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When a risk factor affects certain categories of a multinomial outcome but not others, outcome heterogeneity is said
to be present. A standard epidemiologic approach for modeling risk factors of a categorical outcome typically entails fit-
ting a polytomous logistic regression via maximum likelihood estimation. In this paper, we show that standard polyto-
mous regression is ill equipped to detect outcome heterogeneity and will generally understate the degree to which such
heterogeneitymay be present. Specifically, nonsaturated polytomous regressionwill often a priori rule out the possibility
of outcome heterogeneity from its parameter space. As a remedy, we propose to model each category of the outcome
as a separate binary regression. For full efficiency, we propose to estimate the collection of regression para-
meters jointly using a constrained Bayesian approach that ensures that one remains within the multinomial
model. The approach is straightforward to implement in standard software for Bayesian estimation.

constrained Bayes; etiologic heterogeneity; multinomial outcome; outcome heterogeneity

Abbreviations: CB, constrained Bayesian; CHD, coronary heart disease; SL, separate logistic.

Categorical outcomes are of common occurrence in epidemi-
ologic practice. A standard modeling approach to evaluate risk
factors in such settings involves fitting bymaximum likelihood,
a polytomous logistic regression for the multinomial outcome
(1). In empirical studies, an important form of outcome hetero-
geneity arises when a given risk factor affects certain categories
of the outcome but not necessarily others. This form of outcome
heterogeneity, also sometimes called etiologic heterogeneity
(2), has in recent years drawn considerable interest in medi-
cine and other health sciences (3–5). In this paper, we estab-
lish that standard polytomous logistic regression is often ill
suited to model this type of outcome heterogeneity, in the
sense that the approach may understate the degree to which
such heterogeneity may be present. Specifically, standard poly-
tomous regression will often a priori rule out the possibility of
outcome heterogeneity from its parameter space, because under
the model a risk factor for a given category of the outcomemust
necessarily be a risk factor for all other categories of the out-
come. In the following sections, we demonstrate how this phe-
nomenon is manifested with a certain paradox that arises in the
context of using polytomous logistic regression in the presence
of outcome heterogeneity and propose an alternative general
multinomial regression approach with constrained Bayesian

(CB) estimation of the regression parameters. We investi-
gate the finite-sample properties of the proposed estimators
in a simulation study and illustrate the new methodology in
an application that evaluates risk factors for death from cor-
onary heart disease (CHD), stroke, and cancer in the origi-
nal cohort of the Framingham Heart Study.

METHODS

A paradox from using polytomous logistic regression

To describe the paradox, suppose that the outcome Y takes 1
of 3 possible values k = 0,1,2, where Y = 0 denotes disease-free
persons, Y = 1 denotes individuals with the given disease of the
first subtype, andY = 2 denotes diseased personswith the second
subtype. Also suppose that 2 continuous risk factors (X1 and X2)
are known to be associated with diseased individuals, that is,

π{ ≠ | } = ( ) ( )Y x x x xPr 0 , , 11 2 0 1 2

varies both in (x1, x2), where xj denotes a possible value of Xj.
A standard approach to model such data entails positing a
polytomous logistic regression, such as say
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where X = (1, X1, X2), and

{ = | } = − { = | } − { = | } ( )Y X Y X Y XPr 0 1 Pr 1 Pr 2 . 3

Now, suppose also that, reflecting the presence of outcome
heterogeneity, the first risk factor X1 only affects the first dis-
ease subtype and X2 only affects the second disease subtype,
that is,

π{ = | } = ( ) ( )Y x x xPr 1 , 41 2 1 1

for all x2 and each x1 and

π{ = | } = ( ) ( )Y x x xPr 2 , 51 2 2 2

for all x2 and each x1. Then, for equation 4 to hold under the
polytomous regression model, it must be that

β = β = ( )0, 612 22

so that the right-hand side of equation 2 does not depend on
X2. Likewise, for equation 5 to hold under the polytomous
regression model, it must be that

β = β = ( )0, 711 21

so that the right-hand side of equation 2 does not depend on
X2. However, both equations 6 and 7 would imply that

