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Missing data is a common occurrence in epidemiologic research. In this paper, 3 data sets with inducedmissing values
from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are provided as examples of
prototypical epidemiologic studieswithmissing data.Our goalwas to estimate the association ofmaternal smoking behav-
ior with spontaneous abortion while adjusting for numerous confounders. At the same time, we did not necessarily wish to
evaluate the joint distribution among potentially unobserved covariates, which is seldom the subject of substantive scien-
tific interest. The inverse probability weighting (IPW) approach preserves the semiparametric structure of the underlying
model of substantive interest and clearly separates the model of substantive interest from the model used to account for
the missing data. However, IPW often will not result in valid inference if the missing-data pattern is nonmonotone, even if
the data are missing at random. We describe a recently proposed approach to modeling nonmonotone missing-data
mechanisms under missingness at random to use in constructing the weights in IPW complete-case estimation, and we
illustrate the approach using 3 data sets described in a companion article (AmJEpidemiol. 2018;187(3):568–575).

inverse probability weighting; missing-at-random data; missing data; nonmonotonemissingness

Abbreviations: AIPW, augmented inverse probability weighted/weighting; CBE, constrained Bayesian estimation; CC, complete-
case; CPP, Collaborative Perinatal Project; IPW, inverse probability weighted/weighting; MAR, missing at random; MCAR,
missing completely at random; MNAR, missing not at random; UMLE, unconstrainedmaximum likelihood estimator.

Missing data routinely occur in epidemiologic research, in pat-
terns that are often arbitrary from one unit to another. As an illus-
tration of a prototypical epidemiologic study with missing data,
Perkins et al. (1), in a companion article in this issue of the Jour-
nal, provide a series of 3 data sets from the Collaborative Perina-
tal Project (CPP) (2) with induced missing values based on the
“missing completely at random” (MCAR), “missing at random”
(MAR), and “missing not at random” (MNAR) mechanisms.
The parameter of primary scientific interest is the adjusted associ-
ation between spontaneous abortion as the outcome andmaternal
smoking behavior as the exposure, controlling for the measured
covariates body mass index (weight (kg)/height (m)2), age, and
race. In these data, a person may be missing data for 1 or more
confounders, the exposure, or the outcome, or a combination of
all 3 in a pattern that is discernibly nonmonotone (i.e., there may
be no ordering of the variables, such that observing the jth
variable ensures that all variables k > j in the ordering are

observed for all j) (3). In a challenge posed to us and the authors
of another article (4), we were masked to the actual missing-data-
generating mechanism for each of the 3 CPP data sets, as well as
to the original full data. Our goal in this paper is to account for
possible selection bias due to incomplete data in the estimation of
the association of maternal smoking behavior with spontaneous
abortion, without imposing a model for the joint distribution of
variables that are prone to missingness.

Inverse probability weighting (IPW) of complete cases can
achieve this goal, because the approach relies on a model for the
missingnessmechanismwithout necessarily requiring additional
modeling of the full data beyond the scientific model of substan-
tive interest (3, 5). Therefore, IPW ensures that assumptions
needed to account for missing data are not conflated with as-
sumptions encoded in the substantive model, thus avoiding is-
sues of model compatibility and other forms of misspecification
of the full-data model (6–8). In practical implementation of
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IPW, it is sometimes assumed that the missing-data mechanism
depends only on variables fully observed in the sample, such
that a simple binary regression of being a complete case (e.g.,
logistic or probit regression) may be used to estimate the
missing-data process in order to estimate the weights.While the
assumption simplifies the analysis, it is often overly restrictive,
particularly in the presence of nonmonotone missing data. In
fact, bias may result even if, as is commonly assumed in prac-
tice, data are MAR. Recall that the MAR assumption states that
the missing-data mechanismmay depend on variables observed
under a given missing-data pattern but may not depend on the
values of unobserved variables, while a missing-data mecha-
nism independent of both observed and unobserved data is said
to be MCAR and a missing-data mechanism that is neither
MCAR nor MAR is said to be MNAR (3). The MAR assump-
tion is commonly made in practice because, under the addi-
tional assumption that the parameters of the underlying full data
distribution are distinct from those of the missing-data mecha-
nism, the likelihood function for the missing-data mechanism
factors from that of the observed data, making it possible to
untangle the selection model from the model of substantive
interest, even if the missing-data pattern is nonmonotone.

