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Abstract

Motivation: Capabilities in the field of metabolomics have grown tremendously in recent years.

Many existing resources contain the chemical properties and classifications of commonly identi-

fied metabolites. However, the annotation of small molecules (both endogenous and synthetic) to

meaningful biological pathways and concepts still lags behind the analytical capabilities and the

chemistry-based annotations. Furthermore, no tools are available to visually explore relationships

and networks among functionally related groups of metabolites (biomedical concepts). Such a tool

would provide the ability to establish testable hypotheses regarding links among metabolic path-

ways, cellular processes, phenotypes and diseases.

Results: Here we present ConceptMetab, an interactive web-based tool for mapping and exploring

the relationships among 16 069 biologically defined metabolite sets developed from Gene

Ontology, KEGG and Medical Subject Headings, using both KEGG and PubChem compound identi-

fiers, and based on statistical tests for association. We demonstrate the utility of ConceptMetab

with multiple scenarios, showing it can be used to identify known and potentially novel relation-

ships among metabolic pathways, cellular processes, phenotypes and diseases, and provides an

intuitive interface for linking compounds to their molecular functions and higher level biological

effects.

Availability and implementation: http://conceptmetab.med.umich.edu

Contacts: akarnovsky@umich.edu or sartorma@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, metabolomics has emerged as a new quantitative

technique with the ability to characterize large numbers of small

molecules in a wide variety of biological samples. Advances in liquid

chromatography–mass spectrometry (LC–MS), gas chromatog-

raphy–mass spectrometry (GC–MS) and nuclear magnetic resonance

spectroscopy (NMR), allow rapid and quantitative measurement of

several hundreds of metabolites (Jonsson et al., 2004; Wishart,

2011). Untargeted LC–MS based methods have potential to push

the number of detected metabolites to several thousands, however

securing the identities of the individual features remains challenging

and time consuming (Baker, 2011). As experimental detection meth-

ods continue to improve, metabolomics has the potential to provide

increasingly informative readouts of metabolic changes in complex
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diseases (Sreekumar et al., 2009; Urayama et al., 2010; Wang et al.,

2011; Wisloff et al., 2005; Yap et al., 2010). In contrast to genes

and proteins, metabolites have been described as providing direct

signatures of biochemical activity and are therefore easier to correl-

ate with phenotype (Patti et al., 2012).

Following these technological advances, a number of pathway

databases and tools linking metabolites to biochemical reactions, en-

zymes, proteins and genes were developed (reviewed in (Sas et al.,

2015)). Among these, there are several tools for metabolite set en-

richment testing, including MSEA (Xia and Wishart, 2010),

MetaboAnalyst 2.0 (Xia et al., 2012) and MBRole (Chagoyen and

Pazos, 2011). These programs follow the paradigm of gene set en-

richment tools, which test for biological functions or pathways (e.g.

Gene Ontology (GO) (Harris et al., 2004) or KEGG Pathways

(Kanehisa et al., 2012)) that have significant gene overlap with an

experimentally derived set of genes (Khatri et al., 2012).

Biological interpretation of metabolites has unique challenges

compared to genes, including a relatively small number of measur-

able metabolites, low coverage of those by annotation databases,

and the presence of ubiquitous metabolites (e.g. co-factors). To im-

prove the annotation of small molecules to their biological contexts,

we developed Metab2Mesh (Sartor et al., 2012), which contains 4

646 000 significant associations (P < 0.0001) between 99 871 com-

pounds and 20 683 biomedical terms. Metab2MeSH uses PubChem

and Medical Subject Heading (MeSH) terms to identify statistically

significant co-occurrences of metabolites and MeSH terms in pub-

lished manuscripts, thus annotating metabolites to biomedical con-

cepts via the literature.

An additional challenge to working with metabolites is the lack

of convenient, standardized identifiers. While IUPAC nomenclature

provides a systematic method of naming organic compounds and

chemists use the CAS Registry Number, biologists prefer more fa-

miliar names that often ignore counter-ions. Consequently, biolo-

gical databases often contain such names or use their own

identifiers. To address these challenges, careful assembly of metabol-

ite sets with synonyms and cross-references is needed.

Due to these challenges, metabolite enrichment testing has not

been as widely used as for genes. Enrichment testing among pre-

defined biologically relevant metabolite sets can help us better

understand and overcome the above challenges, and improve enrich-

ment testing with experimental data. The careful assembly, charac-

terization and exploration of metabolite sets could facilitate the

discovery of relationships among metabolic reactions, diseases and

other biological phenomena in terms of the metabolites involved.

