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Longitudinal data sources offer new opportunities for the evaluation of sequential interventions. To adjust for time-
dependent confounding in these settings, longitudinal targeted maximum likelihood based estimation (TMLE), a dou-
bly robust method that can be coupled with machine learning, has been proposed. This paper provides a tutorial in
applying longitudinal TMLE, in contrast to inverse probability of treatment weighting and g-computation based on iter-
ative conditional expectations. We apply these methods to estimate the causal effect of nutritional interventions on
clinical outcomes among critically ill children in a United Kingdom study (Control of Hyperglycemia in Paediatric Inten-
sive Care, 2008–2011). We estimate the probability of a child’s being discharged alive from the pediatric intensive
care unit by a given day, under a range of static and dynamic feeding regimes. We find that before adjustment, pa-
tients who follow the static regime “never feed” are discharged by the end of the fifth day with a probability of 0.88
(95% confidence interval: 0.87, 0.90), while for the patients who follow the regime “feed from day 3,” the probability of
discharge is 0.64 (95% confidence interval: 0.62, 0.66). After adjustment for time-dependent confounding, most of
this difference disappears, and the statistical methods produce similar results. TMLE offers a flexible estimation
approach; hence, we provide practical guidance on implementation to encourage its wider use.

causal inference; epidemiologic methods; longitudinal targetedmaximum likelihood estimation; machine learning;
Super Learner; time-dependent confounding

Abbreviations: CHiP, Control of Hyperglycemia in Paediatric Intensive Care; CI, confidence interval; IPTW, inverse probability of
treatment weighting; PICU, pediatric intensive care unit; RACHS-1, Risk Adjustment for Congenital Heart Surgery; TMLE,
targeted maximum likelihood estimation.

Large observational databases such as electronic health rec-
ords are increasingly being used to answer questions of com-
parative effectiveness. The longitudinal structure of these data
sets allows researchers to estimate the effects of interventions
that change over time. Examples include the treatment of
chronic diseases such as diabetes and hypertension, where deci-
sions such as when to initiate a treatment, change the dose, or
introduce a concomitant medication are repeatedly updated
over time. For decision-makers to compare the consequences of
alternative longitudinal interventions, it is essential to carefully
define the strategies of interest (1). A static regime for time-
varying interventions prespecifies the full sequence of interven-
tions, irrespective of changing patient characteristics over time

(e.g., “always treat”). Dynamic regimes, or individualized treat-
ment rules, in contrast, define a set of rules as a function of
time-varying patient characteristics (2–6). While sequentially
randomized trials provide an ideal design for the evaluation of
dynamic regimes (7, 8), such trials are still relatively rare (9)
and are impractical for many clinical and health policy ques-
tions (10).

Where the only available data for estimating the treatment ef-
fects of interest are from observational studies, statistical meth-
ods are required to address both baseline and time-dependent
confounding. The latter arises in longitudinal settings, when the
uptake of treatment may depend on factors that influence the
outcome and are also affected by earlier treatments. It is widely
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recognized that standard regression analysis cannot deal
with time-dependent confounding (2, 11). While in the last
few decades progress has been made in developing appro-
priate statistical methods for addressing time-varying con-
founding (see Daniel et al. (12) for a review), applications
of these approaches have been confined to relatively few
clinical areas, such as human immunodeficiency virus infection
(13). Further methodological and applied research that demon-
strates these approaches for handling time-varying con-
founding in different contexts is required.

Inverse probability of treatment weighting (IPTW) (11, 14),
a simple and intuitive method for estimating the effect of time-
varying treatments, results in unstable and biased estimates in
the presence of data sparsity, even when weights are normal-
ized and extreme weights are truncated (15). A commonly
used alternative approach, parametric g-computation (2),
requires parametric specification of multiple aspects of the
data distribution, including models for the full conditional
densities (or probability distributions) of the outcome and
of the time-dependent confounders given the past. Similarly,
structural nested mean models require a parametric model for
the treatment effect, the “blip function” (16). A perennial con-
cern with these approaches is that they are prone tomodel mis-
specification, leading to biased estimates of treatment effects.

