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Abstract

Motivation: Testing SNP–SNP interactions is considered as a key for overcoming bottlenecks of

genetic association studies. However, related statistical methods for testing SNP–SNP interactions

are underdeveloped.

Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 biologically mean-

ingful interaction patterns for a binary outcome. SIPI takes non-hierarchical models, inheritance

modes and mode coding direction into consideration. The simulation results show that SIPI has

higher power than MDR (Multifactor Dimensionality Reduction), AA_Full, Geno_Full (full interaction

model with additive or genotypic mode) and SNPassoc in detecting interactions. Applying SIPI to

the prostate cancer PRACTICAL consortium data with approximately 21 000 patients, the four SNP

pairs in EGFR-EGFR, EGFR-MMP16 and EGFR-CSF1 were found to be associated with prostate can-

cer aggressiveness with the exact or similar pattern in the discovery and validation sets. A similar

match for external validation of SNP–SNP interaction studies is suggested. We demonstrated that

SIPI not only searches for more meaningful interaction patterns but can also overcome the un-

stable nature of interaction patterns.

Availability and Implementation: The SIPI software is freely available at http://publichealth.lsuhsc.

edu/LinSoftware/.

Contact: hlin1@lsuhsc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During the past decade, the genome-wide association studies

(GWAS) have successfully identified many inherited genetic variants

(or SNPs) associated with complex diseases, such as cancer or

related phenotypes. However, the predictive power of cancer risk

for the GWAS-identified SNPs is small by a median of 1.2 per-allele

odds ratio (Ioannidis et al., 2010). The predictive power of these

GWAS SNPs can be improved by combining multiple SNPs in a pre-

diction model (Van den Broeck et al., 2014). We recently reported

the polygenic genetic models to estimate their risk for prostate

cancer (Al Olama et al., 2014; Amin Al Olama et al., 2015; Eeles

et al., 2013). Despite these efforts, major proportion of familiar risk

of prostate cancer remains unknown. The similar situation applies

for using SNPs to predict prostate cancer prognosis (Van den Broeck

et al., 2014). It is well known that biological associations among

genes are complicated. The majority of GWAS focus on identifica-

tion of individual SNP effects, which are not sufficient to explain the

complexity of disease causality. It has been shown that gene–gene/

SNP–SNP interactions play an important role in the etiology of com-

plex diseases (Cordell, 2009; Moore, 2003; Moore and Williams,
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2002; Onay et al., 2006). Although SNP–SNP or gene–gene inter-

action studies have been emerging, the statistical methods for evalu-

ating SNP–SNP interactions are still underdeveloped.

The majority of genetic association studies focus on two-way

interactions with two SNPs involved. In the past decade, various

statistical methods have been proposed for evaluating two-way

SNP–SNP interactions. These methods can be classified either

model-based or pattern-based. The most common model-based ap-

proach tests an interaction based on a full interaction model (hier-

archical model) with both main effects and their interaction and

SNPs could be treated as different inheritance mode (such as addi-

tive, dominant, recessive and genotypic). Examples include the full

interaction model in PLINK (Purcell et al., 2007), SNPassoc

(Gonzalez et al., 2007) and the 2nd stage of the Boolean Operation-

based Screening and Testing (BOOST) (Wan et al., 2010). For the

model-based approaches, the impact of an interaction can be distin-

guished from the main effects, but the types of detectable interaction

patterns are limited. In the pattern-based approach, interaction de-

tection is based on risk patterns of the 3 � 3 genotype combination

table of the two SNPs. The Hypothesis Free Clinical Cloning

(HFCC) tests for 255 patterns for one SNP pair (Gayan et al.,

2008), but some patterns may not be biologically meaningful or are

rare. SNPmaxsel evaluates 16 interaction patterns and four main ef-

fects for a given SNP pair (Boulesteix et al., 2007). Multifactor

dimensionality reduction (MDR) is also a pattern-based approach

(Ritchie et al., 2001, 2003) to define based the best model based on

classification accuracy. The strength of pattern-based approaches is

that they are designed to detect wider range of interaction patterns.

The limitation of the pattern-based approaches is that they search

associations that allow for but are not limited to interactions. A sig-

nificant result detected using the pattern-based approaches may be

due to strong main effect without an interaction.

To overcome these weaknesses, we propose SNP Interaction

Pattern Identifier (SIPI), which combines the advantages of the

model-based and pattern-based approaches. Our approach can

examine 45 interaction models that consider biologically meaningful

factors. Each model has a straightforward corresponding pattern,

and there is a formal statistical test for evaluating the interaction ef-

fect. This approach is powerful, and the identified patterns can be

easily applied to assemble risk-prediction models. For evaluating the

performance of SIPI, we conducted a simulation study to evaluate

power and type I errors of SIPI with other four approaches: MDR,

AA_Full, Geno_Full and SNPassoc. The details of these methods are

listed in Section 2.2.

2 Methods

2.1 SNP interaction pattern identification (SIPI)
SIPI can intensively and effectively search pairwise SNP–SNP inter-

actions. The conventional approach for identifying SNP–SNP inter-

action is to search a specific type of interaction using the full

interaction model with the additive-additive mode based on the

minor allele. The SIPI detects 45 interaction models, which take in-

heritance mode (both original and reverse coding), and risk category

grouping (model structure) into consideration. The best interaction

pattern is selected based on the Bayesian information criterion

(BIC), which is used to deal with the trade-off between model fit

and complexity of the model. BIC is also shown to be consistent in

selecting the true model and tends to select a parsimonious model

compared with the Akaike information criterion (AIC), especially in

studies with a large sample size (Yang, 2005). The concept of SIPI

can be applied to different types of outcomes, such as numeric, bin-

ary and time-to-event variables. In this study, we focused on the bin-

ary outcome using logistic regression models. The two primary

components of SIPI are introduced separately below.

