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Abstract

Motivation: Despite recent advances of modern GWAS methods, it is still remains an important

problem of addressing calculation an effect size and corresponding p-value for the whole gene

rather than for single variant.

Results: We developed an R package rqt, which offers gene-level GWAS meta-analysis. The pack-

age can be easily included into bioinformatics pipeline or used stand-alone. We applied this tool to

the analysis of Alzheimer’s disease data from three datasets CHS, FHS and LOADFS. Test results

from meta-analysis of three Alzheimer studies show its applicability for association testing.

Availability and implementation: The package rqt is freely available under the following link:

https://github.com/izhbannikov/rqt.

Contact: ilya.zhbannikov@duke.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in genome-wide analyses of complex traits allowed for de-

tecting a number of strong associations between genetic factors and

chronic diseases (Kathiresan et al., 2009; Strawbridge et al., 2011).

However, many other associations detected in such studies are weak

and did not reach genome wide levels of statistical significance.

These results are in concert with the Fisher’s conjecture that genetic

variability of complex traits is the result of integration of the influ-

ence of many genetic factors each having small effect on the trait

(Fisher, 1999). This situation generates an idea that evaluation of

components of genetic influence on complex traits that are inte-

grated by some parts of biological mechanisms may improve

strength of the genetic estimates. Attempts to realize this idea re-

sulted in a number of statistical methods focused on gene-level ana-

lyses of genetic data. In such analyses, information about detected

genetic variants that belong to a particular gene is used to construct

a score variable that integrates associations of these variants with a

disease within a gene. Several methods were developed for such inte-

gration of common- and rare variants. This includes SKAT (Wu

et al., 2011), KBAC (Liu et al., 2010), WSS (Madsen et al., 2009)

and others. A set of methods and tools that perform gene-level meta-

analysis was also proposed, e.g. MetaSKAT (Lee et al., 2013),

seqMeta (https://CRAN.R-project.org/package¼seqMeta). The

procedures of integrating genetic signals used in these methods are

based on different ideas and result in different estimates of inte-

grated associations of selected genes with the traits of interest. The

methods that produce stronger genetic associations with phenotypic

traits are usually considered as more preferable.

Recently, the QTests (Lee et al., 2016) for rare variants have

been proposed. In these regression-based tests (QTest1-3), a score

for the whole gene is built by using the pooled effect size obtained as

a weighted sum of corresponding effect sizes from fitting a multi-

variate regression on all detected variants in a gene. However, it is

important to take possible presence of linkage disequilibrium (LD)

into account. LD is directly related to multicollinearity, which can

significantly impact analysis by increasing the variance of the coeffi-

cient estimates (thereby making them very sensitive to small changes

in the model); also the estimates become unstable and can switch

signs. In addition, multicollinearity has negative effect on power

(Yoo et al., 2014).

In this note we propose RQTests, which are modified QTests.

RQTests directly address the problem of possible LD between vari-

ants . We also present a corresponding software tool—an R package

rqt, which performs gene-level and meta-analyses taking into ac-

count rare genetic variants. rqt is available for download from the

following link: https://github.com/izhbannikov/rqt.
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2 Materials and methods

The workflow of gene-level meta-analysis consists of the following

steps: (i) reducing the number of predictors (a.k.a. ‘data preprocessing’)

to exclude multicollinearity. This is the primary contribution of our

work; (ii) then the regression model is fitted on the reduced dataset to

obtain corresponding regression coefficients; (iii) these coefficients are

used to construct statistics representing a gene-level effect. P-values are

then calculated using this statistics with asymptotic approximation or

permutation procedure; (iv) combining gene-level p-values calculated

from each study. Below we describe these steps in details:

