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Abstract

Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype–

phenotype associations. Because the effects of genetic variants can depend strongly on their local gen-

omic context, accurate genome annotations are essential. Furthermore, as some variants have the

potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of

individualized annotations that account for differences in gene structure between individuals or strains.

Results: We describe a suite of software tools for identifying possible functional changes in gene

structure that may result from sequence variants. ACE (‘Assessing Changes to Exons’) converts

phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations

onto them, detects gene-structure changes and their possible repercussions, and identifies several

classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported

by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification

when an individual-specific genome sequence is available. Using publicly available RNA-seq data,

we show that ACE predictions confirm earlier results regarding the quantitative effects of

nonsense-mediated decay, and we show that predicted loss-of-function events are highly concord-

ant with patterns of intolerance to mutations across the human population. ACE can be readily

applied to diverse species including animals and plants, making it a broadly useful tool for use in

eukaryotic population-based resequencing projects, particularly for assessing the joint impact of

all variants at a locus.

Availability and Implementation: ACE is written in open-source Cþþ and Perl and is available

from geneprediction.org/ACE

Contact: myandell@genetics.utah.edu or tim.reddy@duke.edu

Supplementary information: Supplementary information is available at Bioinformatics online.
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1 Introduction

The accurate interpretation of genetic variants and their impact on

gene function is central to modern genetics, with implications for both

disease studies and elucidation of basic biology. However, the com-

plexities of eukaryotic gene structure and function challenge our abil-

ity to predict the effects of genetic variants on the products of

expressed genes. The context of a variant—whether in an exon, intron

or intergenic region—directly impacts the interpretation of likely vari-

ant effects. A number of bioinformatic tools are available for interpret-

ation of individual variants, including ANNOVAR (Wang et al.,

2010), SnpEff (Cingolani et al., 2012), VEP (McLaren et al., 2016),

PolyPhen (Adzhubei et al., 2010), and SIFT (Kumar et al., 2009).

These tools typically assume that gene structures are fixed and that

multiple variants do not act in combination. A recent analysis of

exome sequencing data of more than 60 000 individuals highlighted

the importance of interpreting variants in the context of the entire

haplotype, particularly in the case of variants that alter the annotated

reading frame (Lek et al., 2016). In addition, while a number of high-

quality gene annotation sets are available for humans and other spe-

cies, including GENCODE (Harrow et al., 2012), RefSeq (Pruitt et al.,

2014), and Ensembl (Yates et al., 2016), it has been demonstrated that

variant interpretation results can be sensitive to the gene structures

used in the analysis (McCarthy et al., 2014; Frankish et al., 2015).

A productive step toward improving our understanding of how

genetic variants can impact gene function in an individual is to char-

acterize the potential changes to gene structure that may be induced

by sequence variants. Methods for computational modeling and pre-

diction of eukaryotic gene structures have been well-disseminated

(Allen and Salzberg, 2005; Burge and Karlin, 1997; Guigo et al.,

1992; Korf et al., 2001; Lukashin and Borodovsky, 1998; reviewed

in Majoros, 2007; Stanke et al., 2006) and applied to the problem of

annotating reference genomes, both human and non-human (Adams

et al., 2000; Haas et al., 2008; Holt and Yandell, 2011; Lander

et al., 2001; Parra et al., 2007; Venter et al., 2001; reviewed in

Yandell and Ence, 2012). However, traditional gene-finding

approaches make several assumptions that limit their application to

predicting deleterious effects on gene structure in individuals.

Specifically, they assume that genes are well formed, have typical

codon usage statistics, and ultimately produce functional proteins.

Many approaches also take into account evolutionary conservation

between species. Those assumptions enable gene-finding models to

achieve high levels of accuracy in elucidating the structures of

protein-coding genes in reference genomes. However, such assump-

tions also limit the ability of gene-finders to identify functional

changes to gene structure between individuals of a species.

As an example, traditional de novo gene finders struggle to cor-

rectly model the ABO gene that determines human blood group.

The allele that gives rise to the O blood group contains an early

frameshift inducing a premature stop codon believed to result in ei-

ther mRNA degradation or translation to a different protein lacking

enzymatic activity (Yamamoto et al., 1990). Probabilistic gene find-

ers predict an incorrect gene structure for the O allele that modifies

the reading frame in order to avoid the in-frame stop codon

(Supplementary Fig. S1), as doing so allows a downstream exon to

be annotated as coding, resulting in a higher probability according

to the gene-finder’s objective function. In this way, traditional gene

finders conflate multiple molecular and evolutionary processes in

order to integrate diverse signals and maximize predictive accuracy

in identifying functional genes in reference genomes, and in doing so

are hampered in their ability to identify changes to gene structure

that result in loss of function in an individual.

Here we describe a novel approach (ACE—Assessing Changes to

Exons) that aids the elucidation of differences in gene structure be-

tween individuals of a species. In contrast to traditional gene-finding

models, ACE does not assume that genes are fully functional in

every individual. In particular, by considering within-species

changes to gene structure without regard to possible downstream ef-

fects, ACE is able to identify changes to gene structure that may alter

the function of the resulting protein, even if that protein is highly

conserved between species. ACE can therefore predict individualized

gene isoforms having altered—and possibly deleterious—protein

function relative to the reference.