{ ≠ | } =
{β } + {β }

+ {β } + {β }
Y XPr 0

exp exp

1 exp exp
10 20

10 20

depends on neither X1 nor X2, which contradicts the fact that
X is a risk factor for Y as given by equation 1, giving rise to
the paradox. The above paradox stems from the fact that a
standard polytomous logistic regression of the form given in
expression 2 cannot simultaneously encode assumption 2
and assumptions 4 and 5. This is because such models do not
have a specific parameter or set of parameters that can be set
to a value that solely implies either assumption 4 or 5 without
also implying that Y is altogether independent of either X2

or X1, respectively. Note that incorporating interactions and
nonlinearities in X1 and X2 would in principle make the regres-
sion model somewhat more flexible; however, this would not
necessarily resolve the above paradox unless a genuine nonpara-
metric model were used in place of a parametric model. Even
under a nonparametric polytomous regression framework, it is
unclear whether one could easily encode assumption 4. Note
also that this form of paradoxwill become evenmore ubiquitous
when multiple risk factors are being considered, in which case
nonparametric regression may no longer be practical. We may
conclude that polytomous logistic regression is generally ill
suited to either detect or model outcome heterogeneity of the
type described above. In the next section, we describe a sim-
ple alternative approach that circumvents this difficulty.

A general multinomial regression approach tomodel
outcome heterogeneity

The proposed approach involves modeling each category of
the outcome (other than a reference level) with a separate binary
regression model. To fix ideas, let us reconsider the example
from the previous section. Suppose that instead of equation 2,
one posits the following pair of logistic regressions:

{ = | } = β + β + β ( )Y x x X Xlogit Pr 1 , 81 2 10 11 1 12 2

{ = | } = β + β + β ( )Y x x X Xlogit Pr 2 , . 91 2 20 21 1 22 2

As before, { = | }Y x xPr 0 ,1 2 is given by equation 3. The
intercept βk0 may be interpreted as the log-odds that Y = k,
k = 1,2 when x1 = x2 = 0. The regression coefficient βkj cor-
responds to a difference in the log-odds of the event I{Y = k}
versus its complement I{Y ≠ k} per unit increment in Xj condi-
tional on the value of the other covariate; that is, βkj captures the
association between Xj and the risk of disease subtype k. The
degree of outcome heterogeneity as it relates to X1 is therefore
measured by the difference in the regression coefficients β11
and β21, which are the associations of X1 with disease subtype 1
and 2, respectively. Likewise, the degree of outcome heteroge-
neity as it relates to X2 can be captured by comparing β12 and
β22. Notably, the hypothesis corresponding to equations 4 and 5
is readily encoded without imposing further restriction by set-
ting β12 = β21 = 0.

For inference, one could in principle estimate βk = (βk0,
βk1, βk2)′ by separately maximizing the likelihood function
for the corresponding logistic regression in equations 8 and
9, with binary outcome I{Y = k}. However, such a strategy
has 2 potential limitations that make it unattractive. First, the
approach is potentially inefficient because it does not respect
the multinomial nature of Y and therefore does not make use of
all available information in estimating βk separately. A second
concern is that although the logit link function in equations 8
and 9 guarantees that the resulting estimate of the predicted
probability { = | }Y k X XPr ,1 2 for each person in the sample
falls within the unit interval (0, 1), it does not ensure that the re-
sulting estimate of { = | }Y X XPr 0 ,1 2 given by equation 3 also
falls within the unit interval.

In order to resolve these limitations, we propose that the collec-
tion of regression parameters be jointly estimated using the follow-
ing CB approach, which ensures model coherence and maximizes
efficiency. The approach basically entails specifying a prior distri-
bution π(β) for the vector of unknown parametersβ = (β′ β′ )′,1 2 ,
which, combined with the observed data likelihood, gives rise
to a posterior distribution proportional to

∏π(β) ( | β) { { = | β }

+ { = | β } < } ( )

f Y X I Y X

Y X

; Pr 1 ;

Pr 2 ; 1 , 10
i

i i i

i

1

2

where ( | β) = { = | β}f k X Y k X; Pr ;i i and the indicator func-
tion ensures that posterior samples are restricted to values of
β for which the multinomial model is well defined, that is,

< { = | β} = − { = | β } − { = | β }Y X Y X Y X0 Pr 0 ; 1 Pr 1 ; Pr 2 ;i i i1 2

<1. Noninformative prior can be used for β in the case of lack
of knowledge on the parameter values, for example, uniform
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prior or zero-mean normal prior with large variance. Condi-
tional on the observed data, sampling from the posterior distri-
bution yields the posterior mode (or mean) that provides an
efficient estimate of β, and 95% credible intervals can likewise
be obtained from the resulting posterior sample. Adaptive
Gibbs sampling (6) may be implemented through BRugs, the
R interface (R Foundation for Statistical Computing, Vienna,
Austria) to the OpenBUGSMCMC software (7). Sample Open-
BUGS code for posterior estimation in the simulation study is
included in Web Appendix 1 (available at https://academic.
oup.com/aje). One may then assess convergence by visually
inspecting the trace plots, as well as through the Gelman-Rubin
convergence statistic (8).

