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Abstract

Motivation: Antimicrobial peptides (AMPs) are innate immune molecules that exhibit activities

against a range of microbes, including bacteria, fungi, viruses and protozoa. Recent increases in

microbial resistance against current drugs has led to a concomitant increase in the need for novel

antimicrobial agents. Over the last decade, a number of AMP prediction tools have been designed

and made freely available online. These AMP prediction tools show potential to discriminate AMPs

from non-AMPs, but the relative quality of the predictions produced by the various tools is difficult

to quantify.

Results: We compiled two sets of AMP and non-AMP peptides, separated into three categories—

antimicrobial, antibacterial and bacteriocins. Using these benchmark data sets, we carried out a

systematic evaluation of ten publicly available AMP prediction methods. Among the six general

AMP prediction tools—ADAM, CAMPR3(RF), CAMPR3(SVM), MLAMP, DBAASP and MLAMP—we

find that CAMPR3(RF) provides a statistically significant improvement in performance, as meas-

ured by the area under the receiver operating characteristic (ROC) curve, relative to the other five

methods. Surprisingly, for antibacterial prediction, the original AntiBP method significantly outper-

forms its successor, AntiBP2 based on one benchmark dataset. The two bacteriocin prediction

tools, BAGEL3 and BACTIBASE, both provide very good performance and BAGEL3 outperforms its

predecessor, BACTIBASE, on the larger of the two benchmarks.

Contact: gaberemu@ngha.med.sa or william-noble@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recently increasing incidence of antimicrobial resistant strains

of many pathogens suggests that the utility of conventional drugs

against these diseases is decreasing. Antimicrobial peptides (AMPs)

offer a promising alternative to conventional drugs. AMPs are short

peptides, typically less than 50 amino acid residues in length, that

are produced by a wide variety of organisms, including bacteria, in-

sects, amphibians, mammals and plants, to protect the organism

against various pathogens. AMPs have been shown to have activities

against microbes responsible for malaria (Kückelhaus et al., 2009;

Vale et al., 2014), trypanosomiasis (Pinto et al., 2014), leishmaniasis

(Kückelhaus et al., 2009; Pinto et al., 2014), tuberculosis (Kapoor

et al., 2011; Ziqing et al., 2011; Ram�on-Garc�ıa et al., 2013) and

HIV AIDS (Chen et al., 2012; Tincho et al., 2016). Furthermore, re-

cent evidence suggests that such peptides can also be useful in com-

bating cancer (Hoskin and Ramamoorthy, 2008; Gaspar et al.,

2013) and diabetes (Conlon et al., 2014).

Given the therapeutic potential of AMPs, there is an urgent need

to identify novel AMPs. On the one hand, as increasingly diverse

species are sequenced, the pool of potential AMP sequences grows.

On the other hand, experimental methods for characterizing AMPs

are costly, both in terms of time and resources. Thus, there is a need
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for computational tools capable of predicting, from a given set of

peptide sequences, which ones are more likely to function as AMPs.

Over the past decade, a large number of AMP prediction meth-

ods have been proposed (reviewed in Porto et al., 2012). Some meth-

ods, such as ADAM (Li and Godzik, 2015) and CAMPR3 (Waghu

et al., 2016), are designed to identify any variety of AMPs, whereas

other tools focus on specific subclasses of AMPs. For example,

AntiBP (Lata et al., 2007) and its successor AntiBP2 (Lata et al.,

2010) concentrate on predicting antibacterial peptides, i.e. peptides

that specifically target bacteria. Such peptides can be used to en-

hance the therapeutic effects of infection treatments and decrease

the prevalence of resistant strains. BAGEL (de Jong et al., 2006) and

BACTIBASE (Hammami et al., 2007) focus on bacteriocins, a sub-

class of antibacterials that are themselves derived from bacteria

(Arthur et al., 2014).