We demonstrate the use of ACE by generating personalized

human transcriptome references for>2000 people sequenced as part

of the Phase 3 1000 Genomes Project (The 1000 Genomes Project

Consortium, 2015). We then quantify transcript expression using

RNA-seq data from matched individuals for a subset of the 1000

Genomes Project sample. That analysis reveals that predicted cases

of complete or partial loss of function in protein-coding genes via

nonsense-mediated decay (NMD) are detectable as a reduction in

transcript levels, albeit with much variation in the degree of reduc-

tion. That analysis also validates the use of ACE for identifying

novel splice forms that may result when annotated splice sites are

disrupted via sequence variants. In addition, we show that tran-

scripts predicted to suffer loss of function in healthy adults are sig-

nificantly depleted in genes found to be intolerant to mutation

across the human population.

We designed ACE to be broadly applicable across eukaryotes.

For that reason, we minimized the burden of extensive retraining for

use on nonhuman species. We demonstrate that feature by confirm-

ing known phenotype-causing differences in gene structures between

plant varieties.

2 Methods

2.1 Reconstructing haplotype sequences from a VCF file
ACE begins by reconstructing explicit haplotype sequences based on

variants given in a phased VCF file (Fig. 1A), including all single-

nucleotide variants, insertions, deletions, and short copy-number

variants. VCF files may contain one or more individuals; ACE proc-

esses each sample independently. ACE left-normalizes all variants

(Tan et al., 2015) and disambiguates overlapping variants by com-

puting the transitive closure of the overlap relation and applying the

longest variant, provided all other overlapping variants are properly

nested and call for consistent substitutions. ACE provides two warn-

ing levels corresponding to overlapping variants that are compatible

versus those that are incompatible. Those warnings are provided in

an easily parsed format to allow filtering of sequences by confidence

level prior to downstream analyses. ACE uses tabix (Li, 2011) for ef-

ficient extraction of variants in pre-specified intervals

(Supplementary Methods), thus reducing the memory requirements

for genome sequencing studies across large populations and facilitat-

ing parallelization on cluster compute environments. Detailed track-

ing of insertions and deletions allows ACE to efficiently compute a

coordinate transformation to map reference annotations to haplo-

type sequences without the need to perform explicit sequence align-

ment (Supplementary Methods).

2.2 Identifying changes to splice patterns and

reading frames
ACE requires that all reference gene models contain valid splice site

consensus sequences as defined in a user-supplied configuration file.
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Similarly, ACE requires that reference protein-coding gene models

contain valid start and stop codons in a consistent reading frame.

Reference genes that violate those constraints are reported as pos-

sible mis-annotations and removed from further consideration. For

all noncoding and coding genes, ACE identifies splice sites in the ref-

erence that change in the individualized genome. Such changes may

either be absolute, by disrupting a valid consensus splice site, or may

weaken the splice site at flanking nucleotides. ACE evaluates the lat-

ter possibility by aligning to a probabilistic weight matrix, or PWM.

Models of human splice sites are provided (Supplementary

Methods), and scripts to re-train for other organisms are also

provided.

For each isoform of a gene in which a splice site is disrupted,

ACE enumerates possible alternate splicing patterns for the isoform,

including those in which an exon is skipped, an intron is retained, or

a cryptic splice site is activated. By default, ACE identifies cryptic

sites within 70 nucleotides (nt) of a disrupted site via a PWM thresh-

olded to admit �98% of known human splice sites. The default dis-

tance was selected after observing that �75% of cryptic sites in

DBASS, the Database of Aberrant Splice Sites (Buratti et al., 2007),

are within that distance (Supplementary Fig. S2). For isoforms with

multiple disrupted splice sites, ACE enumerates all combinations,

corresponding to the set of paths through a splice graph for the gene

(Fig. 1B). The splice graph is constrained to include only annotated

splice sites and putative cryptic sites proximal to a disrupted anno-

tated site.

ACE also identifies possible changes to reading frames. In cases

in which the original start codon of a protein-coding gene is absent

in the alternate sequence, ACE searches for the first downstream

start codon of sufficient strength via a PWM. Changes to 50 untrans-

lated regions trigger a scan for upstream start codons that may be

created as a result. For transcripts annotated as noncoding, ACE

searches for reading frames longer than a configurable minimum

length (default: 150 nt), and reports whether the reading frame

exists in both the reference and alternate sequence (suggesting

possible mis-annotation of the gene as noncoding) or only the alter-

nate sequence (suggesting possible gain of function in the alternate

sequence, or loss of function in the reference individual).

2.3 Identifying loss of function
For protein-coding genes, ACE identifies instances of protein trunca-

tion or nonsense-mediated decay (NMD), either in the mapped tran-

script or in alternate transcripts proposed when a splice site is

disrupted. NMD is predicted based on the linear nucleotide distance

between an in-frame stop codon and the most 3’ exon junction in

the spliced mRNA. Distances greater than 50 nt have been shown to

trigger NMD (Nagy and Maquat, 1998), and this phenomenon ap-

pears to be conserved between vertebrates and plants (Nyiko et al.,

2013). ACE also reports loss of function (LOF) due to lack of either

a valid in-frame stop codon or lack of a start codon scoring above

the PWM threshold. Scans for start/stop codons are performed on

spliced transcripts, so that start/stop codons straddling an intron are

not overlooked. To enable filtering at arbitrary similarity thresholds,

protein alignment scores (Supplementary Methods), defined as the

percent sequence match between the reference and alternate pro-

teins, are reported. Protein sequences are also emitted to allow de-

tailed downstream analysis of amino acid changes by programs such

as PolyPhen (Adzhubei et al., 2010), SIFT (Kumar et al., 2009), or

VAAST (Hu et al., 2013).

