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Abstract

Motivation: The human microbial communities are associated with many human diseases such as

obesity, diabetes and inflammatory bowel disease. High-throughput sequencing technology has

been widely used to quantify the microbial composition in order to understand its impacts on

human health. Longitudinal measurements of microbial communities are commonly obtained in

many microbiome studies. A key question in such microbiome studies is to identify the microbes

that are associated with clinical outcomes or environmental factors. However, microbiome com-

positional data are highly skewed, bounded in [0,1), and often sparse with many zeros. In addition,

the observations from repeated measures in longitudinal studies are correlated. A method that

takes into account these features is needed for association analysis in longitudinal microbiome

data.

Results: In this paper, we propose a two-part zero-inflated Beta regression model with random

effects (ZIBR) for testing the association between microbial abundance and clinical covariates for

longitudinal microbiome data. The model includes a logistic regression component to model pres-

ence/absence of a microbe in the samples and a Beta regression component to model non-zero mi-

crobial abundance, where each component includes a random effect to account for the correlations

among the repeated measurements on the same subject. Both simulation studies and the applica-

tion to real microbiome data have shown that ZIBR model outperformed the previously used meth-

ods. The method provides a useful tool for identifying the relevant taxa based on longitudinal or

repeated measures in microbiome research.

Availability and Implementation: https://github.com/chvlyl/ZIBR

Contact: hongzhe@upenn.edu

1 Introduction

The human microbial communities are associated with many human

diseases such as obesity, diabetes and inflammatory bowel disease

(IBD) (Kostic et al., 2014; Qin et al., 2012; Turnbaugh et al., 2006).

In order to decipher the function and impact of the microbes on

the human well-being, two high-throughput sequencing-based

approaches have been widely used in microbiome studies. One is the

16S ribosomal RNA (rRNA) sequencing approach, which profiles

bacterial community by sequencing the 16S rRNA marker gene.

Another approach is the shotgun sequencing, which sequences all

the microbial genomes presented in the sample, rather than just one

marker gene. Both 16S rRNA and shotgun sequencing approaches

are quite useful and have been widely applied in human microbiome

studies, such as the Human Microbiome Project (HMP) (Turnbaugh

et al., 2007) and the Metagenomics of the Human Intestinal Tract

(MetaHIT) project (Qin et al., 2010). To quantify the microbial

abundances, the sequencing reads usually are aligned to some

known reference sequences (Segata et al., 2012). Due to the uneven

total sequence counts of samples, the microbial abundances meas-

ured in read counts are not comparable across samples. Therefore, it
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is common that the read counts are normalized to the relative abun-

dances by dividing total sequence count in the sample so that the

relative abundances of all microbes in one sample sum to one (Tyler

et al., 2014), resulting in compositional data with lots of zeros.

It is of great interest to study how microbial abundance changes

across time and its association with treatments, clinical outcomes or

other covariates. To address this question, many microbiome studies

employed the longitudinal study design (for reviews, see Faust et al.,

2015; Gerber, 2014; Gonz�alez et al., 2012). For example, Lewis

et al. (2015) studied the gut microbiome from pediatric IBD patients

during an 8-week treatment. One interesting question in this study is

to identify the bacterial taxa that change their abundances under dif-

ferent treatments across time. In another longitudinal microbiome

study, B€ackhed et al. (2015) studied the microbiome changes during

the first years of newborn babies with different delivery methods

and feeding activities.

Modeling such sparse longitudinal compositional data is challeng-

ing for several reasons. First, the microbiome compositional data is

non-normally distributed and bounded in [0,1). Methods with normal

distributional assumption are not expected to perform well. Second,

the microbiome data is often observed with many zeros, which leads

to great heterogeneity in the data. Third, in microbiome studies, it is

important to adjust for the other covariates/confounders such as pa-

tient’s age or antibiotic use. Therefore, a multivariate regression based

method is more preferred than univariate tests such as the t-test or

Wilcoxon rank-sum test. Fourth, the repeated measurements in longi-

tudinal data are correlated, i.e. observations from the same subject

across different time points are not independent. This renders the

methods with independence assumption not directly applicable.