Predictions from these methods have already proved to be valu-

able as hypothesis generators for use in informing lower throughput

experimental approaches. For example, BAGEL3 and BACTIBASE

were used to classify unknown bacteriocins encrypted by 317 micro-

bial genomes in the human intestine (Drissi et al., 2015). Singh et al.

characterized a new pediocin-like bacteriocin that is active in

reduced conditions, using both BACTIBASE and CAMPR3 (Singh

et al., 2014). The authors found out that the novel sequence did not

exhibit significant similarity with known pediocin-like bacteriocins

or other bacterial AMPs available in the BACTIBASE and CAMPR3

databases. In another study, a novel bacteriocin produced by

Streptococcus mutans was characterized with the help of the APD2

(Wang et al., 2009) and AntiBP2 servers (Nicolas, 2011). The AMP

activity of a mature peptide from Drosophila virilis was predicted

using CAMPR3 (Waghu et al., 2016), AntiBP2 (Lata et al., 2010)

and AMPA (Torrent et al., 2012; Seto and Tamura, 2013), and it

was further shown that this peptide is divergent from the peptide

produced by Drosophila melanogaster. Finally, a new peptide found

in milk protein using the CAMPR3 tool was subsequently validated

to possess antimicrobial activity (Dziuba and Dziuba, 2014).

As is common in many bioinformatics enterprises, most publica-

tions describing a new AMP predictor claim that the new tool is su-

perior to all existing methods. Yet these claims may be somewhat

biased because the comparison is carried out by the developers of

the tool itself. In addition, performance results from one study to the

next are not comparable to one another because the benchmark

data sets vary. The purpose of the present study is to carry out an

unbiased evaluation of existing tools using two high quality bench-

mark datasets.

For this study, we focus on predictors that have been made avail-

able as open access web portals. We compare the predictive accur-

acy of ten AMP predictors using data from the DAMPD (Seshadri

et al., 2012) and APD3 (Wang et al., 2016) databases and a ran-

domly generated set of non-AMP examples. The tools include six

AMP predictors [CAMPR3 using either a random forest or support

vector machine classifier (Waghu et al., 2016), ADAM (Li and

Godzik, 2015), AMPA (Torrent et al., 2012), DBAASP

(Vishnepolesky and Pirtskhalava, 2014) and MLAMP (Lin and Xu,

2016)], two antibacterial prediction tools [AntiBP (Lata et al., 2007)

and [AntiBP2 (Lata et al., 2010)], and two bacteriocin prediction

tools [BAGEL3 (van Heel et al., 2013) and BACTIBASE (Hammami

et al., 2007)]. Our results indicate that, among AMP predictors, the

CAMPR3(RF) tool provides the best performance. For prediction of

antibacterial peptides, AntiBP performs much better than its succes-

sor, AntiBP2 and for bacteriocins, BAGEL3 provides higher quality

predictions than BACTIBASE.

2 Materials and methods

The methodology adopted in the study is described in the following

sections and is shown in Figure 1.

2.1 Validation dataset
Two benchmark data sets were used in the analysis, downloaded

from the DAMPD (Seshadri et al., 2012) and APD3 (Wang et al.,

2016) databases. These sets consist of, respectively, 1232 and 2338

manually curated, experimentally verified AMP peptides. The AMPs

in DAMPD consist of mature and propeptide regions, while APD3

consists only of mature peptides less than 100 residues as well as im-

portant human antimicrobial proteins greater than 100 residues, such

as lysozyme, eosinophil-derived neurotoxin (RNase 2), eosinophil cat-

ionic protein (RNase 3), regenerating gene family protein III (Reg III)

and psoriasin. These proteins are important since they show activities

against parasites, viruses and uropathogens (Wang, 2014). To reduce

potential bias in the data set, we removed highly similar sequences

using the CD-HIT software version 4.6.1 (Li and Godzik, 2006).

Applying a 90% maximum sequence identity threshold reduced the

data sets to 547 and 1713 sequences for the DAMPD and APD3, re-

spectively. The DAMPD set consists of 313 antibacterial peptides, 31

bacteriocins and 234 other AMPs, and the APD3 set consists of 1446

antibacterial peptides, 154 bacteriocins and 113 other AMPs. These

sequences comprise the positive sets for our experiments.