2.1.1 SNP inheritance modes

The SNP inheritance modes can impact on power to detect SNP

interactions (Lin et al., 2008). We designate a lowercase letter ‘a’ to

denote the minor (low frequency) allele, and an uppercase ‘A’ to de-

note the major (common) allele. Each SNP has three genotype cate-

gories: homozygous major type (‘AA’), heterozygous type (‘Aa’) and

homozygous minor type (‘aa’). For a SNP, the inheritance mode for

a disease risk refers to a specific relationship between genotype and

phenotype. The inheritance modes include additive, dominant, re-

cessive, genotypic and over-dominant modes. The dominant mode

assumes that the impact of having one or two copies of a given allele

on the outcome is the same, and the recessive mode implies that the

subjects with the homozygous genotype of a given allele have a dif-

ferent risk to develop the outcome compared with the other two

genotypes. Additive mode refers to the impact of each additional

copy of a given allele on the outcome being equal. The genotypic

mode, treats a SNP as a categorical variable with three groups, and

assumes that each genotype has a distinct effect on risk. This geno-

typic mode needs four degrees of freedom for the interaction term it-

self, and interpretation of the result is not straightforward. The

over-dominant mode, which assumes that heterozygote has a differ-

ent risk than the other two homozygous genotypes (Aa versus AA/

aa), is a rare case. Therefore, the SIPI takes three inheritance modes

(dominant, recessive and additive) into consideration.

In the majority of genetic association studies, inheritance modes

are defined based on the minor (or variant) allele. Under this scen-

ario, the binary inheritance mode (dominant and recessive) is coded

as ‘1’ for the group containing the homozygous minor type, and the

other group as ‘0’ in modeling. For the AA, Aa and aa genotypes,

the additive mode coding is 0, 1 and 2. The reverse coding (¼1—ori-

ginal coding for dominant and recessive mode; and 2—original cod-

ing for additive mode) of inheritance mode is seldom to be

considered in testing SNP–SNP interactions. The coding direction

(original/reverse coding) of inheritance mode does not impact on

statistical significance (P-values) for testing the main effect in a

main-effect model and the interaction term in a full interaction

model, but dramatically impacts testing the interaction term in a

non-hierarchical interaction model. As shown in Table 1, there are

six total possible coding methods for inheritance modes for each

SNP. The three inheritance modes with the original coding based on

the minor allele are additive (noted as aSNP1 for SNP1), dominant

(dSNP1) and recessive (rSNP1). For the inheritance modes with the

reverse coding, the three modes are reverse additive (raSNP1), re-

verse dominant (rdSNP1) and reverse recessive (rrSNP1).

2.1.2 Risk category grouping/model structure

Both hierarchical and non-hierarchical interaction model were con-

sidered in this study. For evaluating 2-way interactions, the hier-

archical or full interaction models are the models with two main

effects and their interactions. This is the most common model type

for testing pairwise SNP–SNP interactions, but this full model tests

only one specific interaction pattern. Non-hierarchical models are

defined as models with an interaction, and none or one main effects.

In genetic association studies, non-hierarchical models, which com-

bines genotypes with similar outcome risk are possible (Lin et al.,

2008, 2013). Using non-hierarchical models, a parsimonious model
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based on risk profile can be generated; therefore power of detecting

these specific interaction patterns increases (Piegorsch et al., 1994).

As shown in Equations 1–4, four possible model structures for test-

ing a two-way interaction include models with (i) two main effects

plus an interaction (Full-int); (ii) the main effect of variable 1 plus

an interaction (Main1þ int); (iii) the main effect of variable 2 plus

an interaction (Main2þ int); and (iv) an interaction only (Int-only).

It is worthy to note that the interaction only model for a SNP pair

does not mean their main effects alone.

By considering a binary inheritance mode, there are four inherit-

ance mode combinations (dominant–dominant, dominant–recessive,

recessive–dominant and recessive–recessive). When treating SNPs as

numeric variables, the additive-additive mode is taken into consider-

ation. Thus, SIPI considers a total of five possible types of inherit-

ance mode combinations. For each inheritance mode combination,

there are nine unique interaction models/patterns when taking into

consideration different model structures and inheritance modes

(types and original/reverse coding direction). An example of coding

direction impact on a recessive–dominant interaction model for a

SNP pair in the prostate cancer study is listed in Table S1.Thus, a

total of 45 interaction patterns are considered in SIPI for each SNP

pair (Table 2).

The best model among the 45 models is based on the lowest

value of the Bayesian information criterion (BIC) (Schwarz, 1978).

The significance of the interaction effect is tested using the Wald test

of the interaction term (H0: b3¼0). Although the likelihood ratio

test (LRT) is usually recommended as the most powerful approach,

it requires performing the two models one wishes to compare. The

Wald test is similar to LRT in large scale studies and only one model

needs to be estimated. In order to ease computation burden for high-

dimensional data, the Wald test was primarily used in SIPI. In the

SIPI R package, the users can choose to report P-values based on the

Wald test or LRT. The Bonferroni method is applied to adjust for

multiple comparisons.

Full interaction model (Full-int):

logit½prðY ¼ 1Þ� ¼ b0 þ b1SNP1 þ b2SNP2 þ b3SNP1 � SNP2 (1)

Main 1þ interaction (Main1þ int):

logit½prðY ¼ 1Þ� ¼ b0 þ b1SNP1 þ b3SNP1 � SNP2 (2)

Main 2þ interaction (Main2þ int):

logit½prðY ¼ 1Þ� ¼ b0 þ b2SNP2 þ b3SNP1 � SNP2 (3)

Interaction only (Int-only):

logit½prðY ¼ 1Þ� ¼ b0 þ b3SNP1 � SNP2; (4)

where Y is the binary outcome with a value of 0 or 1.

2.1.3 Translating interaction models to interaction patterns

By treating SNPs as binary variables (such as dominant or recessive),

we can simplify genotype combinations from a three-by-three panel

into a two-by-two panel, resulting in four possible sub-groupings.

For the two-by-two panel, we can categorize the genotype combin-

ations to 4-, 3- and 2-risk subgroups. As shown in Supplementary

Figures S1 and S2, we can translate the interaction models to the

corresponding genotype interaction patterns. The full-int model has

4 risk subgroups, the Main1þ int and Main2þ int models have 3

risk subgroups, and the Int-only model have 2 rsik subgroups. The

non-hierarchical models have flexibility to combine genotype com-

binations with similar outcome risk. Our 45 model labels are based

on a three-by-three table with an order of homozygous major, het-

erozygous and homozygous minor types (denote as AA, Aa and aa)

and the homozygous major genotypes of the two SNPs as the top

left corner.