Ignoring the correlations among the repeated measures can lead to in-

correct inferences. Therefore, taking into account the correlations

among repeated measurements is necessary.

Several methods have been used to analyze longitudinal micro-

biome data in order to identify the covariate-associated taxa, but each

has its own limitations. To overcome the issue of non-independence

of the data across time points, most of the longitudinal microbiome

studies analyze data at individual time point (Arrieta et al., 2015;

Cox et al., 2014; David et al., 2014; Rutten et al., 2015; Schulz et al.,

2014; Zhou et al., 2015) or compare two time points but ignore the

other time points (B€ackhed et al., 2015; Koren et al., 2012). To take

into account the excessive zeros in the data, a two-part test combining

a Z-test for testing the proportion of zeros and a Wilcoxon rank-sum

test for testing the non-zero values, was developed for identifying dif-

ferential abundant microbes between two groups (Markle et al.,

2013; Wagner et al., 2011). Such tests cannot be applied to longitu-

dinal correlated data and are limited to only two-group comparison.

Romero et al. (2014) developed a zero-inflated Poisson regression

model with random effects to account for the correlations in the lon-

gitudinal data, but the model can only be applied to count data. A lin-

ear mixed-effects model with arcsine square root transformation on

the microbiome compositional data was used (Kostic et al., 2015; La

Rosa et al., 2014), however, this method does not explicitly handle

the excessive zeros in the data. This motivates us to develop a flexible

method that identifies the covariate-associated taxa while handling

the features of the microbiome compositional data and jointly model-

ing data from all time points.

The focus of this paper is to develop a statistical model for iden-

tifying the bacterial taxa that are associated with covariates while

addressing the above limitations. We propose a two-part mixed-

effects Beta regression model, which is a mixture of a logistic regres-

sion component and a Beta regression component, with the random

effects being included in the model to allow the correlations among

the repeated measures. This model takes into account the nature of

the microbiome compositional data and allows for multiple covari-

ates in the regression setting. In addition, the model can jointly ana-

lyze data from all the time points. Simulation results show that our

method outperforms previously used methods in terms of increased

power in detecting covariate-associated taxa. We apply ZIBR to a

real microbiome study and identify several bacterial taxa that are

associated with different treatments of inflammatory bowel disease.

ZIBR model was implemented in R package ZIBR and is freely

available at https://github.com/chvlyl/ZIBR.

2 A two-part mixed-effects regression model for
longitudinal microbiome data

To illustrate the features of the sparse compositional data observed

in microbiome studies, Figure 1 shows the distribution of the relative

abundance of two bacterial genera from a real microbiome data set

(Lewis et al., 2015) that we will analyze in Section 4. The data show

several important features: (i) bounded in [0,1); (ii) highly skewed;

(iii) include excessive zeros. In addition, if the microbiome data are

measured in a longitudinal study, the repeated measures from the

same subjects across time points are expected to be correlated. In

order to identify the microbes that are associated with clinical out-

comes, we develop a two-part logistic-Beta regression model with

random effects to model such longitudinal data.

Our model considers each taxon separately. For each given bacter-

ial taxon, let Yit ði ¼ 1;2; . . . ;N; t ¼ 1; 2; . . . ;TÞ be its relative abun-

dance for subject i at time t, where 0 � Yit < 1. We assume that

Yit�0 with probability 1� pit (1)