To test the discriminative power of the predictors, we also con-

structed a matched set of non-AMP sequences. To do so, for each

positive sequence, we randomly extracted from a real protein data-

base a peptide sequence of the same length. For the DAMPD bench-

mark, this was done by downloading non-AMP sequences from the

UniProt database (UniProt Consortium, 2015) version 2016_04,

which contains 4 265 218 proteins, using the query, (golgi OR cyto-

plasm OR ‘endoplasmic reticulum’ OR mitochondria) AND NOT

antimicrobial. For the APD3 benchmark, we used UniProt version

2016_12, which contains 548 843 proteins, and the query NOT

Fig. 1. Methodology employed in comparing and ranking various AMP tools
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antimicrobial AND reviewed:yes. In each case, we concatenated all

of the resulting proteins, and then selected starting positions uni-

formly at random along the resulting sequence. To improve the reso-

lution of our discriminative scores, we extracted six non-AMP

examples for each AMP example. Hence, the final collection con-

sisted of 2735 (8565), 1565 (7230) and 155 (770) non-AMP se-

quences for the AMP, antibacterial and bacteriocin sets extracted

from DAMPD (APD3), respectively. These dataset are available in

Supplementary Tables S1 and S2.

2.2 Prediction tools
Many methods for predicting AMPs have been described in the sci-

entific literature, including methods focused on prediction of bac-

teriocins (de Jong et al., 2006; Hammami et al., 2007), antibacterial

peptides (Lata et al., 2007, 2010) and general prediction of anti-

mcrobial peptides (Fjell et al. 2007; Wang et al. 2011; Joseph et al.

2012; Fernandes et al. 2012; Vishnepolsky and Pirtskhalava 2014;

Ng et al. 2015; Waghu et al. 2016). We analyzed the performance of

the ten web-accessible AMP predictors (Table 1).

• BAGEL3 was created to store experimentally validated bacteri-

ocins as well as to predict three types of bacteriocin: small modi-

fied bacteriocins, small unmodified bacteriocins and bacteriocins

larger than 10 kD. It employs BLAST (Altschul et al., 1990) to

search for motifs in a database of bacteriocins. The server allows

the user to submit multiple entries at once and has been updated

recently as BAGEL3 (van Heel et al., 2013). To assess this web-

server, we queried the database by selecting the option ‘BLAST

Bacteriocins’ in the main menu and setting ‘BLASTP maximum

number of hits’ to 1. Because the server requires that the user spe-

cify a bacteriocin subtype at query time, we ran the queries twice,

once using the ‘Bacteriocin Type IA’ and once using ‘Bacteriocin

Type II.’ We took the minimum of the resulting two E-values as

the prediction for each sequence.
• BACTIBASE is a database that stores bacteriocins and allows

users to predict bacteriocins using profile hidden Markov models

(Eddy, 1998) of each bacteriocin family (de Jong et al. 2006; van

Heel et al. 2013). In order to predict the Bacteriocins families,

one is required to choose ‘Hidden Markov Models’ from the

drop-down menu in the tool section. BACTIBASE allows search-

ing using batch, and we submitted the query sequences by select-

ing ‘Classic’ as the classification scheme.
• AntiBP is an antibacterial prediction tool that makes predictions

using support vector machines (SVMs) (Vapnik, 1995), artificial

neural networks (Bishop, 1995) or quantitative matrices

(Lata et al., 2007). In these methods, the training of the model was

based on three feature extraction approaches, focusing on the

15 N-terminal residues, 15 C-terminal residues and a combination

of 15 N- and 15 C-terminal residues (Lata et al., 2007). The data-

set was extracted from the APD2 database (Wang et al., 2009).

The parameter settings chosen are as follows: Terminus ¼ ‘NC

Termini,’ SVM threshold ¼ 0 and Sequence Format ¼ ‘Amino

Acid Sequence in Single letter code.’ We selected the SVM model

for AntiBP, since the SVM coupled with NC termini features was

declared by the authors to be the best-performing model.
• AntiBP2 is an extension of AntiBP in which the SVM model was

created using a larger set of antibacterial data than what was

used in AntiBP. The parameters chosen are as follows: Sequence

format is ‘Amino acid sequence in sequence letter code’,

Terminus ¼ ‘NC termini’ and Method ¼ ‘SVM’ with threshold

set to zero (Lata et al., 2010).
• ADAM is a database of AMPs that contains 7007 sequences. The

data is extracted from twelve databases (APD2 (Wang et al.,

2009), AVpred (Thakur et al., 2012), BACTIBASE (Hammami

et al., 2007), BAGEL3 (van Heel et al., 2013), CAMP (Thomas

et al., 2010), PenBase (Gueguen et al., 2006), PhytAMP

(Hammami et al., 2009), etc.). The server allow users to predict

sequences using an SVM and hidden Markov model. The SVM

model is trained on the AMP sequences in the database, using

amino acid composition as features.
• CAMPR3 is a database of experimentally validated AMPs.