Targeted learning (17) has been proposed as a general
approach to estimation of a range of causal parameters for causal
inference problems with both time-constant and time-varying
interventions (18–22). Targeted learning encompasses a semi-
parametric, doubly robust estimation approach, targeted maxi-
mum likelihood estimation (TMLE) (17) for single-time-point
and longitudinal causal effects. TMLE combines estimates of
the treatment and outcome mechanisms and provides a consis-
tent estimator of the target parameter if either the treatment or
the outcome mechanism is estimated consistently. If both are
estimated consistently, TMLE is efficient (19). In order to
reduce bias, achieve efficiency, and ensure accurate statistical
inference, TMLE is often coupled with machine learning—
particularly the Super Learner, a cross-validation-based estima-
tor selection approach (23, 24). (For a tutorial on single-time-
point interventions, see, for example, Schuler and Rose (25).)

In this paper, we demonstrate the application of the longitudi-
nal TMLE estimator based on iterative conditional expectations
(21, 26) and highlight how it is related to the IPTW (11) and g-
computation (2, 26) estimators. While prior studies demonstrat-
ing the application of this estimator in longitudinal settings exist
(22, 26–30), few observational data applications have discussed
the use of the estimator to study the effects of dynamic regimes
or subject-responsive adaptive treatment strategies (31).

We apply IPTW, g-computation based on iterative condi-
tional expectations, and longitudinal TMLE to an empirical
study investigating an unanswered question of high relevance
to clinical decision-makers: What is the optimal timing and
quantity of caloric intake for critically ill children? We reana-
lyze data from a clinical trial, the Control of Hyperglycemia in
Paediatric Intensive Care (CHiP) Study (32), to estimate the
effect of alternative treatment regimes on the probability of
being discharged from the pediatric intensive care unit (PICU)
by a given day, under a range of clinically relevant treatment
regimes. We follow the general targeted estimation road map
(33) to formulate the hypothetical regimes, define the causal

parameters of interest, and discuss how to identify, estimate,
and interpret these parameters.

METHODS

Research question in the CHiP Study

An important objective of critical-care medicine is to pro-
vide the appropriate level of nutritional support over the
course of the patient’s hospital stay. In most critical-care
settings, the preferred mode of nutritional support is the
nasogastric (enteral) tube, which is often complemented with
intravenous (parenteral) feeding. For adult patients admitted
to critical-care units, evidence-based guidelines exist, and in
a recent randomized controlled trial, McClave et al. (34) re-
ported that starting nutritional support early after admission
to the PICU favorably altered outcomes. For critically ill
children, guidelines for nutritional support are limited by the
lack of available evidence (35). While a recent randomized trial
of nutritional support for children admitted to the PICU found
that delaying parenteral nutrition led to favorable clinical out-
comes (36), there is no randomized trial evidence to address
more complex but important questions, such as the optimal tim-
ing and total quantity of nutritional support for children admit-
ted to the PICU.

In recently published findings from the CHiP Study, a ran-
domized trial with 1,369 participants aged ≤16 years (recruited
between 2008 and 2011) undertaken at 13 research centers in
the United Kingdom, Macrae et al. (32) found that tight glyce-
mic control in critically ill children had no effect on the primary
clinical outcome, the number of ventilator-free days. We under-
took a secondary analysis of the CHiP data set to investigate the
causal effect of different levels of nutritional support on a clini-
cal outcome. We focused on the subgroup of children who
were admitted to the PICU to undergo cardiac surgery and
were younger than 3 years of age.

We followed the US National Academy of Medicine (for-
merly Institute of Medicine) guidelines (37) in standardizing
individual caloric intake by dividing the individual measures
of daily intake by a target level specific to the patient’s sex,
age, height, andweight.We defined a patient as “fed” on a given
day if he or she received at least 20% of the individualized tar-
get. The outcome of interest was being discharged alive from
the PICU to other hospital wards by a given day.

The effect of a feeding strategy on a given day on the patient’s
discharge status is subject to potential confounding from baseline
characteristics, such as age, sex, weight, height, Risk Adjustment
for Congenital Heart Surgery (RACHS-1) risk score (which ex-
presses the severity of the child’s condition at admission (38)),
and randomization arm (tight or standard glycemic control).
Younger children and those with higher risk scores tend to
be fed less aggressively and are also likely to stay longer in
the PICU, potentially biasing the effect of feeding (as compared
with no feeding) towards a seemingly protective effect. While
all patients are mechanically ventilated at baseline, being taken
off mechanical ventilation is a strong predictor of discharge in
the next few days. Patients just taken off mechanical ventilation
can, for safety reasons, be fed only by the parenteral (not the
enteral) route, making it less likely that their caloric intake will
reach the 20% threshold. Hence, a lack of adjustment for

Am J Epidemiol. 2017;186(12):1370–1379

ADemonstration of Longitudinal TMLE 1371



mechanical ventilation status could make no feeding appear
beneficial. Further time-varying potential confounders include
renal replacement therapy, infection, and a vasoactive inotrope
score (39).