2.2 Other approaches for SNP–SNP interactions
2.2.1 MDR

MDR (Ritchie et al., 2001, 2003) searches overall associations that

allow for but are not limited to interactions. A promising MDR gen-

erates a binary risk variable (high/low risk) by comparing the case-

to-control ratio in each genotype combination to a threshold and

classifies each genotype to either a high risk set or low risk set. The

best model is decided based on classification accuracy. The K-fold

cross-validation is used to relieve over-fitting issue in MDR. The

permutation testing (Motsinger-Reif, 2008) can be used to deter-

mine MDR overall significance (not just for an interaction). In this

study, MDR with the 5-fold cross-validation and a permutation test-

ing procedure (1000 randomized datasets) was performed. One

major weakness of MDR is that its identified associations may be

due to strong main effect without an interaction. Thus, another

method for the MDR selected interaction is needed to distinguish

the impact of main effects and interaction term.

2.2.2 AA_Full

The AA_Full [available in PLINK (Purcell et al., 2007)] approach

uses a logistic regression model with both main effect and inter-

action. Each SNP is treated as an additive mode based on the minor

allele. The significance test is evaluated using the Wald test of the

interaction coefficient.

2.2.3 Geno_Full

The Geno_Full uses a full logistic regression model and each SNP is

treated as a genotypic mode with two degrees of freedom. The sig-

nificance test is evaluated using the likelihood ratio test of the

Table 1. SNP coding scheme of the inheritance modes

Inheritance mode with original codingb Reverse codingb

SNP1

Maj/Mina¼A/a

Additive

(aSNP1)

Dominant

(dSNP1)

Recessive

(rSNP1)

Reverse Additive

(raSNP1)

Reverse Dominant

(rdSNP1)

Reverse Recessive

(rrSNP1)

AA 0 0 0 2 1 1

Aa 1 1 0 1 0 1

aa 2 1 1 0 0 0

Data type Continuous Binary Binary Continuous Binary Binary

aMaj/Min¼major/minor allele.
bOriginal modes are based on a minor allele ‘a’; Reverse coding is (1—original coding) for the dominant and recessive mode and is (2—original coding) for the

additive mode.
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interaction coefficient. This Geno_Full is equivalent to the 2nd stage

of BOOST (Wan et al., 2010), which uses the Kirkwood superpos-

ition approximation (KSA) is used to screen a subset of SNPs for the

2nd stage analyses.

2.2.4 SNPassoc

SNPassoc (Gonzalez et al., 2007) used the same full logistic regres-

sion and allows for five different inheritance modes [additive, dom-

inant, recessive, genotypic and over-dominant (Aa versus AA/aa)]

based on the minor allele. Two SNPs in the same pair are required

to have the same inheritance mode.

2.3 Simulation
We conducted a simulation study to compare the power of SIPI with

the conventional MDR, AA_Full, Geno_Full and SNPassoc ap-

proach for detecting two-way SNP–SNP interactions. For simulation

settings, one SNP pair was considered. The two candidate SNPs

were generated independently based on the Hardy-Weinberg

Table 2. List of 45 interaction models by considering the inheritance modes and model structures

SNP1 � SNP2 Inheritance modea Model structureb Model labelc Model Details

Dom-Dom Full-int DD_Full dSNP1 þ dSNP2 þ dSNP1 � dSNP2

Main1þint DD_M1_int_o1 dSNP1 þ dSNP1 � dSNP2

DD_M1_int_r1 rdSNP1 þ rdSNP1 � dSNP2

Main2þint DD_M2_int_o2 dSNP2 þ dSNP1 � dSNP2

DD_M2_int_r2 rdSNP2 þ dSNP1 � rdSNP2

Int-only DD_int_oo dSNP1 � dSNP2

DD_int_or dSNP1 � rdSNP2

DD_int_ro rdSNP1 � dSNP2

DD_int_rr rdSNP1 � rdSNP2

Dom-Rec Full-int DR_Full dSNP1 þ rSNP2 þ dSNP1 � rSNP2

Main1þint DR_M1_int_o1 dSNP1 þ dSNP1 � rSNP2

DR_M1_int_r1 rdSNP1 þ rdSNP1 � rSNP2

Main2þint DR_M2_int_o2 rSNP2 þ dSNP1 � rSNP2

DR_M2_int_r2 rrSNP2 þ dSNP1 � rrSNP2

Int-only DR_int_oo dSNP1 � rSNP2

DR_int_or dSNP1 � rrSNP2

DR_int_ro rdSNP1 � rSNP2

DR_int_rr rdSNP1 � rrSNP2

Rec-Dom Full-int RD_Full rSNP1 þ dSNP2 þ rSNP1 � dSNP2

Main1þint RD_M1_int_o1 rSNP1 þ rSNP1 � dSNP2

RD_M1_int_r1 rrSNP1 þ rrSNP1 � dSNP2

Main2þint RD_M2_int_o2 dSNP2 þ rSNP1 � dSNP2

RD_M2_int_r2 rdSNP2 þ rSNP1 � rdSNP2

Int-only RD_int_oo rSNP1 � dSNP2

RD_int_or rSNP1 � rdSNP2

RD_int_ro rrSNP1 � dSNP2

RD_int_rr rrSNP1 � rdSNP2

Rec-Rec Full-int RR_Full rSNP1 þ rSNP2 þ rSNP1 � rSNP2

Main1þint RR_M1_int_o1 rSNP1 þ rSNP1 � rSNP2

RR_M1_int_r1 rrSNP1 þ rrSNP1 � rSNP2

Main2þint RR_M2_int_o2 rSNP2 þ rSNP1 � rSNP2

RR_M2_int_r2 rrSNP2 þ rSNP1 � rrSNP2

Int-only RR_int_oo rSNP1 � rSNP2

RR_int_or rSNP1 � rrSNP2

RR_int_ro rrSNP1 � rSNP2

RR_int_rr rrSNP1 � rrSNP2

Add_Add Full-int AA_Full aSNP1 þ aSNP2 þ aSNP1 � aSNP2

Main1þint AA_M1_int_o1 aSNP1 þ aSNP1 � aSNP2

AA_M1_int_r1 raSNP1 þ raSNP1 � aSNP2

Main2þint AA_M2_int_o2 aSNP2 þ aSNP1 � aSNP2

AA_M2_int_r2 raSNP2 þ aSNP1 � raSNP2

Int-only AA_int_oo aSNP1 � aSNP2

AA_int_or aSNP1 � raSNP2

AA_int_ro raSNP1 � aSNP2

AA_int_rr raSNP1 � raSNP2

aDom: dominant, Rec: recessive, Add: additive.
bFull-int: full interaction model with two main effects plus an interaction; Main1þ int: main effect of variable 1 plus an interaction; Main2þ int: main effect of

variable 2 plus an interaction; and (4) Int-only: an interaction only.
c_o1, _r1: minor allele (original coding), and reverse coding of SNP1.