2.4 Configuration and structured output
ACE is fully configurable in all of the parameters described above,

via a simple configuration file (Supplementary Methods).

ACE produces a highly structured output file (Supplementary

Fig. S3) describing gene structures in the reference and alternate se-

quences and results of their detailed comparison. The variants incor-

porated into the haplotype sequences are listed and classified as to

their context within gene elements. Classification of variants is per-

formed separately for both mapped isoforms and putative novel

splice forms to highlight changes to a variant’s context between iso-

forms. We provide scripts for querying and filtering outputs and for

converting to XML or GFF for use with other software.

2.5 Computational validation
To demonstrate the utility of ACE for large-scale genome sequenc-

ing projects, we used ACE to fully annotate the genomes of 2504

human samples sequenced by the Thousand Genomes Project. The

analysis was parallelized across 500 compute nodes, and required

two weeks to complete. GENCODE version 19 (Harrow et al.,

2012) annotations were used as reference annotations for that ana-

lysis. To validate predicted novel isoforms, we aligned RNA-seq

data from lymphoblastoma cell lines from 445 of the same individ-

uals to the individualized genomes generated by ACE, using TopHat

2 (Kim et al., 2013). RNA data was obtained from the Geuvadis

project (Montgomery et al., 2011). We used StringTie (Pertea et al.,

2015) to quantify transcript abundance. Recent benchmarks have

shown StringTie’s accuracy to be competitive with other state-of-

the-art methods, though it is also clear that transcript abundance es-

timation is still an inaccurate process (Hayer et al., 2015). Thus, for

validation of putative novel splice forms we rely primarily on find-

ing spliced reads that map precisely to the putative splice junctions.

We provided TopHat 2 and StringTie with both reference annota-

tions mapped to the individualized genomes, as well as novel tran-

scripts predicted by ACE (Supplementary Methods). For the

analyses of human genes, we disabled intron retention as it has been

found to be present in the Geuvadis data at lower levels than cryptic

Fig. 1. (A) ACE reconstructs explicit haplotype sequences from a phased VCF

file, projects reference annotations onto them, detects possible gene struc-

ture changes, and interprets changes in terms of possible loss of function. (B)

When a disrupted splice site is encountered, ACE enumerates possible alter-

nate splice forms resulting from cryptic splicing, exon skipping, intron reten-

tion or any combination resulting from multiple variants
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splicing and exon skipping (Lappalainen et al., 2013; Monlong

et al., 2014), and has been shown to be overwhelmingly likely to

lead to loss of function in human coding genes (Braunschweig et al.,

2014; Jung et al., 2015).

To quantify the effect of predicted NMD events, we analyzed the

relationship between transcript abundance and the number of NMD

alleles in an individual, under the hypothesis that each additional

NMD allele in an individual would result in a proportionate decrease

in transcript abundance for a given gene isoform. We fit a linear

mixed-effects model, log2(FPKM) � XbþZu, to the transcript abun-

dance estimates provided by StringTie, where FPKM (fragments per

kilobase of transcript per million reads mapped) measures transcript

abundance, X is the number of functional (non-NMD) alleles, and Z

is an indicator variable encoding the transcript identifier. The

random-intercept term Zu incorporates a different intercept for each

transcript, accounting for differences in expression between different

transcripts and genes. Values of BETA were estimated after removing

transcripts with a mean FPKM across all samples for each transcript

below a chosen threshold. That threshold was then varied to assess

stability of BETA estimates to threshold choice. Estimates of b were

transformed (Supplementary Methods) into relative abundance ratios

r0/2¼FPKM0/FPKM2, where FPKMk denotes mean FPKM among in-

dividuals predicted to have k functional alleles of a transcript. Thus,

1-r0/2 is the proportionate reduction in NMD homozygotes relative to

individuals with two functional alleles.

As the 1000 Genomes Project individuals were reportedly

healthy adults, we expected isoforms with LOF in at least one indi-

vidual to be enriched for genes tolerant of functional mutations. We

expected this effect to be stronger for the genes that are found as a

homozygous LOF because they will exhibit both recessive and dom-

inant effects. To test this, we analyzed the distributions of RVIS

(Residual Variant Intolerance Score—Petrovski et al., 2013) and

ncRVIS (nocoding RVIS—Petrovski et al., 2015) percentiles for

genes in which ACE predicts LOF for at least one annotated isoform

of the gene in 1000 Genomes Project samples. RVIS reflects the in-

tolerance of genes to functional mutations affecting amino acids in

protein-coding genes, while ncRVIS reflects intolerance to mutations

in noncoding portions of genes.

To demonstrate the applicability of ACE to nonhuman species,

we also analyzed 30 rice samples with fully sequenced genomes (The

3000 Rice Genomes Project, 2014).

3 Results

3.1 ACE predicts changes to gene structure
In the 1000 Genomes Project samples, ACE predicted a modest

number of alternative splice forms for each disrupted splice site:

80% of cases involve at most three alternate patterns per disrupted

site (median¼2, mode¼1) (Fig. 2A). When the alternate structures

predicted in the Geuvadis samples are provided as annotations (in

addition to mapped reference annotations), TopHat 2 is able to as-

sign spliced reads to significantly more of the putative novel junc-

tions than if TopHat 2 is provided only mapped reference

annotations (cryptic-site isoforms: Fig. 2B, Wilcoxon W¼513660,

P<2.2�10�16; exon-skipping isoforms: Supplementary Fig. S4A,

W¼537900, P<2.2�10�16). Similarly, StringTie assigns nonzero

FPKM values to significantly more of these putative novel splice pat-

terns when they are provided as annotations than when they are not

provided (cryptic sites: Fig. 2C, W¼198020, P<2.2�10�16; exon-

skipping: Supplementary Fig. S4B; W¼198020, P<2.2�10�16).