It was created because most existing database do not consist of

experimentally verified AMPs. CAMPR3 includes AMP predic-

tion tools based on random forests (Breiman, 2001), SVMs and

discriminant analysis (Karatzoglou et al., 2004). The predictors

take as input a sequence matrix converted into physicochemical

properties and structural characteristics of amino acids, as well

as dipeptide and tripeptide frequencies of the reduced alphabets.

In this project, we choose CAMPR3(SVM) and CAMPR3(RF),

since they were previously determined to be the best-performing

AMP prediction methods (Waghu et al., 2016).
• AMPA is an AMP prediction tool that employs an ‘antimicrobial

propensity scale’ derived from high-throughput screening results

from the AMP bactenicin 2A (Torrent et al., 2012). The param-

eter settings we used are as follows: Window size ¼ ‘7’ and

Threshold value ¼ 0.225.
• DBAASP is an AMP prediction tool that is based on a simple al-

gorithm that evaluates the efficacies of the characteristics as de-

scriptors. The tool offers no parameter settings on the

submission page (Vishnepolesky and Pirtskhalava, 2014).
• MLAMP is a two-level AMP prediction tool that first identifies

whether a peptide is an AMP and then proceeds to classify it into

a subcategory. The tool employs a synthetic minority over-

sampling technique for use on imbalanced and multi-label

Table 1. Web-accessible AMP predictors

Name Category Year URL Batch? References

BAGEL3 Bacteriocin 2013 bagel2.molgenrug.nl/index.php/bagel3 � van Heel et al. (2013)

BACTIBASE Bacteriocin 2014 http://bactibase.pfba-lab-tun.org/main.php � Hammami et al. (2007)

AntiBP Antibacterial 2007 http://www.imtech.res.in/raghava/antibp/ Lata et al. (2007)

AntiBP2 Antibacterial 2010 http://www.imtech.res.in/raghava/antibp2/ Lata et al. (2010)

AMPA Antimicrobial 2012 http://tcoffee.crg.cat/apps/ampa/do � Torrent et al. (2012)

DBAASP Antimicrobial 2014 http://dbaasp.org/prediction � Vishnepolesky and Pirtskhalava (2014)

ADAM Antimicrobial 2015 http://bioinformatics.cs.ntou.edu.tw/ADAM/ � Li and Godzik (2015)

MLAMP Antimicrobial 2016 http://www.jci-bioinfo.cn/MLAMP � Lin and Xu (2016)

CAMPR3(RF) Antimicrobial 2016 http://www.camp.bicnirrh.res.in/prediction.php � Waghu et al. (2016)

CAMPR3(SVM) Antimicrobial 2016 http://www.camp.bicnirrh.res.in/prediction.php � Waghu et al. (2016)

Note: The ‘Batch?’ column indicates whether multiple sequences can be submitted at once to the server.
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datasets, referred to as the ML-SMOTE algorithm (Lin and Xu,

2016). Training data was extracted from the APD2 database

(Wang et al., 2009). Like DBAASP, this tool offers no user-

settable parameters.

Some of the AMP tools require that queries be submitted indi-

vidually (Table 1). In these cases, we use the Python module ‘mech-

anize’ (https://pypi.python.org/pypi/mechanize) to submit multiple

queries in series.

2.3 Performance measures
To compare the AMP prediction tools, we used two different types

of performance measures: threshold-based and rank-based.

For the threshold-based measures, we used the thresholds pro-

vided by each tool. By comparing each predicted label with the true

label we assigned each prediction to one of four classes: true positive

(TP), false positive (FP), true negative (TN), or false negative (FN).

