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Abstract

Motivation: Results from genome-wide association studies (GWAS) suggest that a complex pheno-

type is often affected by many variants with small effects, known as ‘polygenicity’. Tens of thou-

sands of samples are often required to ensure statistical power of identifying these variants with

small effects. However, it is often the case that a research group can only get approval for the

access to individual-level genotype data with a limited sample size (e.g. a few hundreds or thou-

sands). Meanwhile, summary statistics generated using single-variant-based analysis are becom-

ing publicly available. The sample sizes associated with the summary statistics datasets are usually

quite large. How to make the most efficient use of existing abundant data resources largely re-

mains an open question.

Results: In this study, we propose a statistical approach, IGESS, to increasing statistical power of

identifying risk variants and improving accuracy of risk prediction by integrating individual level

genotype data and summary statistics. An efficient algorithm based on variational inference is de-

veloped to handle the genome-wide analysis. Through comprehensive simulation studies, we

demonstrated the advantages of IGESS over the methods which take either individual-level data or

summary statistics data as input. We applied IGESS to perform integrative analysis of Crohns

Disease from WTCCC and summary statistics from other studies. IGESS was able to significantly

increase the statistical power of identifying risk variants and improve the risk prediction accuracy

from 63.2% (60:4%) to 69.4% (60:1%) using about 240 000 variants.

Availability and implementation: The IGESS software is available at https://github.com/daviddaigi

thub/IGESS.

Contact: zbxu@xjtu.edu.cn or xwan@comp.hkbu.edu.hk or eeyang@hkbu.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As of October 2016, more than 29 000 single-nucleotide poly-

morphisms (SNPs) have been reported to be significantly (P-value

� 5:0� 10�8) associated with complex human phenotypes

(including quantitative traits and complex diseases) in about 2600

GWAS (see the GWAS Catalog database https://www.ebi.ac.uk/

gwas/) (Welter et al., 2014). However, these genome-wide signifi-

cant hits can only explain a small proportion of genetic contribution
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to complex human phenotypes. For example, 70–80% of variance

of human height can be attributed to genetic variations (i.e. herit-

ability of human height is about 70–80%) (Visscher et al., 2008)

while the GWAS hits of human height can only explain about 10%

of the variance (Allen et al., 2010, Wood et al., 2014). This is the so-

called ‘missing heritability’ problem (Manolio et al., 2009). Recent

progresses suggested that most of the heritability is not missing but

can be explained by many common SNPs with individually weak ef-

fects (Visscher et al., 2012; Yang et al., 2010). However, due to lim-

ited sample sizes, genetic variants with small effects do not achieve

the genome-wide statistical significance and thus the majority of

them remain undiscovered yet. Recently, world-wide researchers are

forming large genomic consortia, such as the Genetic Investigation

of ANthropometric Traits (GIANT) Consortium and the Wellcome

Trust Case Control Consortium (WTCCC), to collect samples and

analyze data.

Numerous GWAS data analysis methods (e.g. PLINK (Purcell

et al., 2007), BOOST (Wan et al., 2010) and GCTA (Yang et al.,

2011)) have recently been proposed. A detailed survey of these tools

can be found in Stephens and Balding (2009), Cantor et al. (2010)

and Pasaniuc and Price (2016). These methods could be roughly div-

ided into two categories: (i) individual-level data analysis and (ii)

summary data (mostly P-values or z-scores) analysis. Some popular

methods in the first category include penalized regression methods

(Liu et al., 2013; Wu et al., 2009) and Bayesian regression methods

(Carbonetto et al., 2012; Zhou et al., 2013). It is noteworthy that

linear mixed models (LMM) are gaining increasing interest in gen-

omic data analysis. Some popular LMM-based approaches include

GEMMA (Zhou and Stephens, 2012) and SKAT (Ionita-Laza et al.,

2013). In the absence of individual-level data, methods in the second

category play the major role. GSEA (Zhang et al., 2010) and

VEGAS (Liu et al., 2010) are the two well-known methods in this

category. Some recent approaches including CPASSOC (Zhu et al.,

2015), GPA (Chung et al., 2014), EPS (Liu et al., 2016) and LD-

score regression (Bulik-Sullivan et al., 2015), are able to incorporate

functional data, such as DNase I hypersensitive site (DHS) data and

expression quantitative trait loci (eQTL) data. Compared with the

methods in the first category, the methods in the second category

often have computational advantages but may be statistically less ef-

ficient because only summary statistics are used.

It may be more preferable for researchers to work with the

individual-level data as it retains more information than summary

statistics data. However, it is often hard for a research group to get

fully access to the individual-level data of large sample sizes. For in-

stance, a core research group from the GIANT consortium reported

that they could only access genotype data from about 44 000 indi-

viduals (Yang et al., 2015) while the total sample size is more than

250 000 for the consortium (Wood et al., 2014). In reality, access to

individual-level data is often quite restricted due to practical issues,

such as privacy protection issue and logistics in data