As such, ACE improves the sensitivity of both spliced read mapping

and transcript quantification for putative novel isoforms when an

annotated splice site is disrupted, and it is able to do so while pre-

dicting conservative numbers of such alternate splice patterns per

disrupted site.

We also applied transcript quantitation methods Salmon (Patro

et al., 2016) and Kallisto (Bray et al., 2016) to the Geuvadis data

and quantified the number of ACE-predicted novel transcripts that

were assigned expression values above a range of thresholds

(Supplementary Fig. S5). Due to the substantial differences between

expression estimates by the three approaches, we instead used raw

counts of spliced reads aligning exactly to predicted novel splice

junctions to investigate the specificity of ACE’s predictions. As a

negative control, we randomly sampled 3.25�106 non-disrupted,

annotated splice sites from the Geuvadis samples, and used ACE to

generate putative novel splice patterns that could result if the splice

site had been disrupted. We then quantified support for these nega-

tive control splicing events via the number of spliced reads assigned

by TopHat 2 to the junctions.

Fig. 2. (A) Distribution of number of alternate structures predicted per dis-

rupted splice site. (B) Distribution of proportions of predicted cryptic-site iso-

forms supported by at least one spliced read, when predicted isoforms are

not provided to TopHat 2 (blue) and when they are provided (red). (C)

Distribution of proportions of predicted cryptic-site isoforms assigned non-

zero FPKM by StringTie when predicted isoforms are not provided to

StringTie (blue) and when they are provided (red). (D) Distribution of propor-

tions of predicted cryptic-site isoforms supported by at least one spliced

read for splice sites simulated to be disrupted (blue) and for those that are

disrupted (red). (E) Distribution of spliced reads per junction, on log10 scale,

supporting sites simulated to be disrupted (blue) versus those that are

disrupted
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Due to the stochastic nature of eukaryotic splicing, some splicing

at non-annotated sites is expected (Pickrell et al., 2010; Stepankiw

et al., 2015). The proportion of ACE predictions of cryptic splicing

or of exon skipping at disrupted splice sites that are supported by at

least one spliced read is significantly greater than that of randomly

selected non-disrupted sites (Fig. 2D and Supplementary Fig. S4C,

respectively; P<2.2�10�16 in both cases). Similar results for all of

the above comparisons were obtained when applying higher read-

count or FPKM thresholds (Supplementary Figs S6 and S7).

Furthermore, the numbers of spliced reads supporting predicted

novel splice junctions are significantly greater in the case of dis-

rupted splice sites than for non-disrupted sites (raw read counts:

Fig. 2E, W¼785190, P<2.2�10�16; normalized read counts:

Supplementary Fig. S8, W¼791430, P<2.2�10�16). Among those

transcripts with disrupted splice sites for which ACE predicted at

least one alternate splice form, in 55.5% of cases at least one ACE

prediction was supported by at least three spliced reads mapped to

the novel splice junction. Possible outcomes that may comprise the

remaining cases but that we did not investigate include intron reten-

tion, use of cryptic sites further than the 70bp limit, failure to se-

quence spliced products due to low intrinsic expression levels,

accelerated degradation of aberrant transcripts by RNA surveillance

pathway, and sampling error. When multiple cryptic sites were

available and at least one site was supported by at least three spliced

reads, support for more than one site was found in only 13.4% of

cases, suggesting possible discrimination among available cryptic

sites by the splicing machinery.

As an additional negative control, we quantified mean cryptic splic-

ing activity in the vicinity of all annotated splice sites that were disrupted

in some individuals but not in others. We found that cryptic splicing lev-

els were higher in individuals with disruption of the annotated splice site

(Supplementary Fig. S9). That result illustrates that stochastic splicing

does result in occasional use of cryptic sites, but that cryptic splicing is

enriched near functional sites that have been disrupted.

3.2 ACE identifies thousands of annotated human splice

sites as being potentially robust to disruption
In order to further explore the utility of ACE in identifying alternate

splice forms that may arise when an annotated splice site is dis-

rupted, we simulated disruption to every annotated splice site in

every protein-coding gene in the human reference and classified each

site as to whether there existed an alternate splice pattern found by

ACE that could produce a highly similar protein product. Only al-

ternate splice forms that did not result in a prediction of NMD, did

not lack a start or stop codon, and encoded a protein differing by no

more than ten amino acids (aa) from the reference protein were ac-

cepted as potentially retaining function.

Nearly 80000 human splice sites (78226/377278¼20.7%) in

15134 genes were deemed by ACE to be potentially robust to dis-

ruption. A more conservative PWM threshold that would reject

�20% of annotated human splice sites still results in over 30000

(32465/377278¼8.6%) splice sites being identified as potentially

robust to disruption. These results indicate that there may be ample

opportunities to reduce false positives in disease studies in which

splicing defects are suspected by applying ACE for interpretation of

these altered gene structures. When tissue samples are available, pu-

tative splice forms proposed by ACE can be validated against RNA-

seq data by providing them as annotations to a transcript quantifica-

tion pipeline as described in the previous section, or by validating

protein presence via western blot.

Among 1000 Genomes Project samples, the mean proportion of

transcripts with disrupted splicing for which ACE was able to iden-

tify at least one alternate structure with no predicted LOF according

to the above criteria was 0.46 (SD¼0.08; Supplementary Fig.