_o2, _r2: minor allele (original coding), and reverse coding of SNP2.

_oo, _or, _ro, _rr: based on original-original, original-reverse, reverse-original and reverse-reverse coding for SNP1 and SNP2.
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equilibrium. Seven sets of a wide range of minor allele frequencies

(MAF¼0.05–0.5) for SNP1 and SNP2 were investigated: (0.5, 0.3),

(0.5, 0.2), (0.5, 0.05), (0.3, 0.3), (0.3, 0.1), (0.3, 0.05) and (0.1,

0.05). The sample sizes of 1000 and 5000 were chosen. All analyses

were based on 1000 simulation runs.

The binary outcome variable (such as case/control) was gener-

ated based on outcome prevalence (such as disease) in each genotype

combination of the two given SNPs using multinomial distribution.

We evaluated a total of six designed interaction patterns, including

one real-data pattern (Figs 1 and 2). Most of these simulated models

are based on the interaction patterns reported previously (Lin et al.,

2012, 2013). One null model without a true interaction term was

also tested. For the effect size of Models 1–4, the outcome preva-

lence was set to 0.3 or 0.4 in the high-risk subgroups and was 0.2 in

the low-risk sub-groups. The corresponding odds ratio (OR) is 1.6

and 2.7, respectively. The settings of true interaction models are

listed in Figures 1 and 2.

Models 1–3 were interaction-only models. For Model 1

(RR_int_rr pattern), both SNPs are considered as recessive with the

reverse coding. The disease prevalence is 0.3 and 0.2 for the high-

and low-risk groups, respectively. For Model 2 (DD_int_oo pat-

tern), both SNPs are considered as dominant based on the minor al-

leles. In Model 3 (RD_int_rr), SNP1 is considered under a recessive

mode, SNP2 is considered as dominant mode, and both SNPs have

the reverse coding. Model 4 (DD_M1_int_o1) includes the SNP1

main effect and an interaction, in which both SNPs are considered

as dominant based on the minor allele of SNP1. The significance of

the interaction term is the same regardless of the inheritance mode

coding (original or reverse) for SNP2. Model 5 (AA_Full) is a full

interaction model and both SNPs are treated as an additive mode

based on the minor allele. This AA_Full model has the setting of b0

¼ �2:5 and b1 ¼ b2 ¼ b3 ¼ 0:6 in Eq. 1. Model 6 (RD_int_oo) was

designed based on rs10488141 and rs6994019 from the

PRACTICAL data (first SNP pair in Fig. 4) with an OR of 1.9. For

the null model, the outcome prevalence of 0.2 was applied for all

nine genotype combinations.

2.4 Performance evaluation
Both power and type I error were evaluated in the 1000 simulation

runs. Power is defined as the percentage of detecting a significant

interaction when there is a true interaction. Type I error is defined

as percentage of detecting a significant interaction when there is no

interaction. The significant tests of the interaction for all four

approaches (SIPI, AA_Full, Geno_Full and SNPassoc) are based on

testing the coefficient of the interaction term. Statistical significance

for SIPI and SNPassoc is defined as a P<0.001 (¼0.05/45) and

P<0.01 (¼0.05/5) based on the Bonferroni correction. For the

AA_Full and Geno_Full approaches, the significance level is 0.05.

The significance of MDR is based on the permutation P-values

(1000 randomized datasets). In addition, we evaluated SIPI’s pattern

identification rate, which is defined as the percentage of identified

correct interaction pattern among the significant simulation runs.

2.5 Prostate cancer study application
SIPI was applied in evaluating SNP–SNP interactions in angiogenesis

genes associated with prostate aggressiveness using Prostate Cancer

Association Group to Investigate Cancer Associated Alterations in

Model/ Pattern
Pr(outcome)1

Power comparisons2

N=1,000
Power comparisons2

N=5,000

Model 1
RR_int_rr

rrSNP1*rrSNP2

SNP1\ SNP2 BB Bb bb

AA 0.3 0.3 0.2

Aa 0.3 0.3 0.2

aa 0.2 0.2 0.2

Model 2
DD_int_oo

dSNP1*dSNP2

SNP1\ SNP2 BB Bb bb

AA 0.2 0.2 0.2

Aa 0.2 0.3 0.3

aa 0.2 0.3 0.3

Model 3
RD_int_rr

rrSNP1*rdSNP2

SNP1\ SNP2 BB Bb bb

AA 0.3 0.2 0.2

Aa 0.3 0.2 0.2

aa 0.2 0.2 0.2
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Fig. 1. Power comparisons of the SNP Interaction Pattern Identifier (SIPI) and other four methods for Models 1–3. 1Proportion of the outcome event in the geno-

type combination of the 3 � 3 table; a lowercase letter denotes the minor allele, and an uppercase letter denotes the major allele. 2 MDR (Multifactor dimensional-

ity reduction), AA_Full, Geno_Full (full interaction model and each SNP is treated as an additive or genotypic mode), and SNPassoc R package
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the Genome (PRACTICAL) consortium data. The study population

includes 21 316 cases of European ancestry (3812 aggressive and 17

504 non-aggressive) from the 32 study sites. We randomly selected

half of the cases as the discovery set and the other half as the valid-

ation set in each study site. The sample sizes in the discovery and

validation sets are 10 664 and 10 652, respectively. Individuals were

excluded from the study based on strict quality control criteria

including: overall call rate<95% and extremely high or low hetero-

zygosity (P<1.0�10-5). Aggressive prostate cancer was defined as

a Gleason score>8, PSA>100, disease stage of ‘distant’ (stage IV)

or death from PCa. Ethnic groups were defined based on a subset of

37 000 uncorrelated markers that passed quality control (including

�1000 selected as ancestry informative markers). Principal

Component Analyses were carried out for the European subgroups.

The details of this study population have been published previously

(Eeles et al., 2013).