�Betaðlit/; ð1� litÞ/Þ with probability pit; (2)

where the density function of the Beta distribution is parameterized as

f ðyit; lit;/Þ ¼
Cð/Þ

Cðlit/ÞCðð1� litÞ/Þ
y

lit/�1
it ð1� yitÞð1�litÞ/�1 (3)

with lit ð0 < lit < 1Þ and / ð/ > 0Þ being the mean and dispersion

parameters of the Beta distribution, respectively. The parameter pit

is the probability that the observation Yit is generated from the Beta

component. Figure 1 shows that the Beta distribution fits the non-

zero values of the real data well. In addition, we let the probability

pit of the logistic component and the mean of the Beta component

lit depend on the covariates through the logit link functions,

logitðpitÞ ¼ log
pit

1� pit

� �
¼ a0 þXT

it aþ ai; (4)

logitðlitÞ ¼ log
lit

1� lit

� �
¼ b0 þ ZT

it bþ bi; (5)

Fig. 1. Examples of two genera from the real human microbiome data. Red

bars represent the density of the non-zero data (left Y axis). Black bars repre-

sent the zero proportion (right Y axis). Back curves show the fit of the non-

zero data using a Beta distribution
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where a0 and b0 are intercepts, ai and bi are the individual-specific

random intercepts, Xi and Zi are the covariates that can be time-

dependent and are not necessarily the same, and a and b are the cor-

responding vectors of the regression coefficients.

This model can be considered as a two-part model with a logistic

component and a Beta component. The logistic component models

the presence/absence of the taxon in the samples and the Beta compo-

nent models the non-zero abundance of the taxon. A covariate can af-

fect the microbiome composition in two different ways: (i) it affects

the presence/absence of the taxon in the samples, which is modeled

through the logistic regression part in the model; (ii) it affects the rela-

tive abundance when the taxon presents in the samples. This is mod-

eled by the Beta regression in the model. The data observed are from a

mixture of these two models. This model is flexible to allow that the

covariates affecting the presence/absence of the microbial species are

different from the covariates affecting microbial abundance.

If the data are measured at repeated times, the responses at dif-

ferent time points within a subject are expected to be correlated.

The repeated measures Yit (t ¼ 1; . . . ;TÞ on the same subject i share

the same individual-specific random effects of ai and bi across differ-

ent time points, which can be used to model such correlations and to

account for multiple sources of variance. We only include the ran-

dom intercepts in the model since such simple random intercepts are

often adequate in practice to capture the longitudinal correlations

(Min and Agresti, 2005). However, it is easy to extend our model to

include random slopes. The random effects are assumed to follow

an independent normal distribution,

ai � Nð0;r2
1Þ; bi � Nð0;r2

2Þ:

The parameters can be estimated by the standard maximum like-

lihood estimation (MLE), where the likelihood function is given as

Lða; b;/; r2
1;r

2
2Þ

¼
YN
i¼1

ð1
�1

ð1
�1

YT
t¼1

ð1� pitÞIðYit¼0Þ½pitf ðlit;/Þ�IðYit>0Þ

�gðai;bijr2
1; r

2
2Þdaidbi;

where pit and lit are defined through the logistic regression models

(4)–(5), f ðlit;/Þ is the Beta density function given in (3) and gðai; bij
r2

1;r
2
2Þ is the product of two normal density functions.

To evaluate this likelihood function, we first integrate out the

unobserved random effects to obtain a marginal likelihood. Since

the integrals are analytically intractable, the marginal likelihood

does not have a closed-form expression. We use Gauss-Hermite

quadrature to approximate the integral by a finite sum. The MLE of

ða; b;/; r2
1; r

2
2Þ can be obtained numerically. The likelihood ratio

test can be applied to test the following three biologically relevant

null hypotheses:

I the covariates are associated with the bacterial taxon by affecting

its presence or absence, H0 : aj ¼ 0;

II the taxon is associated with the covariates by showing different

abundances, H0 : bj ¼ 0;

III the covariates affect the taxon both in terms of presence/absence

and its abundance, H0 : aj ¼ 0 and bj ¼ 0 for each covariate Xj

and Zj.

The P value can be obtained for each of these hypotheses. If the

covariate X and Z are the same, the joint null (III) is H0 : aj ¼ 0 and

bj ¼ 0, which tests the overall association between the covariate and

the taxon abundance. We have implemented this model and the like-

lihood ratio tests as an R package ZIBR.

