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Abstract

Mitochondrial DNA (mtDNA) copy number is tightly regulated in tissues, and is both a critical deter-

minant of mitochondrial function and a potential biomarker for disease. We and other groups have

shown that the mtDNA copy number per cell can be directly estimated from whole-genome

sequencing. The computation is based on the rationale that sequencing coverage should be pro-

portional to the underlying DNA copy number for autosomal and mitochondrial DNA, and most

computing time is spent calculating the average autosomal DNA coverage across �3 billion bases.

That makes analyzing tens of thousands of available samples very slow. Here we present

fastMitoCalc, which takes advantage of the indexing of sequencing alignment files and uses a ran-

domly selected small subset (0.1%) of the nuclear genome to estimate autosomal DNA coverage

accurately. It is more than 100 times faster than current programs. fastMitoCalc also provides an

option to estimate copy number using a single autosomal chromosome, which could also achieve

high accuracy but is slower. Using fastMitoCalc, it becomes much more feasible now to conduct

analyses on large-scale consortium data to test for association of mtDNA copy number with quanti-

tative traits or nuclear variants.

Availability and Implementation: fastMitoCalc is available at https://lgsun.irp.nia.nih.gov/hsgu/soft

ware/mitoAnalyzer/index.html

Contact: jun.ding@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The mitochondrial cellular power plant is partially encoded in its

own constituent circular genome of �16kb—mitochondrial DNA

(mtDNA). In humans, every cell has 100–10 000 copies of mtDNA.

The copy number is tightly regulated in various tissues, and is both a

critical determinant of the level of mitochondrial function and a

potential biomarker for various diseases. For example, elevated

mtDNA copy number has been reported to be associated with can-

cer risk (Lan et al., 2008; Thyagarajan et al., 2013) and major de-

pression (Cai et al., 2015b).

With the collection of whole-genome sequencing data in large-

scale studies, we and others (Cai et al., 2015a, b; Ding et al., 2015;
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Chu et al., 2012; Wachsmuth et al., 2016) have shown that the

mtDNA copy number per cell can be directly estimated from

whole-genome sequencing. The computation is based on the ra-

tionale that average sequencing coverage should be proportional to

underlying DNA copy number for autosomal and mitochondrial

DNA. Current programs (e.g. our program mitoCalc) infer the

average autosomal coverage across the entire genome, so that

about 3 h are required to calculate the average for one sample with

low average coverage at 4X using one AMD Opteron 2 GHz CPU

on a Linux workstation with 32GB memory. That makes it awk-

ward to investigate the tens of thousands of samples already avail-

able in the public domain and the further large-scale population

data coming online.

Here we present an improved version of our program,

‘fastMitoCalc’, that is more than two orders of magnitude faster. It

takes advantage of the indexing of sequencing alignment files, focus-

ing on a small subset of the nuclear genome to estimate autosomal

DNA coverage accurately (correlation>0.999 with the full genome

estimate). Consequently, a computer cluster with 500 CPUs can now

finish analyzing 50 000 deeply-sequenced samples [the current sample

size for NHLBI Trans-Omics for Precision Medicine (TOPMed) pro-

gram] in less than a day rather than the months originally required.

As a result, analyses can be conducted more efficiently to test for asso-

ciation of mtDNA copy number with quantitative traits or to look for

variants that regulate mtDNA copy number.

2 Implementation

Current programs, including mitoCalc, use the following formula to

infer the mtDNA copy number (see Ding et al., 2015 for details):

mtDNA copy number ¼ mtDNA average coverage

autosomal DNA average coverage
� 2

This holds if, as observed, autosomal and mtDNA are sequenced at

comparable intrinsic efficiencies. Current programs obtain the

coverage estimate at each base in the genome from the aligned bam

files (Li et al., 2009) and then calculate the average coverages for

autosomal DNA and mtDNA accordingly. Because the mitochondrial

genome is comparatively small, most computing time is spent calculat-

ing the average autosomal DNA coverage. Here, we propose two

strategies using a small proportion of autosomal DNA to get a com-

parably accurate estimate: (i) using a single individual chromosome

and (ii) using randomly selected autosomal DNA fragments.