We evaluated the 148 SNPs in the six angiogenesis genes (EGFR,

MMP16, ROBO1, CSF1, FBLN5,and HSPG2), which were re-

ported in a genetic interaction network associated with prostate can-

cer aggressiveness(Lin et al., 2013). These result in 10 878 SNP

pairs. The pairwise interactions among these SNPs associated with

prostate cancer aggressiveness (yes/no) were investigated using the

Model/ Pa�ern
Pr(outcome)1

Type I error comparisons2

N=1,000
Type I error comparisons2

N=5,000

Null Model

SNP1\ SNP2 BB Bb bb

AA 0.2 0.2 0.2

Aa 0.2 0.2 0.2

aa 0.2 0.2 0.2 0.00
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Fig. 3. Comparisons of Type I errors of the SNP Interaction Pattern Identifier (SIPI) and other four methods. 1Proportion of the outcome event in the genotype

combination of the 3 � 3 table; a lowercase letter denotes the minor allele, and an uppercase letter denotes the major allele. 2 MDR (Multifactor dimensionality re-

duction), AA_Full, Geno_Full (full interaction model and each SNP is treated as an additive or genotypic mode) and SNPassoc R package

Model/ Pattern
Pr(outcome)1

Power comparisons2

N=1,000
Power comparisons2

N=5,000

Model 4
DD_M1_int_o1

dSNP1, dSNP1*dSNP2

SNP1\ SNP2 BB Bb bb
AA 0.2 0.2 0.2
Aa 0.3 0.4 0.4
aa 0.3 0.4 0.4

Model 5
AA_full

aSNP1, aSNP2, aSNP1*aSNP2

SNP1\ SNP2 BB Bb bb
AA 0.08 0.13 0.21
Aa 0.13 0.33 0.62
aa 0.21 0.62 0.91

Model 6
RD_int_oo

rSNP1*dSNP2
(revised based on rs10488141 & rs6994019)

SNP1\ SNP2 BB Bb bb
AA 0.18 0.18 0.18
Aa 0.18 0.18 0.18
aa 0.18 0.29 0.29

0.0

0.2

0.4

0.6

0.8

1.0

(0.5,0.3) (0.5,0.2) (0.5, 0.05)

po
w

er

MAF of SNP1 and SNP2

SIPI

MDR

AA_Full

Geno_Full

SNPassoc

0.0

0.2

0.4

0.6

0.8

1.0

(0.5,0.3) (0.5,0.2) (0.5, 0.05)

po
w

er

MAF of SNP1 and SNP2

SIPI

MDR

AA_Full

Geno_Full

SNPassoc

0.0

0.2

0.4

0.6

0.8

1.0

(0.5,0.3) (0.5,0.2) (0.5, 0.05)

po
w

er

MAF of SNP1 and SNP2

SIPI

MDR

AA_Full

Geno_Full

SNPassoc

0.0

0.2

0.4

0.6

0.8

1.0

(0.5,0.3) (0.5,0.2) (0.5, 0.05)

po
w

er

MAF of SNP1 and SNP2

SIPI

MDR

AA_Full

Geno_Full

SNPassoc

0.0

0.2

0.4

0.6

0.8

1.0

(0.5,0.3) (0.5,0.2) (0.5, 0.05)

po
w

er

MAF of SNP1 and SNP2

SIPI

MDR

AA_Full

Geno_Full

SNPassoc

0.0

0.2

0.4

0.6

0.8

1.0

(0.5,0.3) (0.5,0.2) (0.5, 0.05)

po
w

er

MAF of SNP1 and SNP2

SIPI

MDR

AA_Full

Geno_Full

SNPassoc

Fig. 2. Power comparisons of the SNP Interaction Pattern Identifier (SIPI) and other four methods for Models 4–6. 1Proportion of the outcome event in the geno-

type combination of the 3 � 3 table; a lowercase letter denotes the minor allele, and an uppercase letter denotes the major allele. 2 MDR (Multifactor dimensional-

ity reduction), AA_Full, Geno_Full (full interaction model and each SNP is treated as an additive or genotypic mode) and SNPassoc R package
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SIPI approach in the discovery set first. For the top SNP pairs identi-

fied in the discovery set, both SIPI and AA_Full were conducted in

the validation set.

3 Results

3.1 Simulation
The power of comparing SIPI with other four methods (MDR,

AA_Full, Geno_Full and SNPassoc) using the six simulated models

for two SNPs with MAF of (0.5, 0.3), (0.5, 0.2) and (0.5, 0.05) is

shown in Figures 1 and 2. As the sample size increased, power of all

five approaches increased. In general, SIPI and MDR had similar

power, and both of them are more powerful than the other three

full-model approaches (AA_Full, Geno_Full and SNPassoc). SIPI

and MDR suffer less negative impact of SNPs with a low MAF than

the other three full-model approaches.

The four methods (SIPI, AA_Full, Geno_Full and SNPassoc)

evaluate the impact of interactions, but MDR is used to test overall

associations allow for an interaction. For fair comparisons, we dis-

cuss the MDR performance separately. In Models 1–4 for a SNP

pair with a MAF � 0.2 under a sample size of 1000, SIPI greater

than 49% power while the other three approaches have low power

(<25%). Under a sample size of 1000 with MAF of (0.5, 0.05),

power decreases for all three full-model approaches but SIPI still has

the highest power. As the sample size increased to 5000, SIPI has

100% power in most of the conditions for identifying an interaction

with a SNP pair with MAF of (0.5, 0.3) and (0.5, 0.2). The order of

power for detecting a SNP–SNP interaction is

SIPI>Geno_Full>AA_Full (similar with SNPassoc) with a big sam-

ple size of 5000.

The three full-model approaches (AA_Full, Geno_Full and

SNPassoc) have difficulty detecting Model 1, the ‘RR_int_rr’ pat-

tern. With a recessive interaction-only pattern (RR_int_rr) in Model

1 for a sample size of 1000 (Fig. 1), SIPI has a power of 49–54% but

the other three approaches only have a power<10%. When the

sample size increases to 5000, the power of SIPI is approximately

100% while the other three approaches’ power remains low

(<30%).

For Model 2 (DD_int_oo), SIPI have power 58–65%, but the

other three approaches only have<25% power in a sample size of

1000 and MAF of (0.5, 0.3) and (0.5, 0.2). As the sample size in-

creases to 5000, the power of all methods increase, and SIPI has the

highest power compared with the other three approaches.

For Model 3 (RD_int_rr), SIPI have the highest power among all

testing scenarios in Figure 1. For a sample size of 5000, SIPI has

100% power, while power of other three approaches is<80%.

Similarly, the power of Model 4 (DD_M1_int_o1) is 59–74% for

SIPI and<20% for the other three approaches when the sample size

is 1000. Power increases to close to close to 100% for SIPI and 22–

60% for others when the sample size becomes 5000.