3 Simulation studies

To evaluate the performance of our proposed method ZIBR for lon-

gitudinal microbiome data, we carried out simulation studies first.

We compared our method with the linear mixed-effects model with

arcsine square root transformation (LMM) on the microbiome

abundance as proposed in La Rosa et al. (2014) and Kostic et al.

(2015). LMM was compared since it was the only method that can

jointly model data measured over all the time points in longitudinal

microbiome studies.

We first evaluated the type I errors of the two methods. One bin-

ary covariate for both logistic and Beta components was used to

mimic the case–control study design, where X ¼ Z ¼ 0 for 1
2 N sub-

jects and X ¼ Z ¼ 1 for the other 1
2 N subjects. We set the regression

coefficients as a ¼ ða0; a1Þ ¼ ð0; 0Þ; b ¼ ðb0; b1Þ ¼ ð�0:5;0Þ, the

variance of the mixed-effects as r1 ¼ r2 ¼ 0:5 and the dispersion

parameter of the Beta distribution as / ¼ 5. These parameters were

chosen to mimic the parameters estimated based on the real dataset

analyzed in Section 4. The likelihood ratio test was performed to

test the null hypothesis

H0 : a1 ¼ b1 ¼ 0:

The simulation was carried out with different number of subjects

(N¼50, 100, 150), each with T¼5 time points. The simulations

were repeated 10,000 times under each sample size setting. The type

I error was calculated for two different nominal levels of 0.01 and

0.05.

The results are shown in Table 1, indicating that both our pro-

posed method ZIBR and LMM both controlled the type I errors rea-

sonably well. We also evaluated the running time of ZIBR. It took

2.3, 4.0 and 7.0 s per simulation to run on a MacBook Pro laptop

for sample size of N¼50, 100, 150, respectively, indicating that the

algorithm was very efficient.

We then evaluated the power of ZIBR for identifying the true as-

sociation. We simulated 1000 bacterial species, of those, 400 were

associated with the binary covariate and the rest, 600, were not

associated. For each species, we simulated N¼50 subjects with

T¼5 time points for each subject. We simulated the regression coef-

ficients ða0; a1; b0;b1Þ either from a uniform distribution or set them

to zero. Particularly, they were set to

1. ð�0:5;Uð0:1; 1Þ;�0:5;Uð0:1; 1ÞÞ for 100 species;

2. ð0:5;Uð�1;�0:1Þ; 0:5;Uð�1;�0:1ÞÞ for 100 species;

3. ð�0:5;Uð0:1; 1Þ; 0:5;Uð�1;�0:1ÞÞ for 100 species;

4. ð0:5;Uð�1;�0:1Þ;�0:5;Uð0:1;1ÞÞ for 100 species;

5. ð0; 0;�0:5; 0Þ for 600 species.

Here scenarios (1) and (2) indicate that the associations in the lo-

gistic and Beta components have the same direction while scenarios

(3) and (4) indicate different directions. Scenario (5) indicates no as-

sociation in either logistic or Beta component. We simulated vari-

ance of the random effect as r1 � Uð0:1; 1Þ; r2 � Uð0:1; 1Þ and

Table 1. Type I error for testing H0 : a1 ¼ b1 ¼ 0 based on ZIBR and

LMM for a-level of 0.01 and 0.05 for various sample sizes

ZIBR LMM ZIBR LMM

Sample size 0.01 0.05

N¼50 0.0130 0.0107 0.0584 0.0484

N¼100 0.0105 0.0096 0.0532 0.0507

N¼150 0.0095 0.0100 0.0493 0.0494

Simulations were repeated 10 000 times.
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Beta dispersion parameter as / � Uð2; 10Þ. The performance of

ZIBR and LMM were evaluated based on the receiver operating

characteristic (ROC) curve for identifying the covariate-associated

species. The ROC and area under the curve (AUC) analysis were

performed using pROC package in R (Robin et al., 2011). The re-

sults are shown in Figure 2. The AUC for ZIBR was 92.0 compared

to 79.1 for LMM, showing a significant difference (P < 2:2�
10�16 by DeLong’s test).