Untangling the 2models underMNARwill typically require
alternative, often more stringent assumptions. Under MAR,
IPW exploits the fact that the likelihood factors, by explicitly
incorporating assumptions about the missing-data process in a
model for the missing-data mechanism, while avoiding unnec-
essary assumptions about the full data distribution beyond the
underlying model of substantive interest. However, models for
nonmonotonemissing-data processes in IPW are not well devel-
oped in the statistical literature, particularly in settings where
onemay bewilling to assumeMARbut unwilling tomake a fur-
ther independence assumption (8). Below, we describe a recent
approach for modeling nonmonotone missing-data processes
which largely resolves this difficulty, and we illustrate the
approach in the 3 data sets described in the companion article (1).

NOTATIONANDASSUMPTIONS

Let = ( … )′L L L, , K1 be a random K-vector representing the
full data for a given individual. Let R be the scalar random vari-
able encoding the different missing-data patterns. For each of n
individuals, we observe an independently and identically dis-
tributed realization of ( )( )R L, R . For missing-data pattern

=R m, where ≤ ≤m1 2K , we only observe ⊆( )L Lm . We
reserve R = 1 to denote complete cases.

For identification purposes, we formalize the MAR assump-
tion (assumption 1) for each individual as

{ = | } = { = | } ( )( )R m L R m LPr Pr , 1m

with ≤ ≤m1 2K possible missing-data patterns, so that the con-
ditional probability of having missing-data pattern m, which we
denote by π ( )( )Lm m , depends only on the observed variables ( )L m
for that pattern. Throughout, we also make the following neces-
sary positivity assumption (assumption 2) that for all individuals,

σπ ( ) > > ( )L  0; 21

that is, the probability of being a complete case is bounded away
from zero, for a fixed positive constant σ (i.e., we assume that
every participant could have been a complete case). Assumption
2 is necessary for nonparametric identification of the full data
distribution and of smooth functionals of the latter, such as
means, variances, and covariances, as well as regressionmodels
involving non–fully observed variables (6), and it ensures finite
asymptotic variance of IPW estimation.

A key implication of assumptions 1 and 2 is that the missing-
data process is itself nonparametrically identified. This also
implies that when distinct parameters are used to model the
missing-data mechanism and the full data distribution, efficient
estimation of the parameters of the missing-data process can be
obtained by maximizing its partial likelihood, ignoring the part
of the likelihood induced by the full data. Once an estimator of
the probability of being a complete case is obtained, which we
denote π̂ ( )L ,1 IPW then simply entails restricting the primary
analysis of interest one would have performed in the absence of
missing data to the complete cases, each of which is reweighted
by π̂ ( )L1/ .1 Specifically, consider the primary scientific analysis
described in the companion paper by Perkins et al. (1), which
involves estimating an association between spontaneous abor-
tion (the outcome) and maternal smoking behavior early in preg-
nancy (the exposure) while controlling for race, age, body mass
index, and smoking status (the confounders) using a standard
logistic regression model. An IPW analysis then corresponds
to a CC logistic regression analysis in which each contribution
is reweighted by π̂ ( )L1/ .1 Below, we describe the challenge of
modeling and estimating the CC probability π ( )L1 when miss-
ingness is nonmonotone, and we describe in detail our pro-
posed approach for achieving this task.

ESTIMATINGMONOTONEMISSINGNESSMECHANISMS

Although themissingnessmechanism is in principle nonpar-
ametrically identified under assumptions 1 and 2, in practice
estimation entails specifying parametric models, as dictated by
Bellman’s curse of dimensionality (9), because L is typically of
moderate to high dimension (e.g., hundreds) (10). To motivate
our discussion of nonmonotone missing-data models, we
briefly review existing strategies for modeling the missing-data
mechanism. For illustration, we assume that the full data set

= ( … )′L L L, ,1 3 consists of K = 3 variables. Let Sj be the
missing-data indicator for the jth variable, such that Sj takes on
the value 1 or 0 when the variable Lj is observed or missing, re-
spectively ( =j  1, 2, 3). An example with 2 levels of missing
data (i.e., =R  1, 2), also known as uniform missing data (11), is
given in Figure 1A. In this example, the variables ( )L L,2 3 are
either missing or observed together for each subject, so that

=S S2 3. Since only =( )L L2 1 is observed for missing-data pat-
tern =R  2, byMAR assumption 1,

{ = | } = { = | }
= { = = = | }
= { = | } { = | = }

{ = | = = }
( )

R L R L
S S S L
S L S L S
S L S S

Pr 2 Pr 2
Pr 1, 0
Pr 1 Pr 0 , 1
Pr 0 , 1, 0 .