Observed data structure

For each patient in the CHiP Study, the level of calorific
intake (the treatment) was measured daily from study entry
(randomization) until the relevant clinical outcome was re-
corded (discharge from the PICU or death while in the PICU).
We restricted the follow-up data used in this analysis to the
first 7 days postrandomization, since the majority of patients
were discharged from the PICU by this time point.

In our analysis, we denote time by = +t T0, ..., 1, where
+ =T 1  7 is the end of follow-up. At each time point, the pa-

tient’s feeding status is represented by the binary variable At,
while confounders are denoted by the multidimensional vari-
able Zt. The first measurement of the time-varying confounders
and the vector of baseline confounders are jointly denoted by
Z0. Mechanical ventilation, renal replacement therapy, infec-
tion, and randomization arm are binary variables, while the
RACHS-1 and vasoactive inotrope scores, weight, height, and
age are continuous.

Mt and Yt indicate whether, by the end of time period t, a
patient has died ( = )M  1t or has been discharged alive from the
PICU ( = )Y  1t .We use overbars to denote histories; for example,
treatment history is denoted by = ( )A A A, ...,t t0 . We assume
that the observed data are n independent and identically distrib-
uted copies of = ( ) ∼+O Z A Y M Z A A Y P, , , , , , ..., ,T T o0 0 1 1 1 1 1 ,
where Po is the true underlying distribution from which the data
are drawn and where, for notational convenience, we assume
that the values of variables after death or discharge are determin-
istically equal to their last observed values. The ordering of the
elements of O represents their assumed causal ordering. (See
Web Appendix 1, available at https://academic.oup.com/aje, for
the causal model.) For example, the baseline covariates ( )Z0
precede thefirst instance of feeding ( )A0 , which precedeswhether
the patient is discharged by the end of the first day ( )Y1 .

We denote the history of the confounders, discharge status,
and death with a single vector = ( )Z Y ML , ,t t t t that will be
referred to as “covariates.” Death is treated as a competing
event for PICU discharge: If =M  1t , then any subsequent

=′Y 0t for ′ >t t .

Formulating the interventions of interest

We consider 2 types of longitudinal interventions: static treat-
ment regimes and dynamic treatment regimes. Let the vector
¯ = ( )a a aa , , ..., T0 1 denote a longitudinal feeding regime, defined
up to the last period before the end of follow-up. The elements
of this vector, at, define the feeding intervention, with static and
dynamic regimes differing in how at is specified. For a static
regime, at is a prespecified constant for each t. For example, the
static regime “never feed” sets at to 0 in each t, resulting in the
treatment regime = ( )a  0, 0, ..., 0 , while the static regime “feed
from day 3”would be defined as = ( )a  0, 0, 1, ..., 1 .

For dynamic regimes, at is set by a decision rule. We
define dt as a function that incorporates information available
on a subject up to time t, such as some subset of the covariate

history, denoted V̄t. We use ( )Vd t to denote the vector of in-
terventions required by regime d from time 0 to time t, given
the realized covariate history. Here, we specify a dynamic
treatment regime in which clinicians are required to feed a
patient on each day that he or she is not mechanically venti-
lated ( = )Z  1t,1 .

Clinical guidelines may not require the intervention to
start on the first day and could allow delaying the start of the
intervention. For example, the regime “feed by the third day”
leaves the treatment values to be random for 2 days and then
requires feeding from day 3 onward. This regime is denoted
by ¯ = ( )a A A, , 1, ..., 1T2: 0 1 , where A0 and A1 are the observed
levels of feeding on the first 2 days.

Throughout, we consider regimes that implicitly only assign
a feeding intervention up to the time of discharge or death.
Thus, a subject who followed a regime of interest up to death or
discharge, according to our definition, would continue to follow
this regime up to time +T 1. To simplify notation, in the sec-
tions that follow, we refer to the counterfactual interventions
generally as = ( ) ∈d d d, ..., DT0 , whereD is the set of regimes
of interest, and note that this notation includes static regimes as
special cases of dynamic regimes.