We also performed simulations to evaluate the power of ZIBR

and LMM as a function of the proportion of zeros in the data as the

value of a0 varied. The intercept a0 controls the proportion of zeros

presented in the data. Four different parameter settings for ða0; a1;

b0;b1Þ were considered,

1. ð½�1;0:5�;0:5; 0:5; 0:5Þ,
2. ð½�0:5;1�;�0:5; 0:5; 0:5Þ,
3. ð½�1;1�; 0; 0:5; 0:5Þ,
4. ð½�1;0:5�;0:5; 0; 0Þ,

where a0 was evenly chosen from the above intervals to generate the

power curves. The power curves are plotted in Figure 3 as the a0

value increases, which corresponds to decreased proportion of zeros

presented in the data. Similar to the previous simulations, scenario

(1) assumed that the associations in the logistic and Beta compo-

nents had the same direction while scenario (2) implied different dir-

ections. Scenario (3) assumed no association in logistic component

and scenario (4) assumed no association in the Beta component. In

each scenario, we simulated N¼50 subjects with T¼5 time points

for each subject. The covariates X and Z as well as r1;r2;/ were

simulated in the same way as in the previous simulations. The simu-

lation for each a0 value was repeated 10 000 times. For ZIBR, we

tested the null hypothesis H0 : a1 ¼ b1 ¼ 0 with an a-level of 0.05.

As the proportion of zeros decreased in the data, the power of

detecting the true association increased for both ZIBR and LMM ex-

cept for scenario (4). Generally, ZIBR had greater power than LMM

especially when the association in the logistic and Beta components

had different directions [scenario (2)] or no association was assumed

in logistic component [scenario (3)]. When the association in the lo-

gistic and Beta components had the same direction, ZIBR and LMM

had the similar power [scenario (1)]. When the association was

assumed only for the logistic component, the power of ZIBR and

LMM decreased as the proportion of zeros in the data decreased.

4 Real data analysis

We applied ZIBR to a real microbiome study comparing different

therapies for pediatric IBD patients (Lee et al., 2015; Lewis et al.,

2015). The study collected 90 children with IBD who received one

of the three study therapies, including 52 children receiving anti-

TNF, 22 receiving exclusive enteral nutrition (EEN) and 16 receiv-

ing partial enteral nutrition with ad lib diet (PEN). Adequate stool

samples were available from 86 individuals to conduct shotgun

metagenomic analysis. Gut microbiome samples were collected at

four time points: baseline, 1 week, 4 weeks and 8 weeks into the

therapy. The bacterial abundances at genus level were quantified

using MetaPhlAn 1.7.6 (Segata et al., 2012). The low sequencing

depth samples and low abundant genus were removed as in Kostic

et al. (2015), Romero et al. (2014) and Stein et al. (2013). After fil-

tering, we had a total of 236 samples with 59 subjects (47 anti-TNF

and 12 EEN) and four time points for each subject as well as 18

most common bacterial genera. Our goal was to identify the bacter-

ial genera that showed overall different abundances over three time

points between EEN and anti-TNF treatments, adjusting for time ef-

fect and the abundance at the baseline. We fitted ZIBR with the

baseline abundance, week and treatment as covariates and com-

pared the results from fitting the linear mixed-effects model (Kostic

et al., 2015; La Rosa et al., 2014) with the same covariates and a

subject-specific random effect. For the LMM, the relative abundance

was arcsine square root transformed before fitting the model. The

linear mixed-effects model was fitted using the lme function from

nlme package in R. The P-values were adjusted using the

Benjamini–Hochberg procedure to control the FDR.

