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Abstract

Motivation: Global analysis of translation regulation has recently been enabled by the develop-

ment of Ribosome Profiling, or Ribo-seq, technology. This approach provides maps of ribosome

activity for each expressed gene in a given biological sample. Measurements of translation effi-

ciency are generated when Ribo-seq data is analyzed in combination with matched RNA-seq gene

expression profiles. Existing computational methods for identifying genes with differential transla-

tion across samples are based on sound principles, but require users to choose between accuracy

and speed.

Results: We present Riborex, a computational tool for mapping genome-wide differences in trans-

lation efficiency. Riborex shares a similar mathematical structure with existing methods, but has a

simplified implementation. Riborex directly leverages established RNA-seq analysis frameworks

for all parameter estimation, providing users with a choice among robust engines for these compu-

tations. The result is a method that is dramatically faster than available methods without sacrificing

accuracy.

Availability and Implementation: https://github.com/smithlabcode/riborex

Contact: andrewds@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Regulation of translation has been shown to play an essential role in

many biological processes, and misregulation of translation is asso-

ciated with disease states (Bazzini et al., 2012; Lu et al., 2007). The

recent development of Ribosome Profiling technology, also called

Ribo-seq, now enables accurate global analysis of translation

(Ingolia et al., 2009). Ribo-seq involves deep sequencing of ‘ribo-

some-protected fragments’ (RPFs) which are presumed to exist in

proportion to the fraction of total translation that is associated with

a given gene. RPFs can also provide information on the modes by

which cells regulate translation, and to date Ribo-seq has been

applied in a broad variety of biological contexts (Ingolia, 2016).

Often the goal of a Ribo-seq experiment is to generate genome-

wide maps of translation efficiency. The number of RPFs associated

with a given gene or transcript is determined both by gene-specific

translation activity and mRNA abundance. Without accounting for

background mRNA levels, one cannot distinguish differences associ-

ated with translation from those arising via regulation of other

process (e.g. transcription). Ribo-seq data is therefore usually

accompanied by RNA-seq conducted in a matched biological sam-

ple. The key analysis problem then becomes identifying genes whose

difference in RPF abundance cannot be explained by differences in

background mRNA abundance. Several methods were developed for

this purpose, including anota (Larsson et al., 2011), Babel (Olshen
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et al., 2013), RiboDiff (Zhong et al., 2016) and Xtail (Xiao et al.,

2016). These methods differ in details of parameter estimation and

implementation, but are all founded on a similar model for the dif-

ferential translation problem.

We developed Riborex as a simple method to identify genes ex-

hibiting differential translation from Ribo-seq data. The name

Riborex is derived from the objective of analyzing Ribo-seq ratios

with expression. Similar to previous approaches, ours involves mod-

eling a natural dependence of translation on mRNA levels as a gen-

eralized linear model (GLM). Unlike previous methods, we directly

leverage existing model-based frameworks for gene expression ana-

lysis, using them to simultaneously estimate all parameters of our

model. As a consequence, Riborex is significantly faster than all

existing approaches, supports general experimental designs, and em-

ploys robust and mature software implementations for the underly-

ing statistical calculations.

2 Approach

Established frameworks for RNA-seq data analysis, e.g. edgeR

(Robinson et al., 2010) and DESeq2 (Love et al., 2014), model the

read count ygi from gene g in sample i as following a negative bino-

mial distribution. Expected counts satisfy

logðEðygiÞÞ ¼ logðkgjÞ þ logðNiÞ ¼ xT
j bg þ logðNiÞ;

where Ni is the total counted reads, xj is a covariate vector associ-

ated with the treatment condition j, and bg is the corresponding

vector of gene-specific coefficients. The expected proportion kgj of

reads from gene g may then be regarded as the expression level of

gene g in condition j. The negative binomial distribution includes a

dispersion parameter for each gene. The need to consider dispersion

parameter is clear, but how best to estimate dispersion remains an

active area of research. Our strategy for detecting differentially

translated genes models read counts rgi from Ribo-seq in a similar

way:

logðEðrgiÞÞ ¼ xT
j ag þ logðRiÞ þ log kgj

¼ xT
j ðag þ bgÞ þ logðRiÞ;

where Ri is the total counted reads for sample i. The parameter ag

may be thought of as representing how the translation of g differs

from its background expression level. One interpretation is that

any regulation specifically at the level of translation will be captured

by the coefficients vector ag. Identifying differential translation

between conditions then amounts to testing contrasts concerning a.