3

1

1 2 3 1

1 1 2 1 1

3 1 1 2
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By the uniform missing-data assumption, { = | } =S LPr 11 1
{ = | = = } =S L S SPr 0 , 1, 0 1,3 1 1 2 andwe can specify a para-

metric model—for instance, π ( γ) = { = | =L S L S; Pr 0 ,2 1 2 1 1
} =1 [−(γ + γ )]L1/exp .0 1 1 Note that (γ γ ),0 1 can be estimated
by fitting the logistic model among subjects with L1 observed,
that is, conditioning on the event =S 11 . The weights for IPW
can then be constructed as the inverse of π̂ = − π ( γ̂)L1 ;1 2 1 .
The uniform missing-data scenario arises in familiar settings,
such as in regression analysis where only outcome data may
not be fully observed.

When there are more than 2 levels of missingness, the miss-
ing data are said to be monotone if, for some ordering of the
variables in L, the kth variable is observed only if the k − 1th
variable was observed—that is, ≥−S Sk k1 . This missing-data
pattern occurs frequently in longitudinal studies if subjects
who drop out never reenter the study. For the example at hand,
a monotone missing-data pattern is shown in Figure 1B. In this
case, an analyst may decide to combine missing-data patterns

=R 2, 3 so that analysis can proceed in the same way as
described above for uniform missing data. However, doing so
will discard information from L2 observed in subjects with =R 3
for estimation of the missingness mechanism. Instead, the
missing-data model can be built up sequentially for each
missing-data pattern. By MAR assumption 1, π ( )L2 1 is still
given by equation 3, and

{ = | }
= { = | }
= { = = = | }
= { = | } { = | = }

{ = | = = } ( )

R L
R L L
S S S L L
S L L S L L S
S L L S S

Pr 3
Pr 3 ,
Pr 1, 0 ,
Pr 1 , Pr 1 , , 1
Pr 0 , , 1 , 4

1 2

1 2 3 1 2

1 1 2 2 1 2 1

3 1 2 1 2

where { = | } =S L LPr 1 , 11 1 2 under amonotonemissing-data pat-
tern. We may then wish to specify 2 separate logistic models for

{ = | = }S L L SPr 1 , , 12 1 2 1 and { = | = = }S L L S SPr 0 , , 13 1 2 1 2 ,
respectively. Note that the former can be fitted with only the
variable L1, while the latter can be fitted with ( )L L,1 2 among
subjects with both variables observed—that is, conditioning on
the event = =S S 11 2 . Therefore, π (⋅)3 remains a function of
( )L L,1 2 , and the weights can be constructed accordingly as the
inverse of π̂ = − π ( γ̂) − π ( γ̂)L L L1 ; , ;1 2 1 3 2 3 . We note that the

missingness models discussed so far are guaranteed to yield π̂1
which are constrained to the range ( )0, 1 , since the conditional
missingness probabilities are built up sequentially at the vari-
able level.

For settings withmore than 2 levels of missing-data patterns,
nonmonotone missingness is quite common in practice and
building coherent models for the conditional probabilities of
the various missing-data patterns is challenging even under
assumptions 1 and 2 (8). An example for nonmonotone miss-
ing data is given in Figure 1C. Suppose we proceed to model
the conditional probabilities for =R 2, 3 given in equations 3
and 4 as before. In both cases we need to fit a parametric model
for { = | = = }S L S SPr 0 , 1, 03 1 1 2 , since it is no longer neces-
sarily equal to 1 under nonmonotonemissing data but is a func-
tion dependent on L1. Nonetheless, it is clear that π (⋅)2 and
π (⋅)3 remain functions of L1 and ( )L L,1 2 , respectively. For

=R 4, byMAR assumption 1,

{ = | }
= { = | }
= { = = = | }
= { = | } { = | = }

{ = | = = } ( )

R L
R L L
S S S L L
S L L S L L S
S L L S S

Pr 4
Pr 4 ,
Pr 1, 0 ,
Pr 1 , Pr 0 , , 1
Pr 1 , , 1, 0 . 5

1 3

1 3 2 1 3

1 1 3 2 1 3 1

3 1 2 1 2

Two separate logistic models can be fitted for { = |S LPr 0 ,2 1
= }L S, 13 1 and { = | = = }S L L S SPr 1 , , 1, 03 1 2 1 2 ( { = |S LPr 1 ,1 1