Target causal parameter and identifying assumptions

The counterfactual discharge status at time t that would have
been observed under a given feeding regime d is denoted by
Yt

d . Our causal parameter of interest is the intervention-specific
mean outcome, the expected discharge status by a selected time
⁎t , under a given regime d, where = +⁎t T 1, ..., 1:

ψ = [ ]⁎ ⁎E Y .d t t
d

,

ψ ⁎d t, can be interpreted as the counterfactual cumulative risk
of discharge by day ⁎t if all subjects had followed a given
regime.

In order to identify ψ ⁎d t, from the observed data, the fol-
lowing assumptions are required (2):

The sequential randomization assumption states that, con-
ditional on the observed treatment and confounder history,
the potential outcome is independent of treatment status in
each preceding time period,

⊥ | = ( ¯ )− −⁎Y A L A d V, ,t
d

t t t t1 1

for = −⁎t t 0, ..., 1, and ∈d D. This assumption requires
that a sufficiently rich set of confounders are measured, so that
it can be assumed that conditional on observed covariates, and
following the regime of interest, the feeding decision at time
t is “at random.”

The positivity assumption requires that for each feeding
regime d, in each period t before the final time period of inter-
est ⁎t , patients must have a positive probability of following
that regime, conditional on having followed it up to that time
point, for any combination of observed covariate history:

[ = ( ) | = ( )] >− −A d V L A d VPr ,   0,t t t t t1 1

for = −⁎t t 0, ..., 1.
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Estimation: IPTW

In this section we describe the IPTW estimator, the g-
computation estimator, and the longitudinal TMLE estimator.
We focus on implementation of the estimators for interventions
that start on thefirst day. For interventions with a delayed start, we
provide small modifications of the estimators inWebAppendix 2.

IPTW estimates the intervention-specific mean outcome of
a treatment regime by reweighting the observed outcomes in the
subset of the study sample who followed the regime (11). We
denote the probability of a subject’s following a regime of inter-
est dt at time t, given his/her covariate and treatment history, with

= [ = ( ) | = ( ) ¯ ]− −g A d V A d V LPr , ,t t t t t t t1 1

and the cumulative conditional probability of following regime
d through time −⁎t 1 as

∏=−
=

−

⁎

⁎

g g .t
t

t

t0: 1
0

1

The stabilized Horvitz-Thompson IPTW estimator (14, 40)
of the cumulative risk of discharge by period ⁎t under treatment
regime d is based on estimation of the following quantity:

[ × ( ¯ = ( ¯ )) ]
[ ( ¯ = ( ¯ )) ]

− − −

− − −

⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎

E Y I A d V g

E I A d V g

/

/
,t t t t

t t t

1 1 0: 1

1 1 0: 1

where ( = ( ))− −⁎ ⁎I A d Vt t1 1 indicates whether a patient has
followed the treatment regime d up to one period before the
final period of interest. Implementation is based on estimating
gt for = −⁎t t 0, ..., 1, plugging in these estimates, and taking
the empirical mean of the numerator and denominator.

Drawbacks of the IPTW estimator include reliance on con-
sistent estimation of the treatment mechanism, as well as sus-
ceptibility to violations and near violations of the positivity
assumption, resulting in unstable estimates (see, for example,
Petersen et al. (15)). In the next section, we describe the longi-
tudinal TMLE estimator, a doubly robust estimator which can
improve on the properties of the IPTW estimator by using
information not only on the treatment mechanism but also on
the outcome-confounder(s) relationship.

