Skip to main content
. 2017 Feb 6;33(9):1407–1410. doi: 10.1093/bioinformatics/btw765

Table 1.

Fivefold Cross validation results for GDSC dataset response prediction for four drug sets (S1, S2 and S3 sets consists of highly correlated responses whereas the set of S4 has low correlated responses)

Correlation coefficients
Drug set Correlation Drug name EN KBMTL RF MRF
among responses
S1 0.8439 RDEA119 0.62 0.57 0.63 0.66
PD-0325901 0.48 0.47 0.61 0.63
S2 0.8410 BI-2536 0.23 0.23 0.26 0.28
GW843682X 0.30 0.28 0.31 0.33
S3 0.8366 CI-1040 0.46 0.51 0.59 0.60
PD-0325901 0.50 0.52 0.62 0.65
S4 6.59e-7 Axitinib 0.31 0.33 0.36 0.32
Mitomycin C 0.28 0.25 0.37 0.38

Correlation coefficients between actual and predicted drug responses using Elastic Net (EN), Kernelized Bayesian multitask learning (KBMTL), Random Forest (RF) and Multivariate Random Forest (MRF) are reported. The parameters for EN and KBMTL were same as the parameters used by earlier drug sensitivity prediction studies of Barretina and et al. (2012) and Gonen and Margolin (2014) respectively.