} =L 13 still holds). However, it is clear that both models can
only be fittedwith L1, and therefore π ( ) = π ( )L L L,4 1 3 4 1 , which
is strictly stronger than what MAR assumption 1 entails. In
general, existing modeling strategies for uniform or monotone
missing-data mechanisms fail to span the entire MAR model
(8, 11), and the conditional probability for at least one of πm,

≤ ≤m1 2K , fails to incorporate all of the observed variables
in its pattern—that is, π ( ) = π ( * )( )L Lm m m , where * ⊂( ) ( )L Lm m .
The set of variables *( ) ( )L L\m m is ignored, although they may be
informative for the missingness mechanism.

As a remedy, Robins and Gill (12) proposed a large class of
models for the missing-data mechanism, which they called the
randomized monotone missingness processes, that are guaran-
teed to be MAR for a nonmonotone missing-data mechanism
without necessarily being MCAR. This class of models does

L1 L2 L3 L1 L2 L3 L1 L2 L3

Subject

R = 1

R = 2

A)

R = 1

R = 3

R = 2

R = 4

C)

R = 3

R = 1 

R = 2

B)

Figure 1. Schematic diagrams illustrating uniform (A), monotone (B), and nonmonotone (C) patterns of missing data. L1, L2, and L3 represent 3 vari-
ables in an example data set,R is the randomvariable encodingmissing-data patterns, and the hatched rectangles denote observed portions of the data.
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not span the space of all MAR models, and therefore it is
indeed possible to test whether the proposed class of models in-
cludes the true missing-data mechanism. However, estimation
of the missing-data mechanism within this class is complex
and computationally demanding, even for small-to-moderate
sample sizes and numbers of different missing-data patternsM,
and no software is currently available with which to implement
the approach, which has limited its widespread adoption. In
addition, a straightforward approach to modeling nonmono-
tonemissing-data pattern probabilities using polytomous logis-
tic regression can at most depend on the intersection of the sets
of observed variables ( )L m , = …m M2, 3, , (i.e., the completely
observed variables), where M distinct patterns are observed (12,
13). This is also referred to as the “stratifiedMAR assumption”
as discussed by Greenland and Finkle (14), and it is strictly
stronger than MAR assumption 1. This suggests that standard
polytomous regression is also ill-suited as a modeling strategy
for a nonmonotone missing-data process under MAR. A similar
problem with polytomous regression exists in the context of
modeling outcome heterogeneity in epidemiologic studies (15).

NONMONOTONEMISSING-DATAMODEL

We illustrate our approach using the example described above
for full data = ( )L L L L, ,1 2 3 and nonmonotone missing-data
patterns =R 1, 2, 3, 4, =( )L L2 1, = ( )( )L L L,3 1 2 , and =( )L 4
( )L L, .1 3 By MAR assumption 1, the conditional probability
for each missing-data pattern can be modeled separately as

{ = | } = π ( ) = ( )( )R m L L mPr , 2, 3. 6m m

We have that the probability of observing complete data is
given by

{ = | } = π ( ) = − π ( ) − π ( )
− π ( )

( )R L L L L L
L L

Pr 1 1 ,
, .

71 2 1 3 1 2

4 1 3

To ground ideas, we specify logistic models for each of the
missing-data patterns’ conditional probabilities in equation 7
directly as

{ }
{ }
{ }

[ ]
[ ]
[ ]

π ( γ ) = + −(γ + γ )

π ( γ ) = + −(γ + γ + γ )

π ( γ ) = + −(γ + γ + γ )
( )

−

−

−

L L

L L L L

L L L L

; 1 exp .

, ; 1 exp .

, ; 1 exp .