Indeed, several tools for exploring similar relationships based on

gene sets exist (Araki et al., 2012; Perez-Llamas and Lopez-Bigas,

2011; Rhodes et al., 2007; Sartor et al., 2010) and have been funda-

mental in generating novel hypotheses and identifying unexpected

associations. However, no comparable tool based on small metabol-

ites yet exists.

We have developed ConceptMetab to explore the relationships

among metabolite-based biomedical concepts and generate novel

hypotheses. Metabolites were annotated to biomedical concepts

using KEGG (Kanehisa et al., 2012), the three branches of GO and

Medical Subject headings from the National Library of Medicine

(MeSH) (Coletti and Bleich, 2001). Statistically significant associ-

ations were identified among all pairs of metabolite sets (concepts),

and maintained with additional supporting information. The

ConceptMetab website enables searching, browsing, filtering and

data exporting capabilities, as well as complementary visualizations

(network graphs and heatmaps). We demonstrate the utility of

ConceptMetab with example workflows, and by illustrating

important relationships identified with metabolites that were not

identified with genes. In summary, ConceptMetab assists in under-

standing links between metabolites, metabolic pathways and biolo-

gical phenomena, phenotypes, environmental exposures and

diseases.

2 Methods

2.1 Mapping small molecules to annotations
Small molecules were annotated to 74 KEGG human metabolic

pathways based on the XML pathway representations from the

Summer 2011 freeze of KEGG. Metabolites were annotated to GO

terms in two stages. First, KEGG Pathways were used to map me-

tabolites to genes through chemical reactions. Second, the

Bioconductor package org.Hs.eg.db (R version 3.1.1) was used to

map genes to GO terms, providing a complete mapping from metab-

olites to GO. GO terms are partitioned by their three branches:

Biological Process (BP), Cellular Component (CC) and Molecular

Function (MF). Enzyme metabolite sets were created by combining

all metabolites involved in a reaction with the same enzyme. The

metabolite-to-gene mappings from KEGG were used again, and the

org.Hs.eg.db package was used to map genes to enzymes.

Small molecules were annotated to MeSH terms by their co-oc-

currences in biomedical literature (PubMed database, updated to

version 14 on May 19, 2014) using Metab2MeSH (Sartor et al.,

2012). Briefly, Metab2MeSH considers a PubChem compound to be

associated with a MeSH term if the number of co-occurring annota-

tions to PubMed articles is significant according to a two-sided

Fisher’s exact test. We selected the most relevant top-level MeSH

categories for use in ConceptMetab (Fig. 1). Because some MeSH

terms occur in more than one top-level category, we assigned

membership according to the following priority: (i) Diseases,

(ii) Phenomena and Process, (iii) Psychiatry and Psychology,

(iv) Anatomy, (v) Organisms and (vi) Technology, Industry,

Agriculture. In all cases, we retain only those concepts associated

with �5 compounds. Figure 1 gives a diagrammatic overview of the

compound-to-concept mappings.

Entrez Genes

KEGG Reactions

KEGG Compounds

PubChem Compounds

KEGG 
Pathways

Enzymes

GO Terms

Biological 
Processes

Cellular 
Components

Molecular 
Functions

MeSH Terms

Anatomy

Diseases

Organisms

Phenomena
and Processes

Psychology 
and Psychiatry

Tech., Industry, 
and Agr.

Merged Compound Dictionary

Metab2MeSH

Fig. 1. A diagrammatic view of how small molecules are annotated to con-

cepts in ConceptMetab. PubChem compounds are associated with MeSH

Terms via Metab2MeSH. Metabolites with KEGG IDs are associated with

KEGG Pathways via their XML representation. Enzymes and GO terms are

mapped to KEGG compounds through Entrez genes and KEGG reactions.

Finally, PubChem and KEGG small molecules are linked via a dictionary used

in Metab2MeSH
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The resulting mappings linking compounds to biological con-

cepts are stored in a MySQL database. The same relational database

is also used to store all testing results, as described in Section 2.3

below.

2.2 Compound dictionary
To compare MeSH terms (based on PubChem IDs) to the other con-

cept types (based on KEGG IDs), we used the dictionary previously

developed for Metab2MeSH (Sartor et al., 2012). In Metab2MeSH,

KEGG IDs are linked to PubChem substance IDs (SIDs) via the

KEGG REST API (http://www.kegg.jp/kegg/rest/). The SIDs are

linked to PubChem compound IDs (CIDs) via PubChem (Wang

et al., 2009).