2.1 Using individual chromosomes to estimate

copy number
One straightforward way to improve speed is to use one chromo-

some to represent the nuclear genome. We estimated copy number

using each individual chromosome from 1 to 22 (X and Y sex

chromosomes were excluded to avoid different treatment for males

and females), and compared it to the whole-genome estimate re-

garded as the standard. The estimates were calculated for 400

SardiNIA project participants with low-pass sequencing data (Ding

et al., 2015). We used the square of the correlation (R2) between the

two estimates as the measure of concordance. Table 1 lists the con-

cordance and computing time for two representative chromosomes

(1 and 20), while Supplementary Table S1 provides information for

all chromosomes. Most chromosomes (16 of 22) provide accurate

estimates (with concordance R2>0.99), but several provide low-

concordance estimates (e.g. chromosomes 19 and 22 have esti-

mates with R2<0.90; a likely explanation is in Supplementary

Information). Using any chromosome to estimate copy number sig-

nificantly increases computing speed (Supplementary Table S1), but,

as we show below, we can achieve the same estimation accuracy

while accelerating computing by using randomly selected fragments.

2.2 Using randomly selected autosomal DNA fragments

to estimate copy number
In the second strategy, we randomly pick a certain number of auto-

somal DNA fragments (each with a certain length) to represent the

autosomal DNA genome. We have assessed options ranging from

very aggressive [e.g. the use of one randomly selected 100-base frag-

ment (considering only 0.0000033% of the genome)] to the less ag-

gressive use of 30 000 fragments, each with 1000 bases (considering

1% of the genome). Table 1 lists the computing time for each op-

tion, with the average R2 and its range for 20 simulations of ran-

domly selecting DNA fragments.

When considering one 100-base fragment, the analysis of a bam

file (4X average coverage) takes on average only 4.6 s, but the aver-

age R2 is also very poor, at 0.15. By contrast, considering 100

1-base fragments, the analysis takes 6.6 s and the average R2 im-

proves to 0.93. Similarly, we see a significant increase in accuracy

from one 1000-base fragment to 1000 1-base fragments. These re-

sults show that randomly selecting multiple short fragments across

the genome is much better than selecting one long fragment at one

place. The concordance further improves with an increasing percent-

age of genome considered, so that when considering 3000 frag-

ments, each with 1000 bases (0.10% of the genome), the analysis

Table 1. Estimating mtDNA copy number using randomly selected autosomal DNA fragments, individual chromosomes and whole genome

# of fragments Fragment length (bp) Total length Time R2 R2 Range in 20 simulations

1 100 0.1K 4.6 s 0.154 [0.095, 0.243]

100 1 0.1K 6.6 s 0.932 [0.900, 0.945]

1 1000 1K 4.6 s 0.311 [0.183, 0.480]

1000 1 1K 22 s 0.989 [0.975, 0.993]

300 1000 300K 12 s 0.991 [0.984, 0.996]

10 000 100 1M 96 s 0.999 [0.998, 0.999]

3000 1000 3M 59 s 0.998 [0.997, 0.999]

30 000 1000 30M 386 s 0.999 [0.999, 0.999]

Chromosome 20 63M 6 min 0.981 N/A

Chromosome 1 249M 23 min 0.999 N/A

Whole Genome �3B 3 h 1.0 N/A

The different options are ordered by the total length of autosomal DNA being considered in the analysis from the smallest to the largest. The option in bold is

selected as the default option in fastMitoCalc.
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finishes in 59 s with very high accuracy (R2>0.998). We choose this

as the default option for fastMitoCalc, striking a balance between

accuracy and speed. It is worth noting that it takes almost same time

(4.6s on average) to analyze one 100-base fragment or one 1000-

base fragment. This is because the aligned bam files are commonly

sorted and indexed, so that once the start position is identified in a

bam file, it takes almost no time to scan the consecutive region for

coverage information. The default option runs very fast for the

same reason. The analyses here are based on low-pass (4X average

coverage) sequencing data; but as we show in Supplementary

Information, the impact of sequencing coverage on copy number es-

timates should be minimal.

2.3 Other options for fastMitoCalc
Besides the default option, users can choose alternatives for ran-

domly selected fragments (not limited to the options listed in

Table 1). Per requests from users, we also provide in fastMitoCalc

the option of using individual chromosomes to estimate copy num-

ber, which will be useful when researchers have sequence data for

only one specific chromosome available in a bam file. Users should

then avoid chromosomes with high GC content (see Supplementary

Information). We also add an option that allows users to specify a

list of nuclear DNA and/or mitochondrial DNA regions to be used

to estimate copy number, giving further flexibility. This last option

can be applied to whole-exome sequencing data to estimate mtDNA

copy number based on off-target reads. More detailed discussion

and preliminary results are in Supplementary Information.

3 Conclusions

fastMitoCalc can estimate mtDNA copy number highly accurately

using 0.1% of the genome, and hence speed up the estimation �180

fold compared to current programs. The program can thus easily

analyze hundreds of thousands of genomes currently being

sequenced by large research consortia, thereby facilitating associ-

ation studies of mtDNA copy number with quantitative trait values

or nuclear variants.
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