Table 1.
Correlation coefficients | ||||||
---|---|---|---|---|---|---|
Drug set | Correlation | Drug name | EN | KBMTL | RF | MRF |
among responses | ||||||
S1 | 0.8439 | RDEA119 | 0.62 | 0.57 | 0.63 | 0.66 |
PD-0325901 | 0.48 | 0.47 | 0.61 | 0.63 | ||
S2 | 0.8410 | BI-2536 | 0.23 | 0.23 | 0.26 | 0.28 |
GW843682X | 0.30 | 0.28 | 0.31 | 0.33 | ||
S3 | 0.8366 | CI-1040 | 0.46 | 0.51 | 0.59 | 0.60 |
PD-0325901 | 0.50 | 0.52 | 0.62 | 0.65 | ||
S4 | 6.59e-7 | Axitinib | 0.31 | 0.33 | 0.36 | 0.32 |
Mitomycin C | 0.28 | 0.25 | 0.37 | 0.38 |
Correlation coefficients between actual and predicted drug responses using Elastic Net (EN), Kernelized Bayesian multitask learning (KBMTL), Random Forest (RF) and Multivariate Random Forest (MRF) are reported. The parameters for EN and KBMTL were same as the parameters used by earlier drug sensitivity prediction studies of Barretina and et al. (2012) and Gonen and Margolin (2014) respectively.