The approach is easily extended to handle a multinomial
outcome K > 3 levels. As before, we simply define K − 1
logistic regression models as

{ = | } = β′ = … −XY k x k Klogit Pr , 1, , 1,k

where X is a vector of J risk factors, with first component set
to 1 for the intercept. The density π(β) is again a diffuse prior
for β = {βjk: j = 1, . . ., J; k = 1, . . ., K − 1}. The posterior
distribution for the general case is proportional to

∏ ∑π(β) ( | β) { = | β } <
>

X Xf Y I Y k; Pr ; 1 ,
i

i i

k

i k
0

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

where the indicator function constrains the posterior sampling
space so that < { = | β} <XY0 Pr 0 ; 1.i Implementation of the
approach is as described above. We note that one could in
principle attempt to maximize the log-likelihood

∑

∑

( | β)

{ = | β }< ∀
>

X

X

f Y

Y k i

log ; , subject to the constraints

Pr ; 1 .

i

i i

k

i k
0

However, this is potentially computationally prohibitive because
there may be as many nonlinear constraints as sample size.

In the special case in which all outcomes are rare compared
with the baseline level Y = 0 for all values of (x1, x2), the para-
dox may not be as relevant because expression 2 can then be
approximated by

{ = | } ≈ {β + β + β } =
( )

XY k X X kPr exp , 1, 2,

11
k k k0 1 1 2 2

and the coefficients βkj in 10 are approximately equal to the
log risk ratios per unit change in the corresponding covariate
xj, j = 1, 2. When the disease outcomes are not necessarily
rare across levels of (x1, x2), the coefficients in 2 and 10 have
different interpretations, with the former relating to the log
relative risk ratios, for example,

β = ( = | = + ) ( = | = )
( = | = + ) ( = | = )

=

Y k X X x Y k X X x

Y X X x Y X X x

k

log
Pr , 1 /Pr ,
Pr 0 , 1 /Pr 0 ,

,

1, 2,

k1
2 1 1 2 1 1

2 1 1 2 1 1

⎧⎨⎩
⎫⎬⎭

and the latter relating to the familiar log odds ratio interpretation
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Relative risk ratios may potentially be difficult to interpret
in practice because they are dependent on the choice of refer-
ent category. In addition, significant associations based on
the polytomous logit model does not necessarily mean that
the corresponding risk factor is associated with the risk of a
given outcome type, which can be misleading in the presence
of outcome heterogeneity.

SIMULATION

In this section, we report a simulation study to evaluate the
finite-sample properties of the proposed CB estimator com-
pared with the polytomous and separate logistic estimators.
Full data consists of n independent and identically distrib-
uted (Yi, X1i, X2i), i = 1, . . ., n, where Y denotes the categori-
cal outcome and (X1, X2) the 2 risk factors. The vector (Z1,
Z2) is generated from a bivariate standard normal distribution
with correlation coefficient ρ = −0.3 and X1 = Φ(Z1), X2 =
Φ(Z2), where Φ(·) is the CDF of the standard normal distri-
bution. The categorical outcome is generated as

( = ) = { + [−(β + β + β )]}−Y X XPr 1 1 exp 10 11 1 12 2
1

( = ) = { + [−(β + β + β )]}−Y X XPr 2 1 exp 20 21 1 22 2
1

( = ) = { + [−(β + β + β )]}−Y X XPr 3 1 exp 30 31 1 32 2
1

( = ) = − ( = ) − ( = ) − ( = )Y Y Y YPr 0 1 Pr 1 Pr 2 Pr 3 ,

with true parameter values (β10, β11, β12) = (−1.1, 0.3, 0.0),
(β20, β21, β22) = (−0.9, 0.0,−0.4) and (β30, β31, β32) = (−1.1,
0.3, −0.3) for n = 200, 500 with 1,000 simulation replicates
at each sample size. Table 1 shows the results of polytomous
logistic regression based on the model

{ = | } = {α + α + α }
+ ∑ {α + α + α }

=
( )