For Model 5 (AA_Full), the AA_Full method is the most power-

ful among all testing approaches in most of the conditions, except

the condition of low MAF of (0.5, 0.05) in a sample size of 1000.

Under this special condition, SIPI has the highest power and about

70% of the SIPI significant runs selected similar patterns

(AA_M1_int and AA_M1_int_r). For Model 6 generated based on

the real data, SIPI is still the most powerful approach in most of the

conditions.

For comparing SIPI with MDR, both methods are more powerful

than other three full model approaches (AA_Full, Geno_Full and

SNPassoc).

SIPI has similar or higher power compared with MDR in major-

ity of simulated conditions. For Model 6 with high risk groups in

the minor genotypes, SIPI is more powerful than MDR under the

sample size of 1000 and 5000.

For type I errors, SIPI using the Bonferroni correction is the most

conservative method among all testing approaches. As shown in

Figure 3, SIPI has the smallest type I errors (0.01–0.02) compared to

the other three methods. Some of SNPassoc’s type I errors (0.021–

0.057) are also less than 0.05. The type I errors for MDR, AA_Full

and Geno_Full are close to 0.05. As shown in Supplementary Tables

S2–S4, the power and type I error comparisons for additional MAF

conditions show similar observations.

3.2 Patten detection accuracy
The accuracy rate of pattern identification increases (Supplementary

Figs S4 and S5) as the sample size increases. For Models 1, 2, 3 and

6 with 1000 samples, 56–84% of the significant simulation runs

identify the correct pattern. For the sample size of 5000, all models

have approximately 100% accuracy in identifying correct inter-

action patterns. For Models 4–5 and MAF¼ (0.3, 0.3) with a sample

size of 1000, the pattern identification rates are low (10% and 2%,

respectively). However, these rate becomes 100% for a sample size

of 5000. Although pattern detection accuracy is low for the smaller

sample, SIPI’s power can still be high due to detection of other simi-

lar patterns. Using Model 4 with MAF¼ (0.3, 0.3) as an example,

only 10% of the significant runs detect the correct pattern (DD_

M1_int_o1) but other three similar patterns (39.9% DD_int_oo, 23

% DR_int_rr and 12.6% DR_int_or) are identified (Supplementary

Fig. S5). Thus, its power of detecting any interaction can reach 61.2

%.

From the simulation results, we observed an interesting scenario

for common variants with a MAF close to 0.5. Under this condition,

the minor allele determination is unstable, which can affect SIPI’s

model labels. The model label system are built upon the minor/

major allele. As an example shown in Supplementary Figure S3, a

low risk subgroup of a (GGþGG) combination of SNP1 and SNP2

are classified as the ‘DD_int_rr’ pattern when SNP1 is with a major

allele of ‘G’ and a minor allele of ‘A’ but is classified as ‘RD_int_or’

(called a ‘sister pattern’) when SNP1’s major allele is ‘A’. For an

interaction with a SNP with a MAF close to 0.5, the pattern identifi-

cation rate is the sum of the rates of the designed and sister patterns.

We present the pattern identification rates for the significant simula-

tion runs in Supplementary Figs S4 and S5. For Model 1 with a SNP

pair with MAF¼ (0.5, 0.3), a total of 74% runs successfully identi-

fied the correct risk pattern (39% designed pattern and 5% sister

pattern). A similar observations are presented for other models.

3.3 Example of prostate cancer aggressiveness
For the proposed SIPI approach, we considered SNP pairs with a

P<1 � 10-7 to be statistically significant after the Bonferroni correc-

tion for 489 510 tests (¼10 878 pairs � 45 models per pair).

Although the SNP–SNP interaction results do not appear to be sig-

nificant after adjusting for multiple comparisons, some of them

show promising consistent results in both discovery and validation

datasets. In the discovery set, 25 SNP pairs had a P<0.001. Among

these top 25 pairs, four pairs have a P-value<0.01 in the validation

set. Two pairs (rs10488141þ rs6994019 and rs2058502þ
rs4947972) have the exact interaction pattern in both sets. The

prevalence of prostate cancer aggressiveness by the nine genotype

combinations are shown in Figure 4, and the prediction models are

listed in Table 3. The prostate cancer patients with the TTþAC/AA

SNP interaction pattern identifier 829
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genotype of the SNP pair of EGFR rs10488141 and MMP16

rs6994019 tend to suggest a higher risk of developing aggressive

tumors (odds ratio (OR)¼1.7, P¼4.5 � 10-6). Those with GGþGG

of two SNPs in EGFR (rs2058502 and rs4947972) are less likely to

have aggressive prostate cancer tumors (OR¼0.8, P¼5.8 � 10-6).

Those with GGþAG/AA of two SNPs in EGFR (rs723527 and

rs845555) are likely to have aggressive prostate cancer tumors

(OR¼1.2, P¼3.1 � 10-4). The patients with AA/AG and CC in

EGFR rs2075110 and CSF1 rs7538029 have a lower chance of de-

veloping an aggressive prostate cancer (OR¼0.9, P¼2.6 � 10-5).

Three of the four SNP interaction pairs remain promising

(rs10488141þ rs6994019, rs2058502þ rs4947972 and

rs2075110þ rs7538029) after including these four SNP pairs and

the first five principal components of European ancestry in the

model (Table 4). For evaluating whether the SNPs in the top pairs in

the discovery are comparable in the validation set, the MAF of these

SNPs are calculated. As shown in Supplementary Table S5, the

MAFs for these top SNPs are very similar in these two datasets. The

individual effects of these SNPs in the combined dataset are also

evaluated, and some SNPs did not have significant main effects. For

example, the SNP pairs of rs10488141 and rs6994019 has an inter-

action with a P-value of 4.5 � 10-6 but without significant main ef-

fects (P-value¼0.145 and 0.659, respectively). These show that

some pure SNP–SNP interactions (without significant main effects)

associated with prostate cancer aggressiveness. In summary, our re-

sults demonstrate SNP–SNP interactions in the two gene pairs

(EGFR-MMP16 and EGFR-CSF1), and within EGFR. These find-

ings support that EGFR may be the hub of this angiogenesis

interaction network, which is consistent with the conclusion of the

previous study (Lin et al., 2013).