We observed some PubChem compounds having the same name,

or differing only by capitalization, that had different CIDs.

Therefore, all PubChem compound names were transformed to

lower-case, and assigned a new internal ID to each instance where

the lower-case names match. Next, any existing CID to KEGG ID

links were propagated to all newly equivalent CIDs from the previ-

ous step. About 5500 uninformative compounds that had purely nu-

meric or alpha-numeric names in PubChem and were not connected

to a KEGG ID were removed. In all, ConceptMetab has 97 104

unique compounds, 68 556 with �1 annotation. Among these, 15

231 have both a KEGG ID and a PubChem CID, 1629 have only a

KEGG ID, and 80 244 have only a PubChem ID.

2.3 Metabolite set enrichment testing
We tested for associated metabolite sets using a modified one-sided

Fisher’s exact test (FET) which tests whether the number of com-

pounds in both concepts exceeds that expected by chance relative to

the background set of compounds. Given two concepts, the back-

ground set of compounds was the intersection of the sets of com-

pounds in all concepts in the two concept types (e.g. all compounds

annotated in both GO and MeSH diseases if testing a GO term ver-

sus a disease). We modified FET by subtracting one from the inter-

section of the two concepts, as has previously been done (Huang da

et al., 2009; Sartor et al., 2010). This modification results in a more

conservative test for small concepts, which are more likely be af-

fected by chance co-occurrences, while having minimal effect on

large concepts. After computing p-values and odds ratios for all

pairs of concepts, we applied the False Discovery Rate (FDR) mul-

tiple testing correction of Benjamini and Hochberg and stored all re-

sults in the database.

2.4 Visualizing relationships among concepts
The main benefits of ConceptMetab are its interactivity, various

workflows and visualizations (Supplementary Fig. S1). The web

interface was built using Grails and Javascript, which communicate

with the MySQL database. Users can either browse or query a com-

pound or concept (disease, biological process, etc.) and choose

among the matches to obtain an overview of results. In the case of

a concept, users can obtain the significantly overlapping concepts,

filter the results, and either output tabular results or visualize the re-

sulting relationships as network graphs or a heatmap created via

hierarchical clustering. In the case of a compound, users can retrieve

all concepts to which it is annotated and further analyze those

concepts.

The Cytoscape Web Javascript API is used to display the two

interactive network graphs: the star network and the complete net-

work. In both cases, nodes represent concepts; their size and color

represent the number of compounds and the concept type,

respectively. Graph edges represent significant enrichment at user-

defined levels between concepts (default FDR <0.05 and odds ratio

>0). The star network displays only edges connected to the selected

concept (Supplementary Fig. S1E) while the complete network

shows relationships among all of the concepts enriched relative to

the selected concept (Supplementary Fig. S1F). Clicking a node gives

concept information, and clicking an edge gives FET results and lists

the compounds intersecting the two concepts connected by that

edge.

The interactive heatmap, created using the gplots R package, il-

lustrates which compounds are responsible for the enrichment of

each concept, and the similarity among those concepts relative to

the selected concept (Supplementary Fig. S1G). Rows and columns

are hierarchically clustered using the Euclidean distance metric and

average-linkage criterion. Heatmaps displayed on the website are

interactive, and the underlying, unclustered data is available for

download.

For visual clarity, networks may not exceed 200 concepts

(nodes). For heatmaps, if the concept of interest has more than 2000

compounds, up to 200 concepts can be selected. When the concept

of interest has between 1000 and 2000 compounds, up to 500 con-

cepts can be selected. Users may filter concepts by P-value, q-value,

or odds ratio, or may select individual concepts for the network or

heatmap in the table view.

2.5 Viewing metabolite sets as networks in Metscape
When viewing the list of metabolites in a concept, users have the op-

tion to visualize the KEGG compounds in the MetScape plug-in of

Cytoscape (Karnovsky et al., 2012) using the automatic web-start

feature. Metscape will construct a network of metabolites and meta-

bolic reactions that allows users to explore the interactions between

metabolites, enzymes and genes as determined by metabolic

pathways.