• In order to alleviate effects of correlation (LD-effects) between vari-

ants we employ a set of methods to preprocess the data first: PCA

(principal component analysis), PLS (partial least square), LASSO

(Tibshirani, 1996) and ridge regressions. By default, we use PCA and

the number of principal components is used to capture 75% of ex-

plained variance. We should note that in PLS regression both the ori-

ginal predictors and response are decomposed into latent structures

therefore the final p-values and pooled regression coefficient (see

below) are estimated with respect to those new variables. The user

can avoid this step (and, thereby, choose QTests) by supplying ‘none’

in the method parameter from funtction geneTest(. . .) of rqt.
• Pooling regression coefficients and calculating statistics and

gene-level p-value is performed according to the method

proposed in (Lee et al., 2016). The pooled effect size bbPooled

is a weighted sum of coefficients: bbPooled ¼ aTWbb, where

a ¼ akð Þm�1, ak ¼ 1=varðb̂kÞPm

k¼1
ð1=varðb̂kÞÞ

- an inverse variance vector for

the estimates of bbk from the multivariate regression. W is a di-

agonal weight matrix that contains weighs for j-th variant: wj ¼
BetaðMAFj;1; 25Þ where MAFj is a corresponding minor allele

frequency; m is the number of variants in a gene. Then the cor-

responding statistics Q1 for the QTest1 is calculated as follows:

Q1 ¼ ðaTWVWTaÞ�1bbPooled

2
� v2–1;

where V ¼ varðbbÞ. Other test statistics (Q2 for QTest2 and Q3 for

QTest3) are described in (Lee et al., 2016). In our package rqt we

implemented all of them. Since RQTests are implemented on top of

QTests, RQTests1-3 take into account rare variants as well.

• Calculating combined p-value for a gene from several studies is

performed with one of the available combing probability meth-

ods (refer to the User Manual.)

3 Results

We developed an R package, rqt, where we implemented and improved

QTests (rQTests1-3.) We also applied this methodology to a set of

genes that are potentially involved in the development of Alzheimer’s

disease (AD), obtained from a literature search. We conducted a meta-

analysis of the following studies: CHS (Cardiovascular Health

Study, dbGaP accession: phs000287.v5.p1), FHS (Framingham

Heart Study, dbGaP accession: phs000007.v22.p8) and LOADFS

(Late Onset Alzheimer’s Disease Family Study, dbGaP accession:

phs000168.v2.p2), both females and males, in order to evaluate the

possible associations between these genes and AD. Supplementary

Table S1A from Supplementary Materials presents a description of the

datasets used. Table 1 shows results for genes showed (P-value<10�2)

associations to AD. These results are concordant to those previously

found (Corder et al., 1993; Linnertz et al., 2014).

We also performed power simulation and type 1-error tests for rqt

(RQTest1-3), QTest1-3, SKAT and SKAT-O (see Supplementary ma-

terials for simulation setup), for dichotomous and continuous pheno-

types, assuming presence of LD between variants. Sample size was

3,000 and 50 SNPs. Percentage of causal SNPs was 10% and 25% in

each test. Simulation methodologies and results are shown in

Supplementary Figures S1C–S14C and Tables S7C–S13C from

Supplementary. RQTests offer lowest variance inflation factor (VIF),

type 1 error rate and highest power for the PCA preprocessing method,

see Supplementary Figures S1C, S2C, and Tables S7C and S8C from

Supplementary materials. Note: according to the QQ plots under the

null hypothesis for the PLS method, the p-values have non-uniform dis-

tribution and therefore the PLS method should be used with care in

rqt. Additional investigations are needed to address this issue.
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Table 1. Results of gene-level and gene-level meta-analysis: top

genes with P-value less than 10�2 sorted by P-value for rQTest3

Gene P-value

Meta CHS FHS LOADFS

PVRL2 3.000E�09 1.030E�09 3.629E�01 1.00E�09

TOMM40 3.000E�09 3,300E�08 2.600E�01 1.00E�09

APOC1 9.030E�06 3,010E�06 5.292E�02 6.34E�05

PPP1R3B 4.092E�04 1,364E�04 9.995E�01 1.469E�02

APOE 3.512E�03 2.048E�01 3.704E�01 1.172E�03

Detailed analysis results by study are shown in Supplementary Materials,

Tables 3C–6C.
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