We then considered four complementary performance measures:

sensitivity (TP/(TPþFN)), specificity (TN/(TNþFP)), precision

(TP/(TPþFP)) and balanced accuracy:

1

2

TP

TPþ FN

� �
þ 1

2

TN

TNþ FP

� �
(1)

For the rank-based comparison, we used receiver operating charac-

teristic (ROC) curves, which plot sensitivity as a function of (1 - spe-

cificity) for varying decision thresholds. For quantitative

comparison of two ROC curves, we compute the area under the

curve. The statistical significance of differences between two ROC

areas was assessed using the DeLong test (DeLong et al., 1988), cal-

culated using the pROC package in R (Robin et al., 2011).

3 Results

3.1 Threshold-based comparison
When we compare the thresholded predictions made by each of the

ten methods on the two benchmarks (Tables 2 and 3), some clear

trends are apparent. For the general AMP prediction task, the two

CAMPR3 methods, based on random forests and SVM classifiers,

outperform the competing ADAM, MLAMP, AMPA and DBAASP

methods by all four metrics—sensitivity, specificity, precision and

balanced accuracy. For the prediction of antibacterial peptides, we

find that the ‘improved’ AntiBP2 does not actually outperform its

predecessor, AntiBP, on the DAMPD benchmark. Indeed, the accur-

acy of AntiBP2 is much lower, barely above the 50% that would be

expected from a random classifier. However, on the APD3 bench-

mark, which we analyzed several months after the DAMPD bench-

mark, AntiBP failed to return any results. Finally, for the prediction

of bacteriocins, both BAGEL3 and BACTIBASE do very well,

achieving specificities of 100% and balanced accuracies of 96.77%

and 91.93%, respectively, on the DAMPD benchmark dataset.

However, BAGEL3 consistently outperforms BACTIBASE on the

APD3 benchmark dataset. For this task, the consistently high per-

formance measures suggests that identification of this specific sub-

class of AMPs is a relatively easy task.

It is instructive to compare the results of this analysis to similar

values reported in previous studies (Table 4). Although the values

are not directly comparable because different benchmark data sets

were employed in each case, the general trend is clear: the values re-

ported by the authors are almost always higher than the values re-

ported here, often by a fairly large amount. The only case where the

two values are similar is for BAGEL3 (91.5 versus 91.93%), where

the task is apparently quite easy.

3.2 Rank-based comparison
A significant drawback to a threshold-based comparison is that

there is no way to assign a statistical confidence estimate to the

observed difference between two methods based on a single meas-

urement. To address this problem, we turn instead to a rank-based

assessment, using ROC curves (Fig. 2). Qualitatively, the results of

the ROC analysis mirror those of the threshold-based analysis.

However, with ROC analysis we can use DeLong’s test to assign a

Table 2. Summary of threshold-based results for the DAMPD benchmark dataset

Tool TP FP FN TN Total Sens (%) Spec (%) Prec (%) Bal Acc (%)

CAMPR3(RF) 505 748 42 1987 3282 92.32 72.65 40.30 82.49

CAMPR3(SVM) 493 763 54 1972 3282 90.13 72.10 39.25 81.11

ADAM 460 851 87 1884 3282 84.09 68.88 35.09 76.49

MLAMP 348 485 199 2250 3282 63.62 82.27 41.78 72.94

DBAASP 121 195 426 2540 3282 22.12 92.87 38.28 57.49

AMPA 267 416 280 2319 3282 48.81 84.79 39.09 66.80

AntiBP 281 860 32 705 1878 89.78 45.05 24.63 67.41

AntiBP2 272 1315 41 250 1878 86.90 15.97 17.14 51.44

BAGEL3 29 0 2 155 186 93.55 100.0 100.0 96.77

BACTIBASE 26 0 5 155 186 83.87 100.0 100.0 91.93

Table 3. Summary of threshold-based results (APD3 dataset)

Tool TP FP FN TN Total Sens (%) Spec (%) Prec (%) Bal Acc (%)