8

2 1 2 20 21 1
1

3 1 2 3 30 31 1 32 2
1

4 1 3 4 40 41 1 42 3
1

Whereas the conditional probability π4 is a function of only
L1 under model 5 (equation 5) as discussed above, π4 is explic-
itly a function of ( )L L,1 3 under model 8 (equation 8). There-
fore, missing-data model 8 fully incorporates the observed
variables in each missing-data pattern. Nonetheless, because
model 8 is not built up sequentially at the variable level, it
does not naturally impose the contraints required by assumption
2—that is, for each subject,

π ( ) = − π ( ) − π ( ) − π ( ) > σ ( )L L L L L L1 , , . 91 2 1 3 1 2 4 1 3

As a result, we define the estimator of γ which maximizes
the following observed data log-likelihood corresponding to
missing-data model 7 (equation 7),

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

∑ ∑

∑

ℓ (γ) = ( = ) π (γ )

+ ( = ) − π (γ )

( )= =

=

I R m

I R

log

 1 log 1 ,

10

N

i

N

m

i m m

i

k

k k

1 2

4

2

4

as the unconstrained maximum likelihood estimator (UMLE)
γ̂UMLE, since it does not impose constraint 9 (equation 9).While
straightforward to implement, it may be the case in practice that
directly maximizing the oberved data log-likelihood described
in equation 10 fails to converge if at least one of the fitted
π ( γ̂ )L;1 UMLE is near the boundary value 0 or 1. In principle, one
could attempt tomaximize equation 10 subject to the observable
constraints

( = ){π (γ ) + π (γ ) + π (γ )} < − σ
= …

( )
⁎I R

i N

1 1

for 1, 2, , ,
11i 2 2 3 3 4 4

where σ⁎ is a user-specified small positive constant. How-
ever, this is potentially computationally prohibitive, as there
are as many nonlinear constraints as the number of CC obser-
vations for each iteration of the optimization algorithm. As an
alternative, we have previously developed a constrained Bayes-
ian estimation (CBE) approachwhereby a standard prior distribu-
tion (γ)f for γ is combined with the log-likelihood function in
equation 10 to produce a posterior distribution proportional to

ℓ(γ) { (γ)} ( = ) {π (γ ) + π (γ )
+ π (γ ) < − σ } ( )⁎

f I R Iexp 1

1 , 12
N i 2 2 3 3

4 4

from which samples are drawn, and only draws that fall within
the constrained parameter space are retained (16). The CBE esti-
mator γ̂CBE is defined as the posterior median of samples drawn
from the posterior distribution described in equation 12. Parame-
ter values that fall within the resulting posterior credible intervals
of γ are guaranteed to satisfy constraint 11 (equation 11), which
is useful if one wishes to perform hypothesis testing to identify
significant predictors in the missing-data regression models. It is
straightforward to extend the method to handle more than the 4
levels of missing-data patterns given in the toy example above,
with themissing-data model described in equation 8.

A detailed description of the CBE approach used in analyzing
the CPP data sets, as well as the sample OpenBUGS code for its
implementation, are provided inWebAppendix 1 (available at
https://academic.oup.com/aje). For the CPP data sets, we describe
the 8 levels of nonmonotone missing-data patterns in Web
Table 1.

AUGMENTED IPW

Upon obtaining the UMLE (only when convergence can be
achieved) or CBE of γ, denoted as γ̂, we may proceed to con-
struct the CC weights π (γ̂)1/ 1 . In our example with full data

= ( )L L L L, ,1 2 3 , let L3 be the binary outcome of interest and
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( )L L,1 2 be 2 continuous explanatory variables, with 2 levels of
missingness: =R 1when full data are observed and =R 2
when only L1 is observed (Figure 1A). Assume the substantive
model to be

( = | β)
= { + [−(β + β + β )]}
= μ( β)

( )−
L L L

L L

L L

Pr 1 , ;

1 exp

, ; ,

13
3 1 2

0 1 1 2 2
1

1 2

and let ( β) = ( )μ( β)U L g L L L L; , , ;g 1 2 1 2 , where ( )g L L,1 2 is
a ×3 1 vector, for instance ( )L L1, , T

1 2 . The IPW estimator
of β is the solution to the estimating equation

∑ ( = )
π ( γ̂)

( β) = ( )−N
I R

L
U L

1

;
;   0. 14

i

N
i

i
g i

1

1

However, an important limitation of IPW is that it does not
directly make use of data from incomplete observations, except
in the estimation of γ. The efficiency of the IPW estimator can
be improved by incorporating persons with missing data via
augmentation of estimating equation 14 (6, 8). We emphasize
that this potential efficiency gain is achieved without relying
on a model for the full data beyond the substantive model of
primary interest, provided that (as we assume throughout)
the missingness model is correctly specified and therefore the
estimator of γ is consistent. For a given ( )g L L,1 2 , the class of
augmented IPW (AIPW) estimators of β are solutions to the
estimating equations