S10A). This represents a substantial enrichment compared to the 0.

21 estimated for the genome-wide scan, possibly reflecting the ef-

fects of natural selection on this control population.

3.3 ACE confirms previous estimates of the effect of

nonsense-mediated decay on transcript levels
Nonsense-mediated decay accounted for over two-thirds (69%) of

the loss-of-function predictions in the 2504 1000 Genomes Project

samples. To better understand the impact of NMD on expression of

target genes, we used the Geuvadis RNA-seq data and the transcript

quantification pipeline described above to quantify the effect of

NMD in terms of the average reduction in transcript levels per

NMD allele, relative to individuals with two functional alleles. We

first restricted our analysis to heterozygous individuals.

Based on the results of earlier in vitro experiments showing that

NMD achieves a halving of transcript levels in episomal mini-gene

constructs (Rosenberg et al., 2015), we hypothesized that each add-

itional NMD allele at a diploid locus would reduce total transcript

levels by 25% and that the homozygous NMD state would therefore

result in a halving of mean FPKM. In Figure 3A, we show, on a log2

scale, the distribution of effect sizes E¼FPKM1/FPKM2 for auto-

somal transcripts expressed in LCLs, where FPKM1 is the mean

FPKM pooled among heterozygous individuals (having one NMD

allele and one functional allele), and FPKM2 is the mean FPKM

pooled among individuals having two functional alleles. The

observed distribution matches our expectation of a 25% reduction

(denoted by the dashed line) among heterozygotes, albeit with much

variability, as also noted previously based on a subset of this

data from 119 individuals (MacArthur et al., 2012). Applying

higher FPKM thresholds produced similar results (Supplementary

Fig. S11).

To extend the analysis to include homozygotes, we fit a linear

mixed-effects model to the Geuvadis data. Utilizing a linear mixed

model with random intercepts allows us to account for differences

in expression levels between genes and isoforms because each iso-

form can have a different (random) intercept. After filtering to only

include transcripts expressed in at least 30 individuals and that have

both NMD and non-NMD predictions, we were left with 578

Fig. 3. (A) Distribution of log2 effect sizes of N¼578 heterozygous NMD

events as measured via RNA-seq transcript quantification. Dashed line at -

0.42 denotes a 25% reduction in total transcript quantity. Data were filtered to

improve power (sample size� 30, mean FPKM�1). (B) Percentiles of

Residual Variant Intolerance Scores (RVIS) for N¼633 genes in which at least

one individual was predicted to be homozygous for gene loss of function
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heterozygous and 38 homozygous observations. All estimates of co-

efficient b were significantly different from zero (all P<2�10�27),

and estimates were robust to filtering of the data at different min-

imum FPKM thresholds (Supplementary Fig. S12). The largest esti-

mated b¼0.37 (SE¼0.01) a halving of transcript levels (r0/2¼0.60)

for homozygotes. The low sample size for homozygous alleles after

filtering, variability in the efficiency of NMD for different tran-

scripts, and general noise in RNA-seq quantification are likely con-

tributors to the divergence of estimated r0/2 from an exact halving.

NMD events resulting from the creation of new upstream start

codons were omitted from the above analysis, as many of these

likely constitute so-called uORFs (upstream open reading frames),

which can affect gene expression in myriad ways that are not fully

understood (Barbosa et al., 2013). Indeed, fitting the above model

to these uORF NMD predictions at various FPKM thresholds con-

sistently results in an estimated b�0, indicating that NMD in

uORFs is not predictable using the established methods for down-

stream reading frames, possibly due to their position near the 5’

cap site on the circularized RNA (Peixeiro et al., 2012; Silva et al.,

2008) or to the potential for reinitiation of translation downstream

(Neu-Yilik et al., 2011). As such, ACE marks all NMD predictions

in uORFs as hypothetical and provides position and length infor-

mation for the uORF, enabling users to interpret them on a case-

by-case basis.

3.4 ACE’s loss-of-function predictions in healthy

individuals are highly enriched for genes

tolerant to mutation
All 2504 individuals in the 1000 Genomes Project sample harbored

alleles predicted to suffer loss of function (LOF). Using ACE we esti-

mated a median of 148 LOF genes per individual (range: 115-192),

which is higher than the estimate of 97 based on experimental valid-

ation and stringent filtering of variants in a single European individ-

ual (MacArthur et al., 2012), but similar to the estimate of 149–182

truncation events found by the more recent Phase 3 1000 Genomes

Project study (The Thousand Genomes Consortium, 2015).

For healthy adults we expect LOF predictions to be enriched for

genes not critical to survival, and thus to have elevated tolerance to

functional mutation. We assessed tolerance to mutation by comput-

ing RVIS and ncRVIS percentiles for all autosomal protein-coding

genes predicted to suffer LOF in at least one individual. LOF was

presumed if a transcript that was well-formed in the reference was

predicted in the individual’s genome to suffer NMD (69% of all pre-

dicted LOF cases), to lack a start or stop codon (8% of cases), to

have a disrupted splice site in a terminal exon with no viable alterna-

tive splice forms (2% of cases), or to encode a protein differing by at

least 50% of its amino acids from the reference protein (21% of

cases).