CAMPR3(RF) 1624 1419 89 7146 10278 94.80 83.43 53.37 89.11

CAMPR3(SVM) 1552 1578 161 6987 10 278 90.60 81.58 49.58 86.09

ADAM 1560 3292 153 5273 10 278 91.07 61.56 32.15 76.32

MLAMP 1295 1901 418 6664 10 278 75.59 77.81 40.52 76.70

DBAASP 1076 715 637 7850 10 278 62.81 91.65 60.08 77.23

AMPA 671 862 1042 7703 10 278 39.17 89.94 43.77 64.55

AntiBP2 963 5350 483 1880 8676 66.59 26.00 15.25 46.30

BAGEL3 133 0 21 770 924 86.36 100.0 100.0 93.18

BACTIBASE 60 0 94 770 924 38.96 100.0 100.0 69.48
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P value to the observed differences (Tables 5 and 6). This analysis

allows us to confirm that the best-performing AMP predictor is

CAMPR3(RF), followed by CAMPR3(SVM) and then ADAM. We

also confirm that AntiBP performs significantly better than AntiBP2

on the DAMPD benchmark, and BAGEL3 significantly outperforms

BACTIBASE only on the APD3 benchmark.

Qualitative assessment of the shape of an ROC curve can also

provide insight into how a classifier is behaving. For example, the

Table 4. Comparison of performance in the original publication with this study

Original benchmark Current study

Tool Accuracy (%) Sensitivity (%) Specificity (%) Bal. accuracy (%) Sensitivity (%) Specificity (%)

CAMPR3(RF) 99.00 — — 82.49 (89.11) 92.32 (94.80) 72.65 (83.43)

CAMPR3(SVM) 91.50 — — 81.11 (86.09) 90.13 (90.60) 72.10 (81.58)

ADAM — — — 76.49 (76.32) 84.09 (91.07) 68.88 (61.56)

MLAMP 94.70 97.30 92.1 72.94 (76.70) 63.62 (75.59) 82.27 (77.81)

DBAASP 90.20 84.03 93.00 57.49 (77.23) 22.12 (62.81) 92.87 (91.65)

AMPA 80.00 — — 66.80 (64.55) 48.81 (39.17) 84.79 (89.94)

AntiBP — 92.11 — 67.41 (N/A) 89.78 (N/A) 45.05 (N/A)

AntiBP2 91.64 92.22 — 51.44 (46.30) 86.90 (66.59) 15.97 (26.00)

BAGEL3 — — — 96.77 (93.18) 93.55 (86.36) 100.00 (100.00)

BACTIBASE 91.50 — — 91.93 (69.48) 83.87 (38.96) 100.00 (100.00)

Note: Results from the current study are reported as value 1 (value 2), where value 1 is relative to the DAMPD benchmark, and value 2 is relative to the APD3

benchmark. AntiBP did not return results for the APD3 benchmark.

Fig. 2. Receiver operating characteristic curves for the 10 methods, separated by classification task. Panels on the left are for the DAMPD3 benchmark, and on the right are

for APD3. For reference, each plot includes the line y¼x, which corresponds to the performance of a random classifier. Each series is marked with a single point, indicating

the location of the decision threshold selected by the method. In the key, the numeric values next to the name of each method are the corresponding ROC areas (Color ver-

sion of this figure is available at Bioinformatics online.)
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DBAASP curve consists of two straight line segments, because this

classifer provides only a binary score. Also, the curve for

CAMPR3(SVM) has a strange shape in the lower left portion of the

plot. Investigation of the sequences in this area shows that they cor-

respond to the longer sequences in the benchmark. All such sequen-

ces are assigned very high scores (close to 1.0) by CAMPR3(SVM),

regardless of whether they are AMPs or not. To better understand

this phenomenon, we plotted, for each classifier, the predicted score

of a given AMP as a function of the sequence length. The resulting

plots (Fig. 3 and Supplementary Fig. S1) are quite striking. We see,

for example, that CAMPR3(SVM) is largely indifferent to sequence

length until the query is 100 amino acids long, at which point the se-

quences are all assigned scores very close to 1.0. CAMPR3(RF)

shows a similar, though not quite as pronounced, trend. Some of the

other predictors, including ADAM, MLAMP and BAGEL3, show

length dependencies.

This length dependency is almost certainly a result of the choice

of data sets used to train these classifiers. For example, the

CAMPR3 methods were trained using positive sequences with

lengths 10–80 amino acids, and the non-AMP sequences were trun-

cated to be in the same range (Thomas et al., 2010).