3 Results

3.1 Overview of the ConceptMetab database
ConceptMetab annotates 68 556 compounds to 16 069 biomedical

concepts including diseases, metabolic pathways, cellular processes

and components, phenotypes, environmental exposures and organ-

isms. Concepts originate from 11 concept types: KEGG Pathways,

GO, Enzymes (defined by the metabolites involved in their associ-

ated chemical reactions) and six of the top level MeSH categories

(https://www.nlm.nih.gov/mesh/). Figure 1 shows how compounds

were mapped to each of the concepts for the different annotation

sources. The number of concepts in a concept type ranges from 74

(KEGG Pathways) to 4089 (MeSH Diseases). Concept sizes vary

widely across concept types (Supplementary Fig. S2), with the mean

number of compounds in a concept ranging from 11 (Enzymes) to

404 (MeSH Phenomena and Processes; Table 1). The broad range of

concept sizes is reflective of the widely differing number of com-

pounds required for very specific chemical tasks compared to much

broader biological phenomena.

Compounds were annotated to radically different numbers of

concepts, ranging from 1 to 1611. A few compounds were anno-

tated to a large number of concepts while the majority occurred in

fewer than eight (Supplementary Fig. S3). The compounds anno-

tated to the most concepts were: arachidonate, ATP, AMP, cyclic

AMP, GTP, water, cyclic GMP, nitric oxide, glutathione and linole-

ate (Supplementary Table S1). The distributions for the 3 GO

branches were the least skewed among the concept types, with
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compounds on average belonging to between 20 and 100 concepts

(Supplementary Fig. S3).

A dictionary mapping between KEGG and PubChem IDs makes

concepts from KEGG Pathways, GO terms and Enzymes compar-

able to MeSH terms. Upon testing the statistical significance of over-

lap among all 129 098 346 possible pairs of concepts, a total of 10

334 760 pairs (8%) were statistically significant (FDR < 0.05), pro-

viding a rich network of interactions to explore.

3.2 ConceptMetab workflow
The ConceptMetab website (http://conceptmetab.med.umich.edu)

allows users to explore biomedical concepts and their relationships

to one another in a variety of ways. As specific examples, it can be

used to (i) examine the links between an enzyme such as ‘17-beta-

estradiol 17-dehydrogenase’ and diseases (70 MeSH Diseases are

significant with q-value<0.05) via their common metabolites;

(ii) query a disease or phenotype such as ‘confusion’ to identify rela-

tionships with processes or other diseases, and the small molecules

on which those relationships are based; or (iii) explore the biological

annotations of a specific compound of interest, and relationships

among them. Users can choose a concept type and then browse the

list of concepts in that type, or concepts may be searched directly

(Supplementary Fig. S1A and B). Users may also search for a par-

ticular compound of interest. Supplementary Table S2 shows how

ConceptMetab’s features differ from other metabolite analysis tools.

Upon selecting a concept, a summary page provides: (i) a list of

the compounds in the concept, (ii) filtering options, (iii) a link to the

originating database, (iv) the percent of significant terms in each

concept type and (v) links to visualizations including a star network,

a complete network, a heatmap and a table view (Supplementary

Fig. S1C). The table provides the metabolite enrichment testing re-

sults, including P-values, FDR values, odds ratios and numbers of

overlapping compounds (Supplementary Fig. S1D). Users may ad-

just the P-value or FDR cutoff, and also use a cutoff on the odds

ratio. Users can link to the list of compounds annotated to both the

queried term and any of the enriched terms, and then link to

PubChem or KEGG for more information on a compound. Users

can also visualize the compounds in metabolic networks using a

one-click link to the MetScape Cytoscape plugin (Karnovsky et al.,

2012), where there is information about metabolic reactions, en-

zymes, genes and pathways. The star network shows which concepts

have significant overlap with the concept of interest given the

selected cutoffs (Supplementary Fig. S1E). The complete network

adds significant interactions among all of the associated concepts in

the star network (Supplementary Fig. S1F).

The heatmap illustrates the relationships between compounds in

the queried metabolite set and the enriched concepts to which they

belong. This allows users to find groups of compounds that are

closely related functionally, and to determine which compounds

were responsible for the enrichment of particular concepts

(Supplementary Fig. S1G).

3.3 Significant relationships among metabolite

annotation sources
Of the greater than 10 million (8%) significant concept pairs, 4.1