=

XY k
X X

X X

k

Pr
exp

1 exp

1, 2, 3,
12

k k k

j j j j

0 1 1 2 2

1
3

0 1 1 2 2

where X = (1, X1, X2) and Y = 0 is the referent level. Sepa-
rate logistic (SL) regression estimates are based on the model

{ = | } = γ + γ + γ =
( )

XY k X X klogit Pr , 1, 2, 3,

13
k k k0 1 1 2 2

whereas the CB estimates are the Monte Carlo mean values
of the posterior distribution, which is proportional to
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where

{ = | η } = η + η + η =XY k X X klogit Pr ; , 1, 2, 3.i i k k k k0 1 1 2 2

The OpenBUGS code for fitting model 14 can be found in
Web Appendix 1. The trace plots and posterior densities of η
in a typical simulation replicate are shown in Web Figures 1
and 2, respectively. The results for SL and CB analyses are
included in Table 2.

The simulation results for polytomous logistic regression
show that the mean estimated log odds ratios for covariates X1

and X2 differ significantly from zero across each of the 3 com-
parison groups, as indicated by the empirical under-coverage
of 95% confidence intervals for the parameter value log(OR) = 0,

Table 1. Simulation Results Based on Polytomous Logistic Regression

No. and
Variable

Y = 1 Versus Y = 0 Y = 2 Versus Y = 0 Y = 3 Versus Y = 0

log(OR) RMSE MCSE %COV log(OR) RMSE MCSE %COV log(OR) RMSE MCSE %COV

200

X1 0.80 0.76 0.78 81.7 0.57 0.78 0.82 87.5 0.81 0.78 0.80 82.8

X2 −0.60 0.79 0.71 87.8 −0.93 0.55 0.48 80.3 −0.80 0.66 0.57 84.9

500

X1 0.78 0.47 0.46 64.5 0.57 0.48 0.47 79.0 0.76 0.48 0.49 62.6

X2 −0.61 0.47 0.48 73.7 −0.92 0.48 0.51 51.4 −0.84 0.49 0.49 60.4

Abbreviations: log(OR), mean estimated log odds ratio; MCSE, Monte Carlo standard error; %COV, empirical coverage of log(OR) = 0 by 95%
confidence interval; RMSE, square root of mean estimated variance; Y, categorical outcome variable in simulation study.

Table 2. Simulation Results Based on Separate Logistic and Constrained Bayesian Regressions

No., Method, and Variable
Y = 1 Versus Y ≠ 1 Y = 2 Versus Y ≠ 2 Y = 3 Versus Y≠ 3

log(OR) RMSE MCSE log(OR) RMSE MCSE log(OR) RMSE MCSE

200

Separate logistic

Intercept −1.13 0.50 0.50 −0.89 0.51 0.52 −1.16 0.51 0.51

X1 0.32 0.58 0.59 −0.01 0.60 0.63 0.32 0.61 0.61

X2 0.00 0.58 0.58 −0.44 0.60 0.60 −0.26 0.61 0.60

Constrained Bayesian

Intercept −1.09 0.45 0.48 −0.96 0.46 0.49 −1.18 0.47 0.49

X1 0.20 0.54 0.57 0.01 0.54 0.59 0.30 0.56 0.57

X2 0.01 0.52 0.56 −0.36 0.54 0.58 −0.28 0.55 0.58

500

Separate logistic

Intercept −1.11 0.31 0.30 −0.91 0.32 0.32 −1.10 0.32 0.32

X1 0.32 0.36 0.35 0.01 0.38 0.37 0.28 0.38 0.38

X2 0.00 0.36 0.36 −0.41 0.38 0.39 −0.30 0.38 0.38

Constrained Bayesian

Intercept −1.10 0.29 0.30 −0.93 0.29 0.32 −1.12 0.30 0.32

X1 0.27 0.34 0.35 0.01 0.34 0.36 0.29 0.35 0.37

X2 0.01 0.34 0.36 −0.38 0.34 0.38 −0.31 0.35 0.38

Abbreviations: log(OR), mean estimated log odds ratio; MCSE, Monte Carlo standard error; RMSE, square root of mean estimated variance;
Y, categorical outcome variable in simulation study.
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which is more severe as sample size increases. Based on model
12, this implies that (X1, X2) are risk factors for each of the 3 le-
vels of outcome in Y, and therefore appears to contradict the out-
come heterogeneity of risk factors (X1, X2) with Y under the true
model. In order to be a coherent model for outcome heterogene-
ity in the present data-generating mechanism, polytomous logis-
tic regression must depend on neither X1 nor X2 (log(OR) = 0),
as argued in the paradox previously described. Model 12 is
therefore amisspecifiedmodel for the full data law incorporating
outcome heterogeneity, and the odds ratio estimates suggest that
it is unable to differentiate between risk factors that influence a
particular outcome category and those risk factors that do not.
Estimates of variance tend to be conservative compared with
the empirical variance in finite samples. Note that estimates
and corresponding estimated standard errors for polytomous

logistic regression summarized in Table 1 are not directly
comparable to those from the separate logistic or CB approach
in Table 2 because they have different interpretations.