We combine RNA-seq and Ribo-seq read counts by constructing

a specific design matrix (details in supp. info.). Then all coefficients

a and b can be fit simultaneously in existing RNA-seq data ana-

lysis frameworks (i.e. the ‘engine’ used by Riborex). The dispersion

for each gene is estimated using an approach specific to the engine

used.

3 Results

We evaluated Riborex in comparison with existing methods using a

simulation approach based on modifying real data to introduce dif-

ferences and examining accuracy in identifying those differences.

We compared Riborex with a representative set of existing methods:

Xtail (Xiao et al., 2016), RiboDiff (Zhong et al., 2016) and Babel

(Olshen et al., 2013), acknowledging that more comprehensive com-

parisons already exist in the literature (Xiao et al., 2016). Briefly,

from a published dataset with 5 replicates (Schafer et al., 2015), we

randomly selected 4 and divided those into two groups of two repli-

cates. We randomly sampled 1% of �15k expressed genes and as-

signed them a fold change of 4 in both RNA-seq and Ribo-seq data;

these, along with unchanged genes, are considered true negatives. As

positive control, we randomly sampled 1% of genes and assigned a

different fold change to RNA-seq and Ribo-seq to introduce 4-fold

change in translation efficiency (details in supp. info.). Riborex,

Xtail, RiboDiff and Babel were applied to this semi-simulated data.

We set a FDR cutoff at 0.05 and calculated the F scores for different

methods. We repeated the simulations with larger control sets (10%

of genes) and also on a second dataset (Diaz-Mu~noz et al., 2015).

The results of 100 such simulations are summarized in Figure 1. The

methods give extremely similar performance, with Riborex (using

all three engines) and Xtail having a slight advantage over RiboDiff

and Babel. Repeating the simulation with relatively small differences

(2�) in translation efficiency yielded decreased accuracy for most

methods (details in supp. info.).

We measured running time of each method based on 4 datasets

differing in numbers of genes (mouse vs. human) and numbers of

replicates (data in supp. info.) (Bennett et al., 2016; Hsieh et al.,

2012; Schafer et al., 2015; Zur et al., 2016). Riborex finishes in se-

conds; all other methods take substantially longer, with Xtail requir-

ing>4 hours (Table 1).

In summary, Riborex is implemented as an open source R pack-

age, and has accuracy on par with the most accurate existing meth-

ods, but is significantly faster.
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Fig. 1. Accuracy identifying differentially translated genes in simulated data

(see supp. info.) comparing Riborex (using DESeq2, edgeR and Voom (Law

et al., 2014)), Xtail, RiboDiff and Babel. Values are averages of 100 simulations

and error bars indicate standard deviation of F scores. (A) and (B) Results

based on rat heart data (Schafer et al., 2015) with 1% and 10% implanted true

differentially translated genes, respectively, and simulated 4-fold change in

translation efficiency. (C) and (D) Results from simulations based on mouse

HuR data (Diaz-Mu~noz et al., 2015)
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Table 1. Running time of Riborex (using DESeq2, edgeR and Voom

as engine), Xtail, RiboDiff and Babel on four published Ribo-seq

datasets

Riborex engine

Dataset DESeq2 edgeR Voom Xtail RiboDiff Babel

MSI2 39 s 12 s 7 s 4.34 h 29.60 min 23.53 min

Hela S3 49 s 16 s 7 s 5.31 h 32.55 min 25.47 min

mTOR 23 s 8 s 4 s 4.16 h 34.07 min 15.27 min

Liver 56 s 19 s 8 s 5.69 h 26.22 min 54.30 min
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