million (39%) were within the same concept type while 6.3 million

(61%) were between concept types. Overall, 18% of the tests within

a concept type and 6% of tests between two concept types were sig-

nificant. At the concept type level, KEGG ID-based concept types

(Enzyme, GO and KEGG Pathway) have a greater percentage of sig-

nificant associations with other KEGG-based concepts compared to

PubChem-based concepts, and the same is true for PubChem-based

concepts (Fig. 2). This is likely because only a subset of the com-

pounds could be mapped between KEGG and PubChem. Certain

concept types, most notably MeSH Psychology and Psychiatry, have

a large degree of overlap in compounds among their concepts

(lighter squares along the diagonal in Fig. 2). Others such as

Enzymes, KEGG Pathways and MeSH Organisms, have more

unique non-overlapping metabolite sets. Although the percentages

are smaller, we found the most interesting associations to be be-

tween KEGG ID-based annotation concepts and MeSH-based con-

cepts, as these often link molecular level reactions or cellular

processes (KEGG-based) to macro-scale biological phenomena, such

as diseases, anatomy, diet, environmental exposure, or other

Table 1. An overview of the annotation databases in ConceptMetab

Concept Type No. of

Concepts

Mean

Size

Median

Size

No. of

Compounds

Enzyme 175 11 7 874

GOBP 3712 56 20 1220

GOCC 346 117 19 1213

GOMF 864 48 14 1226

KEGG Pathways 74 42 38 2427

MeSH Anatomy 1506 357 208 37 706

MeSH Diseases 4089 182 105 33 074

MeSH Organisms 3011 150 58 48 688

MeSH Phen and Proc 1443 404 195 43 016

MeSH Psy and Psy 519 180 79 9188

MeSH Tech 330 280 198 15 721

The number of biological concepts, the mean and median number of com-

pounds in them, and the number of unique compounds across all concepts in

each concept type are given.
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1.3 2 3 3.7 4.4 0.1 0.3 0.4 0.2 0.1 0.2

2 2.3 3.2 3.3 4.3 0.3 1.1 1.6 0.8 0.7 0.5

3 3.2 6.2 8.1 9.1 0.2 0.6 1 0.2 0.3 0.2

3.7 3.3 8.1 15.4 15.3 0.2 0.9 1.1 0.2 0.3 0.2

4.4 4.3 9.1 15.3 19.7 0.2 1.2 1.4 0.2 0.4 0.2

0.1 0.3 0.2 0.2 0.2 47.6 15.5 13.4 8.1 5.5 10.1

0.3 1.1 0.6 0.9 1.2 15.5 35 25.8 16 11.7 18.2

0.4 1.6 1 1.1 1.4 13.4 25.8 29.7 18.8 14.3 14.5

0.2 0.8 0.2 0.2 0.2 8.1 16 18.8 42.4 12.5 9.7

0.1 0.7 0.3 0.3 0.4 5.5 11.7 14.3 12.5 10.8 6.8

0.2 0.5 0.2 0.2 0.2 10.1 18.2 14.5 9.7 6.8 20.2

Fig. 2. Percentage enrichments between concept types. Numbers in each cell

are the percentage of enrichment tests between the respective concept types

which were significant (FDR < 0.05). Observe that KEGG-based concepts tend

to be more enriched with other KEGG-based concepts, and similarly for

PubChem-based concepts
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phenotypes (MeSH-based). In any user workflow, one can easily fil-

ter to any such subset of results of interest.

3.4 Comparing biological associations based on

metabolites to those based on genes
Although our development of an interactive tool for exploring rela-

tionships among biological metabolite-sets is novel, similar tools for

gene-based concepts are relatively well-established. We therefore

wanted to assess how well metabolites can predict relationships be-

tween various biological phenomena and diseases compared to

genes. ConceptMetab annotates 68 556 compounds to 16 069 biolo-

gical concepts, and includes concepts based on molecular evidence

(GO, KEGG and Enzymes) and biomedical literature (MeSH); a

similar database based on genes (ConceptGen (Sartor et al., 2010))

annotates 36 393 genes to 21 086 biological concepts, includes

many of the same concept types, and uses the same approach for

determining significant association between pairs of concepts.

We compared associations identified between MeSH Disease

and MeSH Phenomena & Processes. We based our comparison on

two MeSH-based concepts (as opposed to MeSH Disease versus

GO) because both metabolites and genes are assigned to MeSH

terms using the same approach, resulting in a fair comparison of me-

tabolites versus genes. ConceptMetab and ConceptGen tested the

association of all such pairs of concepts, identifying 857 378 and

5147 to be significant (FDR < 0.05), respectively. The main reason

for the drastically higher number of significant metabolite-based as-

sociations is that the majority of MeSH terms did not have �5 genes

assigned to them, which was a requirement for the test. Overall, 10

515 concept pairs had at least two elements in common and were

tested for association based on both metabolites and genes. Among

these, 3853 pairs were significant in both approaches, 757 uniquely

significant based on genes, and 851 uniquely significant based on

metabolites, indicating a high level of agreement when sufficient

data exists for both metabolites and genes. However, overall these

results point to a strong advantage to using metabolite-based associ-

ations, as these result in a>100-fold increase in the ability to detect

associations owing to there being more compounds than genes, and

having more compounds annotated to biological functions.