Loss-of-function predictions were enriched for genes tolerant to

mutation according to both RVIS and ncRVIS scores. The distribution

of RVIS percentiles for homozygous LOF genes was highly biased to-

ward genes tolerant to mutation (higher RVIS scores), as expected

(Fig. 3B). The observed distribution differs significantly from the dis-

tribution of all RVIS scores (Supplementary Fig. S13A) (median¼80th

percentile, versus 50th percentile for all genes; Wilcoxon rank-sum

test: W¼7378700, P<2.2�10�16). Random sets of genes having

similar lengths, numbers of exons, or GþC nucleotide composition

resulted in distributions that could not be distinguished from uniform

(Wilcoxon rank-sum, all P>0.6; Supplementary Fig. S13B–E). The

bias toward tolerance was significantly higher for homozygous LOF

genes than for heterozygous LOF (W¼2214700, P<2.2�10�16;

Supplementary Fig. S14A–B), though heterozygous LOF genes were

also significantly enriched for tolerance (median¼62nd percentile;

W¼53451000, P<2.2�10�16). Percentiles for ncRVIS were also

significantly biased toward tolerance to mutation in these genes

(homozygous: median¼59th percentile, W¼6032200, P<5.

5�10�11; heterozygous: median¼56th percentile, W¼48724000,

P<2.2�10�16), and that bias was again higher for homozygotes

than heterozygotes (W¼1812500, P¼0.005; Supplementary Fig.

S14C and D).

Because RVIS and ncRVIS scores are assigned to genes rather

than to individual isoforms, they may not indicate intolerance levels

for every isoform equally. Indeed, genes with a predicted homozy-

gous LOF in at least one individual for at least one isoform that are

classified as intolerant to variation (RVIS percentile<0.20) were

found to have significantly elevated numbers of isoforms compared

to all of GENCODE (Wilcoxon rank-sum, W¼1932000,

P<2.2�10�16) (Supplementary Fig. S15). This observation is con-

sistent with the possibility that the gene-level intolerance detected by

RVIS might not indicate intolerance for the particular isoforms

found to suffer LOF in these samples. Indeed, among the LOF pre-

dictions in 1000 Genomes Project samples, a majority of the genes

were predicted to suffer LOF in some, but not all, of their isoforms

(mean proportion among individuals was 0.59, SD¼0.03;

Supplementary Fig. S10B), indicating that many LOF variants do

not affect all isoforms equally.

3.5 ACE aids interpretation of insertion and deletion

variants within genes
Insertions and deletions of short sequences can substantially alter

gene structures, through their effect on translation reading frames,

splice sites, or start or stop codons. Proper interpretation of such

variants requires analysis of the resulting sequence within the con-

text of the correct gene structure.

For example, in the CTU2 gene (Ensembl gene

ENSG00000174177), which is involved in post-transcriptional modi-

fication of transfer RNAs, variant rs11278302 deletes an entire donor

splice site (Fig. 4A), suggesting a possible effect on splicing. Indeed,

the Ensembl variant effect predictor, VEP (McLaren et al., 2016) clas-

sifies this common variant (minor allele frequency in 1000 Genomes

Project samples¼0.22) as having ‘high impact’ (Supplementary Fig.

S16A). However, ACE discovers that the resulting sequence after dele-

tion contains a valid donor consensus at the same location relative to

the preceding exon, that the new splice site scores more highly under

the donor-site PWM than the original donor site (�18.82 versus �19.

77), and that the coding sequence remains unchanged, producing an

identical protein. Furthermore, while sample HG00096 is homozy-

gous for the alternate allele, TopHat 2 assigns 33 and 35 spliced reads

respectively to the new splice junctions in the two haplotypes, consist-

ent with ACE’s predictions.

An important class of insertion/deletion variants are frameshift

mutations, which are insertions or deletions of a length not divisible

by three in a coding sequence. These have the potential to radically

alter encoded proteins by shifting the reading frame. Frameshifts

typically induce premature in-frame stop codons resulting in trun-

cated proteins and, often, a reduction in transcript levels via NMD.

In the 1000 Genomes Project population, frameshifts were the larg-

est contributor to predictions of NMD, accounting for 60% of pre-

dicted cases. Frameshifts were also the largest contributor to LOF

predictions stemming from large protein changes, accounting for

71% of cases. When multiple frameshifts are present in a coding seg-

ment, however, their combined effect may be less severe than the
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predicted effect of any one frameshift if a downstream variant re-

stores the original reading frame. Because ACE analyzes sequences

after simultaneously applying all variants present, combinations of

frameshifts that mutually cancel each other by restoring the original

reading frame can be detected.

One example of compensatory frameshifts detected by ACE

occurs in the ZFPM1 gene (ENSG00000179588), which plays a key

role in erythroid differentiation. Within the coding segment of this

gene are three common deletion variants, all within 10 nt of each

other (Fig. 4B). The first two deletions (rs67712719, rs67322929)

induce frameshifts, while the third (rs67873604) maintains the read-

ing frame. Either rs67712719 or rs67322929 in isolation would re-

sult in premature termination and a large change to the amino acid

sequence (Supplementary Fig. S17). Consequently, VEP classifies

both rs67712719 and rs67322929 as having ‘high impact’

(Supplementary Fig. S16B). However, rs67712719 and rs67322929

commonly occur together in the 2504 1000 Genomes Project sam-

ples (4869/5008¼97% of haplotypes), and the combination results

in only two amino acid changes, as rs67322929 corrects the reading

frame change introduced by rs67712719; the three variants together

modify only four amino acids due to their proximity.

Every individual in the 1000 Genomes Project sample harbored

one or more (median¼7 per individual) compensatory frameshifts

affecting�30 amino acids. In this sample, the observed lengths of af-

fected intervals (in amino acids) are very short on average

(Supplementary Fig. S18), with a median length of only 1 aa, as

compared to a null expectation of 260 aa for uniformly random,

non-compensated frameshifts (Supplementary Fig. S19). This bias

toward short affected lengths may reflect selection against large

functional changes in proteins.