The log odds ratio estimates for SL and CB regressions
are consistent for the true log odds ratios, with vanishing
biases as sample size increases. The CB regression estimator
appears to be slightly less biased than the SL estimator in
finite samples. The variance estimator based on the posterior
distribution in the CB approach performs well, whereas those
for SL tend to be conservative in finite samples. In addition,
the asymptotic relative efficiency comparing SL and CB esti-
mates (i.e., ( ( ) ) ( ( ) )log OR log ORVar /VarCB SL

  ) varies between
0.81–0.88. This is in agreement with theory, because the CB
estimation incorporates all available information from the data
by simultaneously estimating all parameters.

Table 3. EstimatedOdds Ratioa of Mortality FromVarious Causes by Risk Factors Based on Polytomous Logistic Regression

Variable
CHD Stroke Cancer

OR 95%CI OR 95%CI OR 95%CI

Age 1.113 1.093, 1.133b 1.182 1.152, 1.212b 1.105 1.090, 1.119b

Female sex 0.191 0.141, 0.258b 0.574 0.406, 0.813b 0.521 0.428, 0.633b

Serum cholesterol 1.006 1.003, 1.009b 0.998 0.994, 1.002 0.998 0.995, 1.000

Bodymass index 1.032 0.995, 1.070 0.999 0.956, 1.043 0.994 0.968, 1.020

High blood pressure 2.257 1.697, 3.003b 2.213 1.552, 3.158b 1.258 1.019, 1.553b

Abbreviations: CHD, coronary heart disease; CI, confidence interval; OR, odds ratio.
a Odds ratio of mortality from specific cause versus survival by the end of the follow-up period.
b Denotes significance withP < 0.05.

Table 4. EstimatedOdds Ratioa of Mortality FromVarious Causes by Risk Factors Based on Separate Logistic and Constrained Bayesian
Regressions

Method and Variable
CHD Stroke Cancer

OR 95%Confidence Interval OR 95%Confidence Interval OR 95%Confidence Interval

Separate logistic

Age 1.078 1.059, 1.096b 1.145 1.118, 1.173b 1.082 1.069, 1.096b

Female sex 0.230 0.171, 0.310b 0.820 0.584, 1.151 0.632 0.522, 0.765b

Serum cholesterol 1.007 1.004, 1.010b 0.998 0.994, 1.002 0.998 0.995, 1.000

Bodymass index 1.035 0.998, 1.072 0.999 0.957, 1.043 0.994 0.969, 1.020

High blood pressure 2.032 1.534, 2.690b 1.920 1.351, 2.728b 1.079 0.878, 1.328

CHD Stroke Cancer

OR 95%Credible Interval OR 95%Credible Interval OR 95%Credible Interval

Constrained Bayesian

Age 1.065 1.048, 1.082c 1.128 1.107, 1.149c 1.079 1.068, 1.092c

Female sex 0.255 0.191, 0.338c 0.924 0.665, 1.285 0.661 0.547, 0.798c

Serum cholesterol 1.006 1.003, 1.009c 0.996 0.992, 0.999c 0.997 0.995, 0.999c

Bodymass index 1.033 1.003, 1.061c 0.993 0.955, 1.031 0.998 0.978, 1.026

High blood pressure 1.884 1.431, 2.477c 1.782 1.265, 2.522c 1.051 0.857, 1.292

Abbreviations: CHD, coronary heart disease; OR, odds ratio.
a Odds ratio of mortality from specific cause versusmortality from other causes or survival by the end of the follow-up period.
b Denotes significance withP < 0.05
c Denotes exclusion of 1 from 95% credible interval.
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Even though 13 is the correct model, the SL estimate
( = | )Y X XPr 0 ,1 2

 is negative for at least 1 sample in 11.2%
and 0.15% of the simulation replicates when n = 200 and
n = 500, respectively. Therefore, fitted probabilities for the
reference outcome sometimes do not lie in the unit interval,
which occurs despite the absence of model misspecification.
Estimation with the proposed CB approach ensures that esti-
mates ( = | )Y X XPr 0 ,1 2

 all lie within the unit interval.