Interestingly, the top 10 types of MeSH Phenomena & Processes

terms that are associated with the most diseases in ConceptMetab

are in the Organic Chemistry Phenomena, Chemical Processes, Cell

Physiological Processes, Metabolism, Biophysical Phenomena and

Biochemical Phenomena branches of the MeSH tree. On the other

hand, the top 10 types of MeSH Phenomena & Processes terms

uniquely significant based on genes are in the Genetic Variation,

Phenotype, Gene Frequency, Inheritance Patterns and Genotype

branches of the MeSH tree. We found that the terms uniquely en-

riched in ConceptMetab tended to be more biologically meaningful

than those based on genes, for example ‘cell cycle, drug resistance,

DNA damage, and platelet aggregation’ as opposed to ‘phenotype,

genetic markers, gene frequency, linkage disequilibrium, and

genotype’. This illustrates the important (and until now unexplored)

contribution that metabolites make to understanding of the relation-

ships among biological concepts.

Doing a similar analysis for MeSH Disease terms, among those

uniquely enriched in ConceptMetab we found Nervous and

Digestive System Neoplasms, Neurodegenerative Diseases,

Neoplastic Processes, Pancreatic and Liver Diseases, Endocrine

Gland Neoplasms and Metabolic Diseases within the top 20 types of

diseases. In contrast, we find Graft versus Host Disease, Bronchial

and Joint Diseases, Connective Tissue and Joint Diseases, RNA

Virus Infections and Vascular Diseases uniquely enriched based on

genes. Indeed, there are diseases and biological concepts where me-

tabolites play a more important role than genes, and vice versa.

3.5 Using ConceptMetab to understand the molecular

and anatomical risks and effects of a disease
Atherosclerosis is an inflammatory disease of the arteries and is

characterized by an accumulation of lipids within the artery wall,

which can lead to reduced blood flow and infarction. Consequently,

atherosclerosis is more than an inflammatory disease; it is also a

leading cause of heart attack and stroke (Ross, 1993).

Atherosclerosis is a MeSH Disease concept in ConceptMetab with

755 compounds. It is significantly associated with 203 GO terms, 425

MeSH Phenomena and Processes concepts, 488 MeSH Anatomy con-

cepts, and others at the FDR < 0.05 level. In particular, MeSH

Anatomy concepts such as ‘Endothelium’, ‘Macrophages’,

‘Monocytes’, ‘T-lymphocytes’, ‘Blood platelets’ and various specific

arteries are significantly associated with atherosclerosis. MeSH

Phenomena and Processes that are significantly associated with ath-

erosclerosis include ‘Vasoconstriction’, ‘Platelet adhesiveness’ and

‘Platelet aggregation’.

These terms are expected because atherosclerosis is localized to

the inner walls (endothelium) of arteries, wherein monocyte-derived

macrophages and subtypes of T-lymphocytes mediate the inflamma-

tory response. The inflammatory response in turn increases adhe-

siveness of the endothelium, especially with respect to blood

platelets, resulting in platelet aggregation. Ultimately, the increased

adhesion and aggregation within the artery contributes to vasocon-

striction (Ross, 1999).

ConceptMetab also finds a number of GO terms associated with

atherosclerosis. Fatty acid catabolism, metabolism and biosynthesis

are enriched, along with ‘Smooth muscle contraction’, ‘Foam cell

differentiation’ and ‘Prostanoid metabolic process’. The inflamma-

tory response is partly mediated by prostanoids, and foam cell for-

mation, in conjunction with smooth muscle migration, contributes

to the growth of the fatty atherosclerotic lesion.

As noted above, atherosclerosis is an inflammatory disease that is

the leading cause of heart attack and stroke. ConceptMetab finds

MeSH Disease concepts such as ‘Inflammation’, ‘Myocardial infarc-

tion’ and ‘Stroke’ to be highly associated with atherosclerosis, thus

predicting comorbidities. Risk factors such as ‘Hypercholesterolemia’

and ‘Atherosclerotic plaque’ are also found. Overall, ConceptMetab

correctly associates numerous risk factors, molecular mechanisms,

anatomical features and observed downstream effects with athero-

sclerosis, providing a comprehensive overview of related biological

concepts and the metabolites that explain these relationships.