At FDR¼5%, LMM identified seven genera, including Rumino-

coccus, Faecalibacterium, Bifidobacterium, Dialister, Streptococcus,

Haemophilus and Alistipes. ZIBR identified all those seven gen-

era and also identified four additional genera, Lactobacillus,

Fig. 2. ROC curves for identifying association by ZIBR and LMM, where 1000

species were simulated and 400 of them had true association with the covari-

ate. The simulations were carried out with N¼50 subjects and T¼5 time

points for each subject. LMM is the linear mixed-effects model with arcsine

square root transformation on the microbial abundance. The best cutoff and

the corresponding specificity and sensitivity for each method are indicated,

where the best cutoff is defined as the value such that the sum of sensitivity

and specificity is the largest (Color version of this figure is available at

Bioinformatics online.)

Sim1

Sim3 Sim4

Sim2

Fig. 3. Power curves for identifying association by ZIBR and LMM. In each plot,

the power was plotted against the a0 value, which controlled the proportion of

zeros presented in the data, where a larger a0 value indicated smaller propor-

tion of zeros presented in the data. Four different scenarios were simulated

(see Section 3 for details). The simulation for each a0 value was repeated

10 000 times (Color version of this figure is available at Bioinformatics online.)
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Veillonella, Collinsella and Eubacterium (Fig. 4). Table 2 shows the

FDR-adjusted P-value for each of the three covariates in the model,

indicating that the initial abundance of these four genera had large

effects for their abundance during the course of the treatment.

However, these genera were relatively stable in their abundance dur-

ing the 8 weeks of treatments.

After adjusting the baseline abundance, these four genera

showed different abundances between anti-TNF and the EEN treat-

ments. Figure 5 shows the abundances of those four genera over

time. Lactobacillus and Veillonella were observed more frequently

in the anti-TNF-treated group across different time points than in

the EEN group. However, no significant difference was observed for

the non-zero abundance when they were observed. In contrast,

Collinsella and Eubacterium showed consistent differences across

all three time points in the non-zero abundance but not the frequen-

cies being observed. Results from ZIBR showed that different treat-

ments led to different probabilities of observing Lactobacillus and

Veillonella (FDR-adjusted P¼0.0049, FDR adjusted P¼0.0085),

but not Collinsella or Eubacterium (FDR-adjusted P¼0.30, FDR-

adjusted P¼0.50). In addition, different treatments seemed to lead

to different abundances for Collinsella and Eubacterium (FDR-ad-

justed P¼0.025, FDR-adjusted P¼0.025), but not for

Lactobacillus or Veillonella (FDR-adjusted P¼0.42, FDR-adjusted

P¼0.93). The advantage of ZIBR is that it considers these two types

of differences simultaneously, and therefore, potentially leads to

more power in detecting the differences in abundances between the

two treatment groups.

5 Discussion

We have proposed a two-part mixed-effects model to identify the

taxa that are associated with clinical covariates in the longitudinal

microbiome studies. Our model takes into account the compos-

itional and sparse nature of the microbiome data as well as the cor-

relations among the repeated measures in the longitudinal studies.

We have demonstrated that our proposed model outperformed the

commonly used linear mixed-effects models in identifying the

covariates-associated taxa. We applied our method to a real human

microbiome study of IBD treatment and identified a number of bac-

terial genera that showed different abundances between two com-

monly used treatments during the 8-week treatment period.

The model we proposed in this paper can be applied to propor-

tion data obtained from either 16S rRNA sequencing or shotgun

metagenomic sequencing. For shotgun metagenomic data, it is not

clear how to summarize the sequencing reads into bacterial counts

since many reads can be aligned to multiple bacterial genomes.

Therefore, most commonly used methods such as MetaPhlAn only

output the relative abundances or proportions of the bacteria in

the sample. For 16S count data, methods developed for testing

Fig. 4 .Bacterial genera that showed different abundances between anti-TNF

and EEN treatments identified by ZIBR and LMM after adjusting for the initial

abundance. LMM identified seven genera, which were also identified by

ZIBR. ZIBR identified four additional genera

Fig. 5. Four genera identified by ZIBR but not by LMM. Left panel shows the

percentage of samples in EEN or anti-TNF groups where the genus was pre-

sent. Right panel shows the non-zero abundance in EEN or anti-TNF groups,

where the abundances were logit-transformed (Color version of this figure is

available at Bioinformatics online.)