Estimation: longitudinal TMLE

The conditional expectation representation of the g-
computation formula. Longitudinal TMLE (21) uses the iden-
tifiability result established by the g-computation formula (2).
In short, the g-computation formula expresses the intervention-
specific mean outcome as a function of the conditional distribu-
tions of the outcome and the time-varying confounders, given the
past, among subjects who followed the regime of interest. For
discrete-valued confounders, this can be written as follows:

∏

[ ] = ∑ [ | = ( ) = ]

× ( = | = ( ) = )

− − − −

=

−

− − − −

⁎
⁎−

⁎ ⁎ ⁎ ⁎ ⁎

⁎

E Y E Y A d v L l

L l A d v L l

,

Pr , ,

t
d

l t t t t t

t

t

t t t t t t

1 1 1 1

0

1

1 1 1 1

t 1

where the summation is taken over all possible values −⁎lt 1 of
the confounder history. Intuitively, the g-computation formula
estimates the conditional expectation of the outcome under the
treatment regime of interest and averages these expectations
over the intervened-on distribution of the confounders—that is,
the distribution that the confounders would take under the treat-
ment regime of interest. Parametric g-computation (2, 41, 42)
estimates the components of this formula directly, and it makes
strong parametric assumptions due to the need to specify condi-
tional densities or probabilities for each of the time-varying con-
founders (12, 43).

The g-computation formula can be rewritten as a series of
iterated conditional expectations of the observed outcome
(26, 44, 45):

[ ]  = [… [ [ [ | = ( ) ] |
= ( ) ] |
= ( ) ]…] ( )

− − −

− − −

− − −

⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

E Y E E E E Y A d V L

A d V L

A d V L

,

,

, , 1

t
d

t t t t

t t t

t t t

1 1 1

2 2 2

3 3 3

where the innermost expectation is the conditional distribution
of the outcome, given the full treatment and confounder history,
evaluated at the treatment values that would have been assigned
according to the intervention of interest d. The second innermost
expectation marginalizes over the intervened-on history of −⁎Lt 1,
the next one over −⁎Lt 2, and so on, until the last expectation is
taken over the empirical distribution of baseline confounders
L0, where =M  00 and =Y  00 . We first briefly review how to
obtain the target parameter using these iterative regressions
and then describe how the longitudinal TMLE extends this
approach.

Steps of g-computation using sequential regressions.
Step 1: Regress the outcome on full treatment and confounder
history. First the innermost expectation of equation 1 is
estimated:

[ | = ( )]− − −⁎ ⁎ ⁎ ⁎E Y L A d V, .t t t t1 1 1

We will refer to this quantity as ⁎Qt . This expectation can be
estimated by regressing the outcome on past covariates and
treatment variables—for example, using a logistic regression—
and taking predictions at the treatment values corresponding to
the intervention of interest.

Step 2: Take the previous predictions as the new outcome
and regress on history up to −⁎t 2. The predictions from the
previous step, ⁎Qt are now taken as the new outcome and are re-
gressed on confounders and treatment variables up to time period

−⁎t 2. As before, predictions are generated for treatment values
required by the regime d , up to time period −⁎t 2. This expecta-
tion, −⁎Qt 1, corresponds to the second innermost expectation in
equation 1. −⁎Qt 1 is marginal over the intervened-on distribu-
tion of the time-varying confounder −⁎Lt 1 but conditional on the
time-varying confounders up to time period −⁎Lt 2.

Steps 3, 4, . . . to step ⁎t : Iterate step 2. Step 3 takes the
predictions from step 2, −⁎Qt 1, regresses them on the treatment
and confounder history up to −⁎t 3, and then takes predictions
as described above, stored as −⁎Qt 2. This step is iterated until
the last step, where the expectation is only conditional on the
baseline covariates:
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= [ | = ( )]Q E Q L A d V, .1 2 0 0 0

Step +⁎t 1: Average over the empirical distribution of the
baseline covariates. By averaging Q1 over the empirical dis-
tribution of L0, the g-computation estimator for the intervention-
specificmean is obtained as = [ ]Q E Q0 1 .

EachQt can be obtained using a regression—for example, a
linear or logistic regression. This approach offers substantial ad-
vantages over the parametric g-computation approach, by
avoiding the need to estimate the conditional density of each
time-varying confounder. However, estimating these iterative
regressions well can be challenging, and the approach remains
susceptible to bias due to misspecification. Bang and Robins
(26) proposed a doubly robust and semiparametric efficient ver-
sion of this sequential regression estimator based on including
an additional, “clever” covariate that uses information from the
treatment assignmentmechanism. It has subsequently been sug-
gested to move this clever covariate to a weight, an approach
that improved performance in the face of practical positivity
violations (46). The resulting estimator is doubly robust in the
sense that if either the treatment mechanisms or the sequential
regressions are estimated consistently, then the estimator is con-
sistent. If both are estimated consistently, it is efficient in a
semiparameteric model that makes assumptions, if any, only on
the treatment mechanism (26). Van der Laan and Gruber (21)
subseqently placed this estimator in the general TMLE frame-
work. The general idea behind this TMLE is that it is a 2-step
estimator: First the conditional expectation of the outcome is
estimated, and then this estimate is updated using information
from the treatment assignment mechanism, targeted in a way
that it reduces bias for the parameter of interest. Longitudinal
TMLE performs the update step at each stage of the sequential
regressions, as we summarize below.