This observation naturally leads to the question of whether lon-

ger query peptides should be included in the DAMPD benchmark

data set. In practice, some longer peptides do exhibit antimicrobial

function. For example, the bombinin peptide is 137 amino acids

long, consisting of a signal peptide, a propeptide that is cleaved dur-

ing maturation or activation and the primary amino acid chain

(http://www.uniprot.org/uniprot/P29006). Another example is the

apidaecins, which are �280 amino acids long and consist of multiple

AMP domains (http://www.uniprot.org/uniprot/Q06602). In the

context of searching for AMPs, antibacterial peptides or bacteri-

ocins, the ability to consider longer peptides will clearly be benefi-

cial. In contrast to APD3, we have employed mostly mature peptides

in order to compare the results to DAMPD benchmark dataset.

Nonetheless, to understand how the inclusion of longer peptides

affected our results, we re-did the ROC analysis for the DAMPD

benchmark, eliminating from our benchmark all peptides longer

than 100 amino acids. The results (Fig. 4) confirm that in this setting

CAMPR3(SVM) performs much more similarly to CAMPR3(RF).

The remaining mystery is why the second generation AntiBP2

performs so much worse than its predecessor, AntiBP. A comparison

of the two scores on AMP and non-AMP examples from our bench-

mark shows a trend consistent with the previous analyses: AntiBP

generally succeeds in separating AMPs from non-AMPs, whereas

AntiBP2 does not (Fig. 5). Most striking is the very low correlation

(Pearson r¼0.293) between the two sets of predictions. Based on

this analysis, we can only conclude that AntiBP2 is not working

properly at this time. On the other hand, our inability to obtain re-

sults from AntiBP on the APD3 benchmark implies that neither

method is currently useful.

4 Discussion

This study aims to compare empirically ten AMP prediction tools

that are freely accessible as web portals. We find that, among gen-

eral predictors, the CAMPR3(RF) tool provides the best perform-

ance. This may be due to the large dataset used in training the

CAMPR3(RF) model. For prediction of antibacterial proteins,

AntiBP performs much better than its successor, AntiBP2, but the

AntiBP web server seems recently to have stopped functioning cor-

rectly. For bacteriocins, both BAGEL3 and BACTIBASE work very

well. BAGEL3 has recently updated its database with new bacteri-

ocin data. Accordingly, BAGEL3 significantly outperforms

BACTIBASE on the APD3 dataset, though this difference is not stat-

istically significant for the smaller DAMPD dataset. Generally, our

rankings are consistent with the findings by Porto et al. (2012), who

used author-reported results to rank CAMPR3(RF) and AntiBP as

the best AMP and antibacterial predictors, respectively.

In addition to these overall trends, we noted that the predictions

produced by many tools exhibit a strong length dependence, which

has the potential to confound some types of analysis. We also note

that, among the ten prediction tools that we have compared in this

study, only four—BAGEL3, CAMPR3(RF), CAMPR3(SVM) and

ADAM—can be used to make predictions across complete prote-

omes, since these tools allow batch queries. However, AntiBP and

AntiBP2 are not meant for genomic predictions.

Many possible improvements to these tools may be explored in

the future. For example, all of the tools, except BAGEL3 and

Table 5. Comparison of ROC AUC using DeLong’s test (DAMPD dataset)

Task Method 1 Method 2 AUC 1 AUC 2 Difference P value

Antimicrobial CAMPR3(RF) ADAM 0.883 0.839 0.044 7.46e�5

Antimicrobial CAMPR3(RF) CAMPR3(SVM) 0.883 0.813 0.070 2.2e�16

Antimicrobial CAMPR3(RF) MLAMP 0.883 0.780 0.103 2.2e�16

Antimicrobial CAMPR3(RF) DBAASP 0.883 0.575 0.308 2.2e�16

Antimicrobial CAMPR3(RF) AMPA 0.883 0.654 0.229 2.2e�16

Antibacterial AntiBP AntiBP2 0.797 0.544 0.253 2.2e�16

Bacteriocin BACTIBASE BAGEL3 0.984 0.952 0.032 0.375

Table 6. Comparison of ROC AUC using DeLong’s test (APD3 dataset)