4 Discussion

For evaluating two-way SNP–SNP interactions, SIPI is more power-

ful than the MDR, AA_Full, Geno_Full and SNPassoc approach, in

general, even after applying stringent Bonferroni correction for mul-

tiple comparison justification. Although MDR and SIPI have similar

power based on our simulation results, SIPI performs better than

MDR is terms of testing significance of an interaction. MDR

searches overall associations allowing interactions. For testing sig-

nificance of an interaction, we need a two-stage MDR method,

which has lower power than MDR alone. The primary strengths of

SIPI are (i) taking non-hierarchical models, inheritance modes and

mode coding direction into consideration and (ii) using BIC to

search for a best interaction pattern. In practice, it is challenge to de-

tect a true interaction pattern for studies with a limited sample size.

These features equip SIPI for searching similar interaction patterns

close to the truth, so it can overcome the unstable nature of detect-

ing SNP–SNP interaction patterns.

Our study demonstrated that SIPI is a more comprehensive and

flexible tool for detecting two-way SNP–SNP interactions compared

with the three full model approaches: AA_Full in PLINK (Purcell

et al., 2007), Geno_Full and SNPassoc (Gonzalez et al., 2007). All

these methods are based on hierarchical models, and the difference

is how they deal with inheritance modes. AA_Full treats SNPs as an

Fig. 4. Proportions of prostate cancer aggressiveness by genotype combinations for the top four SNP–SNP interaction pairs associated with rostate cancer

aggressiveness by datasets. 1Pr(aggr): Values in the 3 � 3 table are proportions of aggressive prostate cancer (¼number of aggressive PCa patients/ number of

PCa patients). 2RD_int_or in the validation set indicated the same pattern as DDint rr in the discovery set. The different pattern name is due to the revise issue of

the major and minor allele in the validation set. rs2058502 (minor< major allele): (A<G) in discovery set, and (G<A) in validation set
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additive mode and Geno_Full treats SNPs as categorical variables.

SNPssoc considers five inheritance modes (additive, dominant, re-

cessive, genotypic and over-dominant) but two SNPs in a pair need

to have the same mode. Thus, these three approaches can only detect

limited interaction patterns. For example, AA_Full, Geno_Full and

SNPassoc experienced difficulty in detecting the RR_int_rr pattern

(Model 1, power<30%, Fig. 1), but SIPI had 100% power for a

large sample size of 5000.

SIPI also provides advantages compared to other statistical

approaches. BOOST (Wan et al., 2010) is a two-stage method using

the log-linear model to test interactions and treats SNPs as the geno-

typic mode (same as Geno_Full in our study) as the 2nd stage. SIPI is

more powerful than Geno_Full (Figs 1 and 2 and Supplementary

Tables S2 and S3), which is more powerful than the two-stage

BOOST. SNPmaxsel (Boulesteix et al., 2007) evaluates 16 inter-

action patterns, which are parts of SIPI patterns. These 16 patterns

are the interaction-only models for SNPs with a binary mode (dom-

inant or recessive). HFCC (Gayan et al., 2008) is used to assess 255

patterns, but some are rare or biologically meaningless patterns.

Compared with these approaches, SIPI tests the 45 biologically

meaningful patterns, some of which have been reported previously

(Lin et al., 2013).

For external validation of SNP–SNP interactions, we suggest

loosening the validation criteria for evaluating SNP–SNP inter-

actions to allow for similar matches. The optimal goal of a genetic

association study is to build prediction models for clinical usage.

External validation using an independent dataset is a key in identify-

ing true prediction factors. The majority of previous studies use

AA_Full in the two independent datasets or the exact interaction

pattern identified in the discovery set to verify the same pattern in

the validation set (Su et al., 2013). However, this exact match is too

stringent for identifying SNP–SNP interactions. Our simulation

Table 3. Results of the PRACTICAL discovery and validation set for the top 25 SNP–SNP interaction pairs associated with prostate cancer

aggressiveness with a P< 0.001 in the discovery set

Discoverya Validationa

SNP1 SNP2 Pattern Pd Pattern Pv Pattern Similarityb

rs10228436 rs723527 DR_int_oo 1.0 � 10�4 DR_int_rr 0.020

rs13222549 rs16880086 RR_int_oo 2.0 � 10�4 AA_int_ro 0.378

rs2017000 rs6981717 DR_int_ro 2.0 � 10�4 AA_int_oo 0.043

rs6956366 rs763317 RD_int_oo 2.7 � 10�4 DR_int_or 0.032

rs10488141 rs6994019 RD_int_oo 2.8 3 1024 RD_int_oo 0.005 same

rs723527 rs845552 RD_int_oo 2.9 � 10�4 RR_int_oo 0.056

rs2058502 rs4947972 DD_int_rr 8.9 3 1024 RD_int_or 0.002 Same (sister pattern)

rs6548616 rs7780270 DR_int_ro 3.2 � 10�4 RR_int_ro 0.181

rs12666347 rs7781264 DR_int_ro 3.6 � 10�4 DD_int_ro 0.082

rs2017000 rs723527 DR_int_oo 3.7 � 10�4 RR_int_rr 0.079

rs723527 rs845555 RD_int_oo 4.5 3 1024 RR_int_rr 0.009 similar

rs16880086 rs6954351 AA_int_ro 4.6 � 10�4 RR_int_oo 0.123

rs10228436 rs7780270 DR_int_oo 4.7 � 10�4 DR_int_rr 0.070

rs13222549 rs16880099 RD_int_oo 4.9 � 10�4 AA_int_oo 0.424

rs10225877 rs16880086 AA_int_oo 5.6 � 10�4 RD_int_or 0.053

rs1519938 rs9842630 DD_int_ro 5.9 � 10�4 DR_int_or 0.040

rs13224708 rs17290392 DD_int_oo 6.1 � 10�4 DR_int_oo 0.943

rs10488141 rs1879202 RR_int_oo 6.4 � 10�4 RD_int_oo 0.021

rs10488141 rs2222294 RD_int_oo 7.3 � 10�4 DR_int_ro 0.063

rs2075110 rs7538029 RD_int_rr 7.7 3 1024 DD_int_oo 0.007 similar

rs13222549 rs17666091 RD_int_oo 8.7 � 10�4 DR_int_oo 0.021

rs11986591 rs6954351 AA_int_ro 9.1 � 10�4 DR_int_oo 0.138

rs11977660 rs9842630 DD_int_ro 9.2 � 10�4 RD_int_ro 0.044

rs7780270 rs9832396 RD_int_or 9.6 � 10�4 RR_int_oo 0.191

rs759169 rs9842630 AA_int_rr 9.8 � 10�4 AA_int_rr 0.150

aPd: P-value in the discovery set, Pv: P-value in the validation set; Pd<0.001 and Pv<0.01 were in bold.
bComparing patterns in the discovery and validation set for the SNP pairs with Pd<0.001 and Pv<0.01.

