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Abstract

Summary: IntegratedMRF is an open-source R implementation for integrating drug response pre-

dictions from various genomic characterizations using univariate or multivariate random forests

that includes various options for error estimation techniques. The integrated framework was de-

veloped following superior performance of random forest based methods in NCI-DREAM drug sen-

sitivity prediction challenge. The computational framework can be applied to estimate mean and

confidence interval of drug response prediction errors based on ensemble approaches with various

combinations of genetic and epigenetic characterizations as inputs. The multivariate random forest

implementation included in the package incorporates the correlations between output responses

in the modeling and has been shown to perform better than existing approaches when the drug re-

sponses are correlated. Detailed analysis of the provided features is included in the Supplementary

Material.

Availability and Implementation: The framework has been implemented as a R package

IntegratedMRF, which can be downloaded from https://cran.r-project.org/web/packages/Integrat

edMRF/index.html, where further explanation of the package is available.

Contact: ranadip.pal@ttu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A primary objective of precision medicine for cancer is the selection

of an anti-cancer drug or drug combination that is most effective for

the individual patient (Garnett and et al., 2012). A diverse set of re-

gression models such as linear regression with regularization, non-

linear regression, kernel based techniques and ensemble based

approaches have been applied to the problem of drug response pre-

diction from genetic characterizations for enabling personalized can-

cer therapy. The NCI-DREAM drug sensitivity prediction challenge

was a crowd sourced initiative to apply a diverse set of prediction

models on the same set of heterogeneous genetic characterization

training data to evaluate model performance on holdout datasets

(Costello and et al., 2014). The current computational framework

development was motivated by the second best performance of ran-

dom forest based approach in the NCI-DREAM challenge among

more than 40 different submissions (Wan and Pal, 2014). Individual

predictions from each genetic or epigenetic characterization dataset

such as RNAseq, Protein expression or methylation based on

Random Forests were combined using a linear regression model to

arrive at combined predictions. We have considered further en-

hancements to the framework by (i) considering Multivariate

Random Forests (Segal and Xiao, 2011) that improves prediction

accuracy by incorporating the correlation between output responses,

(ii) analyzing different error estimation techniques as the estimated

error can be significantly different from the true or validation error

for small sample scenarios. This application note describes the
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IntegratedMRF package that has been implemented in R and Cþþ.

The package provides various functionalities to implement an inte-

grated prediction from different data subtypes using either univari-

ate or multivariate Random Forests along with options for different

error estimation techniques to select the weights for generating the

integrated model from individual predictions.

2 Methods and results

A conceptual overview of the computational framework is illus-

trated in Figure 1. For each individual genomic characterization

(such as Gene Expression, Methylation, Exome Sequence, RPPA or

SNP6 (CNV) denoted by Subtypes 1 to D in Fig. 1), a Random

Forest (RF) or Multivariate Random Forest (MRF) model is esti-

mated using the training samples. For generating integrated model

predictions for all possible data subtype combinations, a specific

error estimation method (such as Leave-one-out, N-fold Cross

Validation, Bootstrap or 0.632þ Bootstrap) is applied to generate

weights for individual predictions using least square regression. The

integrated model that provides the minimum mean absolute predic-

tion error is selected for predicting the testing samples.

Algorithms: The IntegratedMRF package provides various op-

tions for design of integrated ensemble predictive models, each with

the following significant features:

Model Inference: The package provides options for estimation of

regular RF or MRF as the predictive modeling approach. If the num-

ber of output responses is greater than 1, the default selection is

MRF whereas for a single output response, a RF model is generated.

The suitability of MRF for prediction as compared to RF is

discussed in next section. We have observed that MRF provides

higher accuracy than RF when the output responses are correlated

as observed through common targets in the drugs.

Error Estimation techniques: We provide options for Leave-one-out,

n-fold cross validation, Bootstrap and 0.632þBootstrap (Bradley

Efron, 1997) error estimation approaches to estimate the true error of a

designed model. Bootstrap error estimates can sometimes be upward

biased (estimate higher than true error) and 0.632þBootstrap attempts

to correct that bias by linearly combining the high biased Bootstrap esti-

mate with low biased training error estimate. The detailed descriptions

of the error estimation techniques are included in the Supplementary

Section 2. Among the considered error estimation approaches, leave-

one-out appears closer to validation error for smaller samples based on

DREAM challenge results described in next section. For larger sample

sizes, it is preferable to use n-fold CV or Bootstrap (details included in

the Supplementary Section 5.3). We recommend the use of Leave-one-

out error estimation for small sample scenarios (such as DREAM chal-

lenge dataset with 35 samples; Costello and et al., 2014) and the appli-

cation of n-fold CV or Bootstrap for larger datasets (such as 400 sample

dataset of CCLE; Barretina and et al., 2012).

Integrated Model: IntegratedMRF provides an option for applying

linear least square regression on predictions from models trained on

different data types to estimate the weights for combining the model

predictions. Based on the selected error estimation approach, the

training and testing datasets are created. The training samples are

used to estimate the individual model parameters along with the

integrated model regression coefficients. The testing samples are

used to evaluate the performance of each integrated model in terms

of mean absolute prediction error. Note that for D different genetic

Fig. 1. Overview of Integrated Prediction Methodology
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or epigenetic characterizations, there will be 2D � 1 integrated

model combinations. The alternative possibilities of concatenating

all features before generating a single RF or MRF model or applying

feature selection before model generation is compared to our current

approach in the Supplementary Section 5.2. Results indicate that it

is better to generate individual predictive models for each dataset

and then combine them to form an integrated model rather than de-

signing a single model from a concatenated dataset.