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

∑

ϕ

( = )
π ( γ̂)

( β)

+ ( = )
π ( γ̂)

− ( = )
π ( γ̂)

( ) = ( )

−N
I R

L
U L

I R

L

I R

L
L

1

;
;

1

;

2

;
0 15

i

N
i

i
g i

i

i

i

i
i

1

1

1 2 1,
1,

for an arbitrary choice of ×3 1 vectorϕ (⋅). In this example with
uniform missingness, the optimal choice of ϕ (⋅) in terms of effi-
ciency for fixed g(L1, L2), which we denote as ϕ (⋅)g

opt , has the

closed-form expression ϕ ( ) = π ( ) { ( β)| }L L E U L L;g g
opt

1 2 1 1 (6,
8, 17). However, the optimal functionϕ (⋅)g

opt is generally no lon-
ger available in closed forms for nonmonotone missing data (6,
8). We adopt a computationally more tractable approach previ-
ously described elsewhere (8, 13) to implement AIPW. Briefly,

the approach entails approximating ϕ (⋅)g
opt with finite sum of

basis functions. For instance, to approximate ϕ (⋅)( )Lg
opt

1 in
equation 15, we may construct the ×3 1 random vector
ϕ ( ) = ( )⁎

×L A L L L1, , , T
1 3 4 1 1

2
1
3 , where ×A3 4 is an arbitrary

×3 4 constant matrix. This choice of basis functions allows for
terms up to third-order terms in L1 to be incorporated into the
approximation. It is possible to estimate the unique ×A3 4
which gives the optimal efficiency. Similarly, we can also
approximate the optimal choice of (⋅)g in ( )U Lg by (⋅)⁎g .
Together, ϕ( (⋅) )⁎ ⁎g , yield an estimating equation the solution
to which (the AIPW estimator) is guaranteed to be more effi-
cient than the IPW estimator in equation 14. A detailed descrip-
tion of the AIPW method for the CPP data sets is included in
Web Appendix 2.

EMPIRICAL ILLUSTRATION

We applied the proposed IPW approach to fit a logistic regres-
sion for the risk of spontaneous abortion as a function ofmaternal
smoking behavior, bodymass index, age, and race in the 3 data
sets (1, 2, and 3) described in the companion paper (1). The
UMLE for the missing-data model failed to converge in data set
1; thus, only CBE estimates for maternal smoking from the pri-
mary regression model are shown in Table 1, which also sum-
marizes results for the complete-case (CC) logistic regression,
as well as for the more efficient AIPW approach. UMLE results
are also available for data sets 2 and 3 in Table 1, where conver-
gence was attained. In the CBE approach, estimates of the pa-
rameters in the missing-data model are obtained as the
median of the constrained posterior distribution with diffuse
priors γ ∼ ( )N 0,102 and σ =⁎ −10 8. Adaptive Gibbs sampling
was implemented through BRugs, the R interface to OpenBUGS
software (18). We assessed convergence by visually inspecting the
trace plots, as well as through the Gelman-Rubin convergence
statistic (19), and allowed an adaptive phase of ×2 104 iterations
followed by another ×2 104 iterations fromwhich samples were
included for estimation.

In data set 1, the point estimate for the association of smoking
with spontaneous abortion increases from −0.85 to 0.43 when
comparing CC analysis with IPW analysis (corresponding to
a change in the odds ratio from 0.43 to 1.54). The augmented
IPW estimate for the association of smoking with spontaneous
abortion is 0.34 (odds ratio = 1.40, 95% confidence interval:
1.00, 1.97) and is more efficient than IPW, as evidenced by
the standard errors. In fact, the estimated asymptotic relative

Table 1. Parameter Estimates (Log Odds Ratios) for the 3 Data Sets in a Logistic Regression Analysis of the Risk of Spontaneous Abortion
According to Maternal Smoking During Pregnancy, Collaborative Perinatal Project, 1959–1974a