EMPIRICAL ILLUSTRATION

The empirical application concerns a cohort study of com-
munity health in Framingham, Massachusetts (9). Categories
of the multinomial outcome Y are different causes of death
in the present analysis, with 261 (6.2%) subjects who died
from CHD, 164 (3.9%) subjects who died from stroke, 539
(12.9%) subjects who died from cancer, and 3,218 (76.9%)
subjects who survived by the last examination taken in the
years between 1979 and 1982. Our goal was to investigate
the associations of the separate causes of death with different
risk factors, including sex (female coded as 1), age in years,
body mass index, serum cholesterol (mg/100 mL), and high
blood pressure (systolic blood pressure ≥140 mm Hg or dia-
stolic blood pressure≥90 mmHg), measured at baseline dur-
ing the first examination in the years 1948–1953. There were
4,060 (97%) subjects with complete information on the out-
come and risk factors, and 122 (3%) subjects with missing
values were excluded from the analysis. The results of poly-
tomous logistic regression are shown in Table 3, whereas the
results from separate logistic and CB logistic regressions of
Y on the risk factors are shown in Table 4.

The results from polytomous logistic regression suggested
that increasing values in age and serum cholesterol, as well as
male sex and high blood pressure, were significantly associ-
ated with greater risks of death from at least 1 of the 3 causes
(CHD, stroke, or cancer) relative to survival rates by the end
of the follow-up period. Only body mass index was not signif-
icantly associated with the risks of death from any cause. Based
on a main effects polytomous logistic model, the results sug-
gested that age, serum cholesterol, sex, and high blood pressure
were significant risk factors for all causes of death.

Estimation using the separate logistic method suggested
that increasing values in age were significantly associated
with greater risks of death from CHD, stroke, and cancer.
On the other hand, the risk factors sex and high blood pres-
sure showed more heterogeneity. Being female was signif-
icantly associated with a lower risk of death from CHD
and cancer but not stroke. High blood pressure was a sig-
nificant risk factor for greater risk of death from CHD and
stroke but not from cancer. Eighteen persons had negative esti-
mated probabilities of surviving through the follow-up period
under the separate logistic method. Results from the CB and
separate logistic methods for age, sex, and high blood pres-
sure were similar. The estimated asymptotic relative effi-
ciency of the CB estimator compared with the separate
logistic estimator varied between 0.61–0.98. More efficient esti-
mation from the CB method identified serum cholesterol as a
statistically significant risk factor for greater risk of death from
CHD, but it was paradoxically significantly associated with

lower risks of death from stroke and cancer. These apparent
“protective” associations could essentially have been due to
competing risk from death by CHD. Higher body mass index
was found to be significantly associated with death from CHD
but not from stroke or cancer.

Using CB estimation, it appeared that high blood pressure
was associated with increased mortality from CHD and stroke
but not cancer, whereas outcome heterogeneity was entirely
understated by polytmous logistic regression. Likewise, using
CB estimation, we found that being a female was associated
with lower mortality from CHD and cancer but not stroke,
another level of outcome heterogeneity that was undetected
by polytomous logistic regression. The OpenBUGS code for
unconstrained Bayesian estimation based on the Framingham
data can be found in Web Appendix 2. We see then that the
problem described in this paper with polytomous logistic
regression is not simply theoretical; it can and does arise
in practice. Continued use of this standard approach might
perpetuate lack of detection of scientifically relevant outcome
heterogeneity in epidemiologic practice.

DISCUSSION

Polytomous regression is the standard approach in the anal-
ysis of data from clinical or observational studies with polyto-
mous outcome. However, a peculiar feature of this model is
that its parameterization cannot encode or detect simple out-
come heterogeneity, whereby certain risk factors contribute
exclusively to the occurrence of some outcomes but not
others. We propose an alternative approach to polytomous
logistic regression that involves modeling each category
of the outcome (other than a reference level) with a sepa-
rate binary regression model. By doing so, our multino-
mial regression readily encodes a broad range of outcome
heterogeneity of practical interest. In order to ensure coherent
inferences and maximize efficiency, the collection of regres-
sion parameters are jointly estimated, which is straightforward
to implement in standard software for Bayesian estimation.
The CB approach should form a part of the standard statistical
methods for assessing outcome heterogeneity.
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