2.1 Performance
Error estimation and integrated model performance: The computa-

tional framework presented here has been utilized to analyze drug re-

sponse prediction from NCI-DREAM drug sensitivity prediction

challenge (Costello and et al., 2014) and Cancer Cell Line

Encyclopedia (CCLE) (Barretina and et al., 2012) datasets. The model

training and error estimates are based on 35 samples of the DREAM

challenge dataset whereas the validation or true error of an inferred

model is estimated based on a separate set of 18 hold-out samples.

Figure 2 displays the different error estimates (Leave One Out, 5-fold

CV, Bootstrap, 0.632þBootstrap) and validation error in terms of

Mean Absolute Error for drug 3 from NCI Dream Challenge Dataset

for 31 (25 � 1) different Integrated Models. Figure 2 shows that

different error estimates can have variations but the overall trend of

the error estimates along with validation error shows a reduction in

prediction error with addition of more datasets. We also observe that

LOO followed by 5fold CV and BSP provides the closest estimate

of the true error. Similar behavior is observed for another scenario

(drug 1) as reported in the Supplementary Section 5.1.

We have also compared the various error estimation techniques to

validation error for CCLE dataset where 100 random samples out of

around 500 samples were used for model generation and error estima-

tions. The remaining hold-out set of around 400 samples were used to es-

timate the true error or validation error. The results reported in the

Supplementary Section 5.3 support the earlier hypothesis of LOO fol-

lowed by 5-fold CV and BSP provides the closest estimate of the true

error. Comparing Figure 2 and Supplementary Figure S6, we observe that

the difference between validation error and the error estimates reduces

when the initial set of training samples is increased from 35 to 100.

Comparison of MRF with other approaches: In this section, we

compare the prediction performance of Multivariate Random Forest

(MRF) to Random Forest (RF) (Wan and Pal, 2014), Elastic Net

(EN) (Barretina and et al., 2012) and Kernelized Bayesian Multi

Task Learning (KBMTL) (Gonen and Margolin, 2014) approaches

using Genomics of Drug Sensitivity in Cancer (GDSC) gene

Fig. 2. Multiple Mean Absolute Error estimates (LOO: Leave one out, 5foldCV: 5 fold cross validation, BSP: Bootstrap, 0.632þBSP: 0.632þBootstrap) and mean

absolute validation error for drug 3 from NCI Dream Challenge Dataset for 31 (25 � 1) different data subtype Integrated Models. The datasets are denoted by: G:

Gene Expression, M: Methylation, R: RNASeq, P: RPPA and S: SNP6

Table 1. Fivefold Cross validation results for GDSC dataset response prediction for four drug sets (S1, S2 and S3 sets consists of highly corre-

lated responses whereas the set of S4 has low correlated responses)

Correlation coefficients

Drug set Correlation Drug name EN KBMTL RF MRF

among responses

S1 0.8439 RDEA119 0.62 0.57 0.63 0.66

PD-0325901 0.48 0.47 0.61 0.63

S 2 0.8410 BI-2536 0.23 0.23 0.26 0.28

GW843682X 0.30 0.28 0.31 0.33

S3 0.8366 CI-1040 0.46 0.51 0.59 0.60

PD-0325901 0.50 0.52 0.62 0.65

S4 6.59e-7 Axitinib 0.31 0.33 0.36 0.32

Mitomycin C 0.28 0.25 0.37 0.38

Correlation coefficients between actual and predicted drug responses using Elastic Net (EN), Kernelized Bayesian multitask learning (KBMTL), Random

Forest (RF) and Multivariate Random Forest (MRF) are reported. The parameters for EN and KBMTL were same as the parameters used by earlier drug sensitiv-

ity prediction studies of Barretina and et al. (2012) and Gonen and Margolin (2014) respectively.
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expression dataset (Yang, 2013). Table 1 shows the 5-fold cross val-

idation performance in terms of correlation coefficient between pre-

dicted and actual responses on GDSC dataset for MRF, RF, EN and

KBMTL approaches for four sets of drugs (S1, S2 and S3 are the pairs

with the highest correlations among training responses while S4 is

the pair with the lowest correlation). Table 1 shows that MRF out-

performs RF, EN and KBMTL for S1, S2 & S3 drug sets whereas RF

outperforms MRF for S4 drug set.

We have also compared MRF to RF approach using other drug

pairs of GDSC, DREAM challenge and CCLE datasets that are re-

ported in the Supplementary Tables S2 and S4–S7. Similar to GDSC

scenario, we observed MRF outperforms RF when the drug responses

are correlated (Supplementary Tables S2, S5 and S6) and RF outper-

forms MRF when drug responses are not correlated (Supplementary

Tables S4 and S7). Note that, we expect that drug responses will be

correlated when they share common primary targets and the use of

MRF will likely be advantageous in such scenarios.

3 Conclusions

The presented computational framework provides the following

enhanced features of: (i) generation of multivariate random forests

that incorporates dependencies in output responses which has been

shown to outperform existing approaches for correlated drug re-

sponses, (ii) application of multiple error estimation approaches and

(iii) integration of predictions from different genetic characteriza-

tions that results in a decrease in average error estimates and valid-

ation error with additional datasets.
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