Data Set
Complete-Case Analysis IPWAnalysis Augmented IPWAnalysis

AREb

Estimate (SE) 95%CI Estimate (SE) 95%CI Estimate (SE) 95%CI

1 −0.85 (0.40) −1.64,−0.07 0.43 (0.27) −0.10, 0.96 0.34 (0.17) 0.00, 0.68 0.41

2 0.33 (0.14) 0.06, 0.60 0.33 (0.14) 0.06, 0.60 0.35 (0.14) 0.09, 0.62 0.97

3 −0.07 (0.26) −0.59, 0.45 0.61 (0.23) 0.16, 1.06 0.45 (0.18) 0.09, 0.80 0.63

Abbreviations: ARE, asymptotic relative efficiency; CI, confidence interval; IPW, inverse-probability-weighted; SE, standard error.
a Data were obtained fromPerkins et al. (1).
b Estimated ARE of augmented IPW compared with IPW estimation based on the SE.
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efficiency, defined as the ratio of estimated variances, is 0.37 for
the effect of smoking behavior. The CC, IPW, and AIPW point
estimates in data set 2 are similar, with asymptotic relative effi-
ciencies ranging from 0.82 to 1.04 across the various covariates.
In data set 3, the point estimate for maternal smoking behavior
increases from −0.07 to 0.61 (change in odds ratio from 0.93 to
1.84) when comparing CC analysis with IPW analysis. The
AIPW estimate for smoking behavior is 0.45 (odds ratio = 1.57,
95% confidence interval: 1.09, 2.23) and is somewhat smaller
than the IPW estimate, with an asymptotic relative efficiency of
0.63. Thus, it appears that our IPW analysis of data set 2 provides
little evidence of bias due to missing data because weighted and
unweighted analyses yield similar point estimates, although IPW
and AIPW estimates are substantially more efficient. This also
suggests that the missing-data mechanism for data set 2 may in
fact be MCAR, although we cannot rule out MNAR. Results for
data sets 1 and 3 are somewhatmore sensitive to IPWadjustments
for missing data, suggesting that CC analyses may be subject to
selection bias due to missing data. However, it is essentially
impossible to know based solely on the observed data whether
the adjustment leads to bias reduction without having access to
the corresponding “full data” analysis, which is discussed in the
companion article (1), where the mechanism used to generate
missing data in each of the 3 data sets is also unveiled.

In principle, we expect IPW and AIPW analyses to be less
biased than CC analysis provided that the missing-data mech-
anism either is MCAR or is MAR with model 8 (equation 8)
correctly specified. However, IPW and AIPW can fail to be
consistent when the model for the missing-data mechanism
is incorrectly specified, even if the mechanism is MAR; the
missing-data model is typically misspecified when the mecha-
nism is MNAR. Table 2 summarizes results for the estimated
coefficients of the missing-data model in data set 1, clearly in-
dicating significant dependence of the model on the outcome
variable “abortion.” In contrast, Web Table 2 shows results for
estimation of the missing-data model in data set 2 and provides
no significant evidence that the missing-data mechanism depends
on the outcome. These latter results are consistent with the fact
that IPW and AIPW analyses yield results similar to those of CC
analysis in data set 2. Results for the fit of the missing-data model
in data set 3 are provided in Web Table 3. Similar to data set 1,
the results suggest significant dependence of the missing-data
mechanism on the outcome variable “abortion,” which is also
consistent with the fact that IPW and AIPW estimates of the
regression model for spontaneous abortion differ somewhat
from the unweighted CC estimates.

DISCUSSION

In this paper, we analyzed 3 CPP data sets using recently pro-
posed IPW methods for handling nonmonotone missing
data. After accounting for the missing values, the estimated
associations of maternal smoking with spontaneous abortion
were substantially different from those obtained in CC analyses
for data sets 1 and 3. We provided an overview of methods for
estimating amissing-data mechanism for use in IPW estimation
under MAR, in 3 common incomplete-data situations encoun-
tered in practice: a simple 2-level missing-data pattern, a more
general monotone missing-data pattern, and a nonmonotoneT
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missing-data pattern. The first two settings can be handled using
fairly standard statistical models for the missing-data process,
but the third requires some care to ensure that estimation is con-
ductedwithout inadvertently imposing amore stringent assump-
tion than intended about the nature of themissing data. To achieve
this latter goal, we described in considerable detail 2 methods for
modeling a nonmonotone missing-data pattern, UMLE and CBE.
While the former is appealing in its simplicity, it may fail to
converge in practice due to violation of certain model restric-
tions, for which the latter constrained Bayesian approach is
proposed as a remedy (13). The performance of the described
methods in analysis of the 3 CPP data sets with induced missing
values is discussed further in the companion paper (1), where
Perkins et al. describe the nature of missingness in each of the
3 CPP data sets, revealing which if any of the results are con-
sistent with the full data analysis, up to sampling variability.
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