Task Method 1 Method 2 AUC 1 AUC 2 Difference P value

Antimicrobial CAMPR3(RF) ADAM 0.953 0.877 0.076 2.2e�16

Antimicrobial CAMPR3(RF) CAMPR3(SVM) 0.953 0.919 0.034 2.2e�16

Antimicrobial CAMPR3(RF) MLAMP 0.953 0.839 0.114 2.2e�16

Antimicrobial CAMPR3(RF) DBAASP 0.953 0.766 0.187 2.2e�16

Antimicrobial CAMPR3(RF) AMPA 0.953 0.639 0.314 2.2e�16

Antibacterial AntiBP AntiBP2 — 0.465 — NA

Bacteriocin BAGEL3 BACTIBASE 0.929 0.827 0.102 2.2e�16
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BACTIBASE, generate features for the classifier using either amino

acid composition, dipeptide composition, or physicochemical prop-

erties of the amino acids. Such features necessarily fail to represent

motif-like features that may be important for AMP function.

Furthermore, physicochemical features are based on averages and

hence suffer from degeneracy (Andreu and Torrent, 2015). This ef-

fect may be ameliorated by using complex prime numerical

representation of amino acids (Chen et al., 2016). Another direction

for improvement lies in feature selection procedures. The CAMPR3

models employ 257 hand-picked features. A more rigorous feature

selection procedure could potentially yield improved performance.

Conversely, ADAM is trained on 7007 AMP sequences using only

amino acid composition as features. Expanding on this feature space

may be beneficial.

Fig. 3. Dependence of scores on sequence length (DAMPD dataset). In each panel, a point corresponds to an AMP or non-AMP peptide from the AMP (top row),

antibacterial (middle row) or bacteriocin (bottom row) data set. The figures plot the score assigned to a peptide by a given prediction method as a function of the

peptide length. Note that the BACTIBASE and BAGEL3 scores have been �log transformed (Color version of this figure is available at Bioinformatics online.)

Fig. 4. Receiver operating characteristic for the AMP prediction task, with queries limited to 100 amino acids in length (DAMPD and APD3 datasets) (Color version

of this figure is available at Bioinformatics online.)
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In this study, our rank-based analysis relies upon ROC analysis.

A key characteristic of the ROC curve is that it normalizes away any

imbalance between the sizes of the two classes. A complementary,

rank-based procedure employs precision-recall curves, which retain

information about this class imbalance (Davis and Goadrich, 2006).

While a precision-recall analysis would clearly be of interest in the

current setting, carrying out such an analysis would require an esti-

mate of the ‘true’ ratio of class sizes (i.e. the number of AMP versus

non-AMP sequences). This ratio varies depending upon the applica-

tion setting. For this reason, and because of the availability of well-

developed statistical methods for comparing ROC curves, we have

chosen to employ ROC analysis in the current study.

One caveat to our current study is the potential for overlap be-

tween our benchmark data set and the sequences used to train the

various methods in the study. For a truly fair comparison, we would

need to ensure that no such overlap occurs. Unfortunately, in prac-

tice, such a constraint is impossible to enforce. As more AMP se-

quences are identified and validated, a more unbiased benchmark

will be possible, though of course those newly identified AMPs will

also likely be incorporated into the training sets of future releases of

these tools.

A second issue that we have not addressed is the calibration of

the prediction scores. An ROC curve measures the quality of a rank-

ing but does not address whether the score itself is interpretable.

An ideal score will have a probabilistic interpretation. For example,

MLAMP, AMPA and the two CAMPR3 methods provide predic-

tions as the posterior probability of a given class label,

and BACTIBASE and BAGEL3 report results as E values. AntiBP

and AntiBP2 in contrast, output unitless discriminant scores and

DBAASP only provides a binary prediction. Clearly, an important

question for future work is the extent to which the scores produced

by AMP prediction methods are interpretable; i.e. if we consider all

the predictions to which CAMPR3(RF) assigns a posterior probabil-

ity of 80%, are 80% of these predictions actually correct?

Porto et al. emphasized the need for non-AMP sets with which

to test the specificity of AMP prediction models (Porto et al., 2012).

Our benchmark dataset, which includes both AMP and non-AMP

sequences, addresses this need and is available as Supplementary

Tables S1 and S2.
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