The update step of the TMLE estimator. ⁎Qt is defined
and estimated as in step 1 of the g-computation approach.
This initial estimate is then updated by perturbing the initial
fit ⁎Qt using a parametric submodel, defined as

( (ε )) = ( ) + ε⁎ ⁎ ⁎ ⁎Q Qlogit logit .t t t t
1

We estimate ε ⁎t by fitting a logistic regression of ⁎Yt on the
intercept, using the prior predicted value of ⁎Qt as an offset,
and weights corresponding to ( ¯ = ( ¯ ))− − −⁎ ⁎ ⁎I A d V g/t t t1 1 0: 1, an
indicator of whether a subject has followed the regime of inter-
est up to the previous time period divided by the predicted
probability of having done so. The estimated ε ⁎t is then used to
update the initial estimate, which is stored as ⁎Qt

1, and will be
used as the new outcome for the next iteration.

This update is performed after each step of the sequential re-
gressions, described for the g-computation estimator. The regres-
sion and update steps are iterated until the last step, in which the
updated expectationQ1

1 is only conditional on the baseline co-
variates. Analogous with the last step of the g-computation
estimator, the TMLE estimator for the intervention-specific
mean is obtained as = [ ]Q E Q0

1
1
1 .

The consistency of the estimator relies on consistent estima-
tion of either the treatment mechanism or the iterated conditional
regressions, while its efficiency relies on consistent estimation of
both. In practice, often both components are expected to be

misspecified when fixed, parametric models such as logistic
regressions are used. Machine learning or data-adaptive ap-
proaches are thus advocated for estimation of both (19). We
use the Super Learner (47), a machine learning algorithm
that uses cross-validation to find the optimal weighted convex
combination of multiple candidate prediction algorithms, for
estimating both the treatment assignment mechanism and the
sequential regressions (seeWeb Appendix 3 for more details).

Implementation

We implement the IPTW, g-computation, and TMLE estima-
tors described above to estimate the cumulative probability of
PICU discharge by the end of days 1–7, under a range of prespe-
cified static treatment regimes (“never feed,” “feed from day 1, 2,
3, . . .7”), static regimes over limited time periods (“feed by day
2, 3, . . .7”), and the dynamic regime “feedwhen off ventilation.”

Weuse the Super Learner to estimate the treatment assignment
mechanism and the sequential regressions, and we use these
models to construct the 3 estimators. Among the Super Learner
candidates, we include an intercept model, a main-terms model,
a logistic regression model with all possible 2-way interactions
in the linear predictor, a stepwise logistic regression model,
generalized additive models (48), a Bayesian generalized linear
model with main terms in the linear predictor (49), a LASSO
model (50), a boosting algorithm (51), and a neural networks
algorithm (52).We specify 10-fold cross-validation (47).We fit
separate models for the treatment assignment mechanism for
each period, while assuming that treatment decisions are influ-
enced only by treatment and confounder values in the 2 most
recent periods. The regressions carried out to obtain the con-
ditional probability of treatment and the iterative regressions
and the update steps of the TMLE are only run among those
childrenwho remain alive and not discharged.We contrast these
estimates with “naive” estimates, taken as the simple proportion
of discharge status among those who follow a given regime.

The 95% confidence intervals are based on an estimate of the
empirical influence function (53, 54) of the IPTW and TMLE
estimators. For the g-computation estimator, no influence-
function-based approach for inference is readily available, and
the point estimates are reported without 95% confidence inter-
vals. While the nonparametric bootstrap represents an alterna-
tive approach to variance estimation, when Super Learner is
used to conduct the sequential regressions without subsequent
targeting, bootstrapping can impose a substantial computational
burden while still failing to provide valid inference. The avail-
ability of an influence-curve-based variance estimator compati-
ble with machine learning approaches is thus an additional
attractive feature of TMLE. The methods are implemented
using the package “ltmle” in R, version 0.9-9 (R Foundation for
Statistical Computing, Vienna, Austria) (55, 56), which incor-
porates the Super Learner R package (57). We provide the
main R functions used for the analysis in Web Appendix 4.