Table 4. SNP–SNP interaction models associated with prostate cancer aggressiveness

Univariate model Multivariable modelb

Unadjusted OR (95% CI)a P-value adjusted OR (95% CI)a P-value

rs10488141þ rs6994019, TTþ AC/AA versus others 1.7 (1.4–2.1) 4.5 � 10�6 1.8 (1.4–2.6) 6.3 � 10�7

rs2058502þ rs4947972, GGþ GG versus others 0.8 (0.7–0.9) 5.8 � 10�6 0.8 (0.7–0.9) 5.2 � 10�5

rs723527þ rs845555, GGþ AG/AA versus others 1.2 (1.1–1.3) 3.1 � 10�4 1.1 (1.0–1.3) 1.6 � 10�2

rs2075110þ rs7538029, AA/AGþ CC versus others 0.9 (0.8–0.9) 2.6 � 10�5 0.9 (0.8–0.9) 6.9 � 10�4

aOdds ratio (95% confidence interval).
bAll four SNP pairs and the first five principal components of European ancestry were included in the multivariable model.
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findings (Supplementary Figs S4 and S5) indicate the unstable nature

of interaction patterns due to unsteady risk profiles of the nine geno-

type subgroups. Thus, it should be more effective to allow for simi-

lar matches instead of exact matches in SNP–SNP interaction

validation, especially in the studies with a small sample size. SIPI

provides useful features that work to overcome this unstable pattern

nature. SIPI uses the BIC to select the best pattern of 45 patterns so

that the true pattern or the most similar pattern can be detected.

This provides flexibility in terms of result validation. For a SNP pair

with MAF of (0.3, 0.3) in Model 4 with a sample size of 1000, SIPI

can still reach 61% power to detect an interaction with any type of

SNP1 and SNP2, even though only 10% of the significant results

point to the correct pattern.

The outcome prevalence table stratified using three-by-three

genotypes (called the ‘3 � 3 outcome table’, available in SIPI soft-

ware) is a useful way to boost result interpretation for interaction

patterns. Using the 3 � 3 outcome table for real prostate cancer data

application, it is easy to observe that two of the top SNP pairs had

similar interaction patterns in the discovery set and validation set

(Fig. 4). Combining the two testing sets with a larger sample size en-

sures that the interaction pattern is more reliable. In result valid-

ation, the sister pattern (one pattern with two different pattern

labels) can be easily observed for an interaction with a SNP with a

MAF close to 50%. In our prostate cancer application, three out of

eight SNPs involved in the top SNP interactions have a

MAF>45%. In practice, the sister pattern issue can be identified by

reviewing the 3 � 3 outcome table. Thus, we cannot purely rely on

model labels to decide whether the two patterns are exactly

matched. Due to the sister pattern and similar matching issues, it is

suggested that the 3 � 3 outcome table should be consulted to fur-

ther review interaction patterns.

For potential biological relevance of our identified SNP–SNP

interactions (within EGFR, EGFR-MMP16 and EGFR-CSF1), the

main key protein was epidermal growth factor receptor (EGFR),

which interacted with the other two proteins that were also involved

in cancers. The EGFR is a critical protein in proliferation of epithe-

lial cells, differentiation and cell survival and is involved in oncogen-

esis. The EGFR has been known for a role in regulating prostate

cellular growth and function (Bonaccorsi et al., 2007; Leotoing

et al., 2007; Migliaccio et al., 2006). Results from a meta-analysis of

prostate cancer expression datasets were consistent with our results.

Wang et al. identified the EGFR pathway, which was associated

with prostate cancer risk (Wang et al., 2011).

The interaction between matrix metalloproteinase16 (MMP16)

and EGFR is interesting. These two proteins have also been impli-

cated in several cancers including prostate cancer. MMPs are a

family of proteolytic enzymes involved in tumor growth, invasion

and metastasis (Rundhaug, 2005). Among 24 MMPs, the role of

MMP16 in prostate cancer has not been well investigated. Jung

et al. reported a down-regulation of MMP16 in malignant prostate

tissues (Jung et al., 2003). MMP16 has been shown to be associ-

ated with pancreatic cancer cell migration and invasion (Lin et al.,

2011) and lung development (Hadchouel et al., 2008). Several can-

cers in which EGFR signaling is involved were often observed ab-

normal high expression of MMPs (Davidson et al., 1999). Van

Meter et al. reported MMP16 mRNA levels significantly increased

after EGF stimulation in the glioma cell lines (Van Meter et al.,

2004).

Colony stimulating factor-1 (CSF1) is a protein that promotes

metastatic potential in breast cancer (Lin et al., 2001). Although

there is no report on a role of CSF1 in prostate cancer, previous

studies reported overexpression of serum CSF1 in several cancer

sites, including pancreatic cancer (Pyonteck et al., 2012), breast,

ovary and endometrial tissues (Espinosa et al., 2011; Kacinski,

1997). Recently, Pei et al (Pei et al., 2015) observed that CSF1 ex-

pression is positively correlated with progression and EGFR expres-

sion in lung cancer and concluded that co-expression of CSF1 and

EGFR may be an independent prognostic biomarker for progression

of lung cancer.

The SIPI software (SAS macro and SIPI R package) is freely

available at http://publichealth.lsuhsc.edu/LinSoftware/. SIPI soft-

ware can perform models adjusted for covariates. In SIPI R package,

the original (‘SIPI’ function) and parallel computing functions

(‘parSIPI’ function) are included. SIPI can finish the analyses of all

pairwise analyses of 150 SNPs for a dataset with a sample size of

5000 within about 3 hours on a desktop computer (3.6 GHz CPU

with 8 cores) using the ‘parSIPI’ R function. For large scale studies,

it is recommended to apply some approaches (such as statistical

screening or biological pathway selection) to decrease the number of

candidate SNPs before applying the SIPI analyses.

In summary, SIPI is a powerful tool to search for 45 interaction

patterns for pairwise SNP interactions. Although only binary out-

come models were discussed in this study, it can be extended to vari-

ous outcome data types, such as numeric and time-to-event data.

The promising interaction pairs identified by SIPI can be included in

a risk prediction model with other significant individual SNPs, other

known clinical risk factors, and biomarkers in order to increase pre-

diction accuracy.
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