3.6 Using ConceptMetab to investigate the diseases

associated with an aberrant biological process
The unfolded protein response (UPR) is a well-studied cellular re-

sponse that occurs under stress and is tightly coupled with endoplas-

mic reticulum stress. The UPR can be either pro-survival or pro-

apoptotic, depending on specific cellular conditions, and leads to the

induction of a specific battery of genes while repressing a wealth of

genes transcribed under normal growth conditions to allow the cell

to regain control. In ConceptMetab, ‘Unfolded Protein Response’ is

represented as a MeSH Phenomena and Processes concept, with 189

compounds, and with 36 significantly enriched GO terms and 255

MeSH Diseases at the FDR < 0.05 level and restricting to terms

with odds ratio >8.
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In the table view, many well-known relationships are readily

identified at the cellular level at the top of the list, including

‘Endoplasmic Reticulum Stress’, ‘Cell Death’ and ‘Autophagy’,

‘Gene Silencing’, heat-shock response, protein folding and transport,

and oxidative phosphorylation. Creating a heatmap of the signifi-

cantly associated diseases, we saw they fall into four main groups

(Fig. 3). Continuing to the interactive heatmap, we saw that the first

group corresponded to anemias, deficiencies, toxic poisonings, and

a few neurologic diseases that all have in common glutathione, glu-

tamine and several related derivatives. The second group involved

blood, bone and heart-related diseases which mainly had calcium-

related compounds in common, and the third group consisted

mainly of diabetes and nutritional diseases and were related by sev-

eral sugar compounds, and insulin/velosulin. Finally, the last group

of diseases contained many neoplasms having drugs in common,

including borozimib, which is known to induce ER stress

and lead to apoptosis. Several specific protein-folding related dis-

eases in these groups were Lipoatrophic Diabetes Mellitus, ‘Insulin

Resistance’, ‘Fatty Liver’, ‘Neurodegenerative Diseases’, fibrotic dis-

eases (Lenna and Trojanowska, 2012), cadmium poisoning

(Gardarin et al., 2010) and lymphomas. We also identified less

known relationships with the UPR that are supported by the litera-

ture nonetheless. For example, Sturge-Weber syndrome, a rare

neurological and skin disease, was identified as significant (q-value

¼ 1.3 � 10�5), and clicking on the number of overlapping com-

pounds shows this relationship includes galactose, hexose and glu-

cose. Recently it was observed that oxidative stress (the UPR is

closely linked to OS and is activated upon OS exposure), may play

an important role in the pathogenicity of Sturge–Weber syndrome

(Kadam et al., 2012).

3.7 Using ConceptMetab to explore relationships

between metabolic pathways and diseases
To explore relationships between metabolic pathways and diseases,

we took the significant KEGG Pathway-MeSH Disease concept pairs

and imported the data into Cytoscape. Figure 4 shows the resulting

network. Not surprisingly, there are several network hubs (dia-

monds) representing a relatively small number of pathways con-

nected to a large number of diseases (squares). Some of the pathway

hubs, such as amino acid metabolism, are connected to many well-

documented metabolic diseases, e.g. ‘Inborn Errors of Amino Acid

Metabolism’ and ‘Ornithine Cabamoyltransferase Deficiency

Disease’. Other expected connections include steroid metabolism

and hormone dependent neoplasms (e.g. breast and prostate cancer),

retinol metabolism and anemia and many others. Interestingly, the

central highly interconnected network component includes amino

acid (alanine, aspartate arginine, proline, glutamine/glutamate, gly-

cine, serine and threonine, branched chain amino acids), fatty acid

and energy metabolism (glycolysis, oxidative phosphorylation) path-

ways that share many of the same disease connections. Given the

central role of these pathways as part of primary metabolism, it is

not surprising that their dysregulation has implications for a variety

of diseases ranging from brain injuries to cancers to metabolic dis-

eases. Since our pathway – disease network is based on biochemical

pathways and literature-derived metabolite concepts, we expect it to

be biased towards diseases that are linked to metabolic dysregula-

tions that have been sufficiently described in publications.

3.8 Using ConceptMetab to explore the biological roles

of a metabolite
One of the challenges in analyzing metabolomics data is connecting

the experimentally observed changes to the associated phenotypes.