RESULTS

A total of 706 children were included in the study sample.
Table 1 shows the number of patients who were still in the
PICU at each time point and, among those, the number of pa-
tients receiving less than 20% of their daily caloric target (not
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fed) and those receiving at least 20% (fed). Table 2 shows the
numbers of patients observed to have followed each static
regime of interest, up to a given day. Figure 1 contrasts the
static regimes “never feed” and “feed from day 3,” showing
the naive estimates, not adjusted for any observed confound-
ers (Figure 1A), and the IPTW (Figure 1B), g-computation
(Figure 1C), and TMLE estimates (Figure 1D). See Web
Table 1 for an illustrative calculation of the naive estimates for
patients who followed the regime “feed from day 3.”

The naive estimates indicate a significantly higher probabil-
ity of being discharged by each day for the “never feed” regime
as compared with the “feed from day 3” regime. For example,
the probability of discharge by the end of day 5 is 0.88 (95%
confidence interval (CI): 0.87, 0.90) for “never feed,” in con-
trast to the significantly lower estimate of 0.64 (95% CI: 0.62,
0.66) for “feed from day 3.” Adjustment for baseline and time-
varying confounders shifts the estimated probability of discharge
in each time period downwards and reduces the difference
between the two regimes. Using TMLE, we estimated a 0.66
probability of discharge by the end of day 5 for children who
were never fed (95% CI: 0.59, 0.72) and a 0.53 probability for
those who were fed from day 3 (95% CI: 0.48, 0.59). The
TMLE, IPTW, and g-computation estimators produced similar
point estimates, while TMLE generated narrower 95% confi-
dence intervals than the IPTW estimator. For example, the prob-
ability of discharge by the end of day 5 for the “feed from day

3” regime was estimated to be 0.54 (95% CI: 0.47, 0.60) using
IPTW and 0.59 using g-computation. The smallest estimated
cumulative probability of following a given regime, across all of
the regimes considered, was more than 0.05, so no weight trun-
cationwas used.

Focusing on the cumulative probability of discharge by day
4, Figure 2 contrasts the intervention-specific mean estimates
across all regimes distinguishable by this time point, estimated
by TMLE. The estimated probability for the static regime “feed
from day 1” is 0.42, with the widest 95% confidence interval
among all regimes (95%CI: 0.21, 0.62), which can be explained
by the low number of patients following this regime. Regimes
requiring starting feeding from the third day onward or by the
third day, compared with starting on the second day, have lower
expected probabilities of discharge; however, the 95% confi-
dence intervals overlap. As before, the regime “never feed” has
the most favorable expected outcomes (TMLE producing
an estimated probability of discharge of 0.63 (95% CI: 0.57,
0.79)); however, the probability of discharge under this regime
is not statistically significantly different from that under the
other regimes.

DISCUSSION

We implemented a doubly robust approach, TMLE, to con-
trast the counterfactual probability of being discharged alive

Table 2. Cumulative Numbers of PatientsWhose DataWere Consistent With Each Static Feeding Regime
(n= 706), CHiP Study, 2008–2011

Hospital Day
Feed From . . .

Never Feed
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 28 678 678 678 678 678 678 678

2 24 241 442 442 442 442 442 442

3 24 220 254 270 270 270 270 270

4 22 212 237 205 197 197 197 197

5 21 205 232 195 178 173 173 173

6 21 202 226 192 176 165 165 165

7 21 200 223 186 175 164 163 162

Abbreviation: CHiP, Control of Hyperglycemia in Paediatric Intensive Care.