3.6 ACE accurately reconstructs human blood-group

alleles at the ABO locus
The human ABO gene (ENSG00000175164) is responsible for

human blood types. It encodes a glycosyltransferase that modifies

carbohydrate content of red blood cell antigens, with the A allele

producing the A antigen, the B allele the B antigen, and the O allele

being non-functional (Yamamoto et al., 1990). In the non-

functional O allele, a deletion of a single guanine in exon 6 creates a

frameshift resulting in an in-frame stop codon in the same exon, so

that only alleles A and B have a seventh coding exon.

The ABO locus is highly diverse in human populations and has

assembly issues in both the GRCh37 and GRCh38 human reference

genomes. The annotated allele in GRCh37 was the result of im-

proper assembly of two different O alleles, while GRCh38 combined

A and O alleles, producing a sequence identical to the known O1.01

allele (Yamamoto et al., 1990; Yip, 2002). Both assemblies now

contain a patch as an alternate contig that represents an A allele.

GENCODE version 19, the reference annotation for all of our ana-

lyses, annotates this gene as a processed transcript, and identifies no

reading frame.

In 1000 Genomes Project sample HG00096, ACE identifies a

start codon and open reading frame in both haplotypes (Fig. 5A),

and proposes that the gene might be mis-annotated as noncoding. In

haplotype 1 ACE identifies a coding gene structure that precisely

matches the known O allele. In haplotype 2 ACE identifies a struc-

ture matching both the A and B alleles; translation of this structure

reveals that the amino acid sequence is identical to the known B al-

lele (Yamamoto et al., 2014). Thus, ACE has identified this individ-

ual as being heterozygous for the O and B alleles, and thus likely has

a B blood type.

As noted in the Introduction, applying a state-of-the-art gene

finder to this locus results in very different results. This stark differ-

ence highlights the importance of ACE’s method of modeling splic-

ing decisions as independent of downstream translation effects when

analyzing gene structures in re-sequencing data.

3.7 ACE identifies complex gene-structure changes in a

plant gene influencing flavor and nutritional content
The waxy gene in domestic rice provides a test case for ACE’s ability

to discover complex alterations to gene structure involving

Fig. 4. (a) Deletion of an entire splice site (top: hg19 reference sequence; bot-

tom: haplotypes 1 and 2 of 1000 Genomes Project sample HG00096). The re-

sulting allele appears to retain a functional splice site despite the deletion, as

concluded by ACE and supported by spliced RNA-seq reads. (B)

Compensatory frameshift variants: the second variant corrects the change to

the reading frame introduced by the first variant (top: hg19 reference se-

quence, bottom: haplotype 2 of 1000 Genomes Project sample HG00096)

Fig. 5. (A) Blood-group alleles of the ABO gene (ENSG00000175164). Black:

coding segment; gray: untranslated region (UTR). Reference genome hg19

has the O allele; GENCODE version 19 annotates this gene as a processed

transcript with no reading frame. ACE identifies the coding segment for the O

and B alleles in heterozygous individual HG00096. (Coordinates have been

transformed and mapped to the forward strand). (B) Complex differences in

gene structure between alleles of the waxy gene in rice, due to a single G-to-T

variant in a donor splice site. ACE detects a 1 nt shift in the donor splice site in

the Wxb allele, resulting in a new start codon straddling the first intron. The

new start codon alters the reading frame, leading to a premature stop codon

and NMD
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simultaneous changes to both splicing patterns and translation read-

ing frames. Different alleles of waxy produce different ratios of

amylose to amylopectin, leading to very different tastes and textures.

Moreover, as these polysaccharide starches result in substantially

different glycemic indices, their relative expression in different rice

varieties has nutritional relevance.

We provided ACE with the annotated Wxa allele as reference an-

notation and projected this to the Wxb allele (Fig. 5B) using variants

provided by the 3000 Rice Genomes Project. ACE recognizes that

the G to T substitution caused by variant id12648080 causes a dis-

ruption to the donor splice consensus at the end of the first exon in

the 50 untranslated region. It then scans for and detects a new splice

site scoring above PWM threshold in the vicinity of the annotated

site. The new site is 1 nt upstream of the annotated site. This 1 nt

shift in the donor site results in a new splice junction in which an A

at the end of the first exon joins with a TG at the beginning of the se-

cond exon. ACE recognizes the spliced ATG as a valid start codon

consensus. Together with its flanking bases this putative start codon

scores above PWM threshold. ACE then proposes that the Wxb al-

lele preferentially begins translation at this upstream start codon,

and traces the resulting open reading frame, finding that it ends in a

premature stop codon resulting in a prediction of NMD.

These conclusions match current understanding of how the Wxb

allele functions (Cai et al., 1998; Isshiki et al., 1998; Tian et al.,

2009). The differences between Wxa and Wxb would be particularly

challenging for a traditional gene finder to identify, as gene finders

based on generalized hidden Markov models (GHMMs) utilize dis-

crete states to represent multi-nucleotide features such as start

codons. GHMM-based gene finders are therefore unable to predict a

start codon straddling an intron using standard decoding algorithms

(e.g., Majoros et al., 2005). The approach taken by ACE to separate

modeling of transcription from translation simplifies the task be-

cause splicing decisions are made first. Only after introns are

removed does ACE apply the ribosome scanning model to search for

a start codon. In this way, ACE more closely models the way splic-

ing and translation are believed to occur in the cell.