The usual analysis workflow involves mapping metabolites to

known metabolic pathways (Lanza et al., 2010). This helps establish

connections between metabolites and a relatively small portion of

genes encoding metabolic enzymes, but often neglects broader biolo-

gical context. Pathway databases have relatively low representation

of experimentally detected metabolites, which further limits their

utility. ConceptMetab provides an alternative way to explore biolo-

gical connections of metabolites. To demonstrate the compound

analysis capabilities of ConceptMetab, we selected gamma-hydroxy-

butyrate (GHB, 4-hydroxybutanoate), a compound notoriously

known as a date rape drug (Bendinskas et al., 2011) and a club drug

(Gahlinger, 2004). GHB also has well-documented medicinal uses

(Mamelak et al., 1986), is found naturally at low concentrations in

the mammalian brain (Vayer et al., 1987), and accumulates in pa-

tients with succinic semialdehyde dehydrogenase (SSADH) defi-

ciency (Pearl et al., 2003).

Fig. 3. Screenshot of overview heatmap for diseases associated with

Unfolded Protein Response. Each row represents a MeSH disease and each

column is a compound. The UPR is associated with four main groups of dis-

eases, defined by the types of overlapping compounds. From here, users

may click to proceed to an interactive heatmap view

Fig. 4. Bipartite metabolic pathway – disease network identified by

ConceptMetab and displayed in Cytoscape. Black diamonds represent path-

ways; grey squares are diseases. The ovals in the center represent groups of

several KEGG pathways, e.g. carbohydrate metabolism includes amino

sugar, nucleotide sugar, galactose, fructose and mannose metabolism
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ConceptMetab shows that GHB is part of 106 concepts that

span seven MeSH headings, including Anatomy and Diseases.

Predictably, GHB was linked to Central Nervous System (CNS),

Alcoholism and Brain Ischemia. Each of these concepts contains

hundreds of compounds. We proceeded to select these three con-

cepts and built a complete network (Fig. 5). ConceptMetab provides

an easy way to explore the overlap between the concepts displayed

in the Complete Network view. Clicking on the edge connecting the

concept nodes displays the list of compounds shared between them.

The Alcoholism – Brain Ischemia edge and the CNS – Brain

Ischemia edge both list taurine, a compound which, like GHB, has

neuro-protective properties (Shuaib, 2003). Interestingly, taurine is

being tested as a potential treatment in patients with the SSADH de-

ficiency (Pearl et al., 2014). Inspection of the CNS – Alcoholism

edge includes baclofen, which is a specific agonist of GABA-B recep-

tors used for alcoholism treatment (Addolorato et al., 2000) but is

also known to help with GHB withdrawal (LeTourneau et al.,

2008). Thus, ConceptMetab helps find known as well as unexpected

useful chemical links between biological concepts.

4 Discussion

As the ultimate readout of metabolic state, metabolomics has the po-

tential to transform our understanding of mechanisms underlying

disease and further enhance knowledge generation through integra-

tion with other omics data. As experimental metabolomics matures

and the number of measurable metabolites approaches the estimated

number of endogenous metabolites, metabolomics together with

transcriptomics, proteomics and epigenomics will provide a compre-

hensive understanding of a biological system as a whole. While

gene-based technologies, analysis methods and annotation have well

established standards and an abundance of relevant bioinformatics

software, the parallel requirements for high throughput metabolo-

mics still lag far behind. As a step towards bridging this gap, we

have developed a tool that annotates both endogenous and synthetic

small compounds to various types of biological concepts, and that

provides interactive exploration of the relationships among these

concepts. With the novel MeSH-based annotation source, we have

increased the number of annotated metabolites by �25-fold and

shown that many relevant relationships not identified by genes are

identified via metabolites.

The ability to visualize relationships not only between pairs of

metabolite sets but also the network structure among many can help

bridge the gaps from molecular level to phenotype level to popula-

tion level biomedical concepts. No other program allows testing for

significant enrichment among predefined metabolite sets. The few

programs that currently offer enrichment testing of experimental

metabolite sets only annotate a small minority of compounds. The

next step will be to expand upon ConceptMetab to offer such ana-

lysis with greatly expanded annotation.

In ConceptMetab, both KEGG and PubChem IDs were used to

maximize annotation, giving us the benefits of both traditional an-

notation sources such as KEGG and GO, and our MeSH term anno-

tations. We chose KEGG because it is well-established, consistent

and cross-referenced with PubChem. We recognize that other data-

bases such as BioCyc (Caspi et al., 2014), Recon2 (Thiele et al.,

2013), Reactome (Croft et al., 2014) and SMPDB (Jewison et al.,

2014) may provide a complimentary view of metabolic pathways.

Overall, ConceptMetab provides a rich resource documenting rela-

tionships among different types of metabolite-based concepts, which

will aid in understanding the complex and interrelated biological

roles of metabolites.
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