generally more accurate for generating type/subtype specific
forecasts. Such information provides a richer palette of in-
formation for public health officials and will allow them to
better track, respond to, and plan for current and future influ-
enza activity by type and subtype as well as in aggregate.
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