Table 2. Comparison of the results from ZIBR and LMM for four bacterial genera, where three covariates, including the

baseline abundance, time and treatment, were included in each model

LMM ZIBR

Species Baseline Time Treatment Baseline Time Treatment

Lactobacillus 1.10E-11 5.68E-02 4.97E-01 2.46E-07 5.38E-01 9.41E-03

Veillonella 9.04E-07 8.04E-01 5.27E-01 4.81E-07 9.89E-01 1.76E-02

Collinsella 2.28E-07 9.85E-01 2.91E-01 6.14E-09 5.38E-01 1.57E-02

Eubacterium 1.03E-02 1.84E-02 5.04E-02 1.18E-02 2.43E-01 2.67E-02

For each genus, the FDR-adjusted P-value is shown for each of the three covariates in the model.
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associations for RNA-seq count data such as DEseq (Anders and

Huber, 2010) and EdgeR (Robinson and Smyth, 2007) have been

applied to the microbiome studies (McMurdie and Holmes, 2014).

However, compared to RNA-seq data, 16S counts often include ex-

cessive zeros, which can violate the assumptions made for RNA-seq

count data. To deal with the problem of excessive zeros, Paulson

et al. (2013) developed a zero-inflated Gaussian model with the log-

transformation on the read counts for 16S rRNA sequencing data,

where an empirical Bayes procedure was developed to estimate the

moderated variances. However, those methods are developed for

16S count data and thus not suitable for proportion data. In add-

ition, it is not clear how to extend the empirical Bayes method of

Paulson et al. (2013) to repeatedly measured count data. It is not

trivial to extend these methods to simply include certain random

effects.

The zero-inflated beta regression model (Peng et al., 2015) and

zero-or-one inflated beta regression model (Ospina and Ferrari,

2012) have been developed for proportion data. However, none of

the methods can handle repeatedly measured proportion data such

as the longitudinal data considered in this paper. The difference be-

tween these models and our model is that our model includes two

random intercept terms in order to model the dependency of the

data measured over time. This is important for analyzing longitu-

dinal data since the observations are not independent. Including ran-

dom effects also allows us to model multiple sources of variance

that cannot be accounted for by the observed covariates.

The two-part mixed-effects regression model we proposed here

is similar to what were studied in literature, e.g. zero-inflated

Poisson, binomial and negative binomial regression with random ef-

fects (Hall, 2000; Min and Agresti, 2005). In all these models,

shared subject-specific random effect is included in the model in

order to model the dependency of the observations across time. Our

model [Equations (4) and (5)] allows two components to have differ-

ent individual-specific random effects to allow for possible different

dependency structures for the zero and non-zero parts of the data.

These random effects are also used to account for multiple sources

of variance. Our model does not assume that the correlation across

time is purely caused by the covariates X and Z, it is the random ef-

fects that lead to the observed correlations across time.

One of the characteristics of the compositional data is the rela-

tive abundances of all taxa in the sample sum to one. Joint analysis

of all the taxa needs to account for this unit sum constraint and sev-

eral methods have recent been developed (Li, 2015). However, in

our application, each taxon is analyzed independently using the pro-

posed ZIBR model and differential abundant taxa are selected by

controlling the FDR. In such analyses, the sum-to-one constraint in

the compositional microbiome data is not relevant. The unit sum of

the data may lead to certain dependency the likelihood ratio statis-

tics among the taxa, which may affect the performance of the FDR

controlling procedure of Benjamini and Hochberg (1995).

In our simulations and analysis of real data, the ZIBR model in-

volves the same covariates for logistic regressions and Beta regression.

However, our model is more flexible, which can include multiple

covariates and different covariates in two different components of the

model. Besides identifying bacterial taxa, the model proposed here

can also be applied to identify microbial genes or pathways that show

different profiles in longitudinal microbiome studies.
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