4 Discussion

The accurate detection and interpretation of gene structure differ-

ences in the genomes of individuals or strains is an important and

unsolved problem, with clear relevance to genetic studies of disease

and other phenotypes. As we have shown, individual variants dis-

rupting splice sites or reading frames do not necessarily result in

LOF. Correct disambiguation of the effects of such variants, particu-

larly within the context of individual genomes harboring combin-

ations of variants that may interact, has the potential to

substantially reduce false positives in burden testing. We have also

demonstrated that traditional gene-finding models are not suited for

such applications without modification, as such models make as-

sumptions incongruous to the task of detecting possibly deleterious

changes that violate conservation patterns in genes.

Here we have proposed an alternate framework for identifying

and interpreting gene structure changes, in which the potentially

deleterious downstream effects of changes to gene structure are not

considered when proposing such changes. By withholding informa-

tion regarding possible downstream effects when considering

changes to gene structures, we enable ACE to identify changes that

may result in a loss or change of function, and to do so in a minim-

ally biased manner. Because ACE has very few parameters, it is

more readily applicable to other species than traditional gene finding

models that utilize tens of thousands of parameters and need to be

retrained for each new species (Korf, 2004). Moreover, when the in-

tended application is to provide plausible novel gene structures to an

RNA-seq pipeline, the use of a minimally biased approach favoring

sensitivity over specificity may be desirable. However, as noted pre-

viously, interpretation of transcript abundance estimates for these

putative isoforms should be undertaken with caution (Hayer et al.,

2015).

The example of the ABO gene is particularly instructive, as it

demonstrates a case of different gene structures in different individ-

uals with different and medically important phenotypes (blood

type). As we have shown, state-of-the-art de novo gene finders have

difficulty correctly identifying the gene structures of individual al-

leles of this gene. In the case of the O allele, which has fewer coding

exons than the A and B alleles, there is a potential for misinterpret-

ation of variants occurring in the gene. As the final coding exon of

the A and B alleles is not present in the O allele, correct interpret-

ation of variants in that exon depends on knowing which allele is

present in an individual. Furthermore, as the O allele is likely non-

functional, accumulation of variants in that allele is likely underway

(Yamamoto et al., 1990) and may lead to false positives in identifi-

cation of deleterious variants when incorrect annotations are used.

The waxy gene in rice provides another example of allelic differ-

ences in gene structure precipitated by a simple sequence variant.

We speculate that there may be numerous other genes in which the

correct interpretation of variants differs between alleles in a way

that depends on knowing the correct gene structure for each allele.

ACE’s predictions of loss of function in the 1000 Genomes

Project samples are highly enriched for genes tolerant of functional

mutation, indicating a low false positive rate for identification of

loss-of-function alleles. Furthermore, our analyses of the Geuvadis

data have confirmed that the nonsense-mediated decay pathway in

humans typically does not result in complete loss of transcripts, but

rather achieves a quantitative reduction on the order of a halving, al-

beit with much variation, often leaving many copies of NMD target

isoforms undegraded. Such transcripts escaping degradation will en-

code truncated proteins that, if they escape further checkpoints dur-

ing folding, can in some cases result in a deleterious gain-of-function

and poison products (Balasubramani et al., 2015). Because ACE re-

ports truncation products for all putative NMD targets, downstream

analyses may be thereby enabled to infer deleterious effects directly

or via association with phenotypes.

There is much room for enhancement of our method, for ex-

ample through detailed modeling of the splicing regulatory land-

scape and its influence on splice site selection (e.g., Rosenberg et al.,

2015). It is also important to note that the accuracy of ACE’s predic-

tions depends on the accuracy of genotype phasing. In the case of

the 1000 Genomes Project data used here, much effort has gone into

ensuring that data are accurately phased (Delaneau et al., 2013). As

sequencing costs decrease and read lengths increase, we expect phas-

ing accuracy to continue to improve in newer resequencing studies,

which will further increase ACE’s accuracy.

The use of phased haplotypes is important for joint interpret-

ation of variants that may interact in cis, as highlighted recently by

Lek et al. (2016) using exome sequencing data from �60 000 indi-

viduals. Those authors reported an average of 23 multinucleotide

polymorphisms (multiple variants that affect the same codon) per in-

dividual, and lament the lack of tools that can interpret variants in

the context of a haplotype. The true mean number of compensatory

variants will likely be higher than 23 when other compensatory

mechanisms are considered, including frame-restoring indels and

generation and/or use of alternate splice sites. These scenarios sup-

port a shift away from variant-centric analysis pipelines to tools
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such as ACE that generate haplotype-aware gene annotations as a

way of understanding genetic variation in populations.

In summary, ACE is an initial step towards modeling gene struc-

ture differences among individuals of a single species. Importantly,

ACE makes fewer assumptions than traditional gene-finding tech-

niques to improve prediction of deleterious differences in gene struc-

ture. The abundance of human splice sites with possible robustness in

the form of alternate splicing solutions that result in minimal changes

to the encoded protein suggests that ACE may have ample opportuni-

ties to reduce false positives in disease studies in which splicing defects

are identified but have unknown significance. ACE is equally applic-

able to identifying differences between lines of economically import-

ant animal or crop species, and it may have utility for RNA-seq

analyses and for detecting possible gain-of-function variants in cancer

genomes. The design of ACE’s computational model makes it directly

applicable to nonhuman species with minimal re-training, enabling

studies of other model and non-model animal and plant species.
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