Table 1. Patient Flow on EachHospital Day, by Treatment Status andOutcome (n= 706), CHiP Study, 2008–2011

Hospital Day In PICU In PICU, Fed In PICU, Not Fed Cumulative No. of
Patients Deceased

Cumulative No. of
Patients Discharged

1 706 28 678 0 0

2 701 260 441 0 5

3 597 387 210 0 109

4 434 340 94 0 272

5 325 278 47 3 378

6 248 222 26 5 453

7 188 169 19 7 511

Abbreviations: CHiP, Control of Hyperglycemia in Paediatric Intensive Care; PICU, pediatric intensive care unit.
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from the PICU under a set of static and dynamic longitudinal
feeding regimes in a population of critically ill children.While
the unadjusted estimates showed a significant difference in
discharge probabilities between the treatment regimes “start
feeding from the third day” and “never feed,” after adjustment
most of this difference disappeared. TMLE estimators pro-
duced narrower confidence intervals than IPTW, as predicted
by theory (17), while influence-curve-based confidence inter-
vals for g-computation estimators were not readily available.
We found no strong evidence that high levels of caloric intake
may lead to adverse health outcomes in critically ill children.
While in this paper the 3 statistical approaches led to similar
conclusions, depending on the setting, TMLE may give sub-
stantially different results from estimation methods that are
not doubly robust or do not exploit data-adaptive model selec-
tion (see, for example, Decker et al. (27) for an application
and Schnitzer et al. (28) for simulation evidence).

An observational analysis of data from a clinical trial enabled
us to investigate the impact of alternative longitudinal feeding
practices on clinical outcomes. We contributed to the literature
on application of longitudinal causal methods in the PICU set-
ting, where, due to the fast-changing prognosis of patients
and subsequently updated treatment decisions, time-dependent

confounding is an important concern (58). Using clinical judge-
ment onmeaningful longitudinal treatment regimes, we selected
a range of static and dynamic interventions which were sup-
ported by the data, and asked new causal questions. While data
collected in a clinical trial can provide advantages, such as regu-
lar intervals of follow-up, measurement of a rich set of observed
and time-varying confounders, and little missing data, the
approach taken generalizes to settings of observational data.

This paper further provides a demonstration of the application
of TMLE for longitudinal static and dynamic regimes and high-
lights how it builds on alternative approaches such as IPTW and
g-computation, under the challenging circumstances of a real-
world comparative effectiveness study: a large number of covar-
iates to adjust for and a medium-sized sample. Application of
the methods to address an unanswered clinical question of high
relevance in intensive care raised several methodological issues.
Beyond static and dynamic treatment regimes, we also con-
sidered interventions with a delayed start (e.g., “feed by
day 3”) motivated by clinical practice. The availability of
daily measurements of time-varying confounders resulted in
high dimensionality of observed covariates to adjust for.
Informed by clinical judgement, we assumed that the deci-
sion as to whether to feed on a given day is influenced only
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Figure 1. Estimated cumulative probabilities of discharge from the pediatric intensive care unit by the end of days 1–7 for the feeding regime “never
feed” versus “feed fromday 3,” based on data from the Control of Hyperglycemia in Paediatric IntensiveCare (CHiP) Study (32), 2008–2011. A) Unad-
justed estimates and 95% confidence intervals (bars); B) inverse probabaility of treatment weighting estimates and 95% confidence intervals (bars);
C) G-computation estimates; D) targetedmaximum likelihood estimates and 95% confidence intervals (bars). The x axis shows time in days, while the
y axis displays the estimated counterfactual probability of discharge from the pediatric intensive care unit, by the end of a given day, for a given regime.
The 95% confidence intervals for the g-computation estimates are not reported.
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by observed characteristics measured on the given day and
on the previous day. To deal with the challenge of model spec-
ification, we used the data-adaptive algorithm Super Learner.

Each of the methods applied here relies on the assumption
that in each period, all time-constant and time-varying confound-
ers that can influence treatment assignment and the outcome are
observed. While the CHiP trial recorded data on a rich set of
covariates, a patient’s prognosis changes quickly over time, and
the observed time-varying characteristics (mechanical ventila-
tion, renal replacement, inotrope score) may not capture all con-
founders. In particular, if a clinician expects a patient to be
discharged from the PICU soon, he or she may temporarily
decrease or not initiate enteral feeding, to prevent delay in
discharge. Further research using methods to analyze the sensi-
tivity of the parameter estimates to the presence of unobserved
confounders is therefore warranted (59).

In summary, this paper illustrates that existing data sources,
such as well-conducted randomized controlled trials, can be
exploited to address important questions of clinical decision-
making beyond those originally posed. A wider use of appro-
priate causal methods could add to the understanding of the
advantage of alternative sequencing of time-varying treat-
ments and could provide estimates of the effectiveness and
cost-effectiveness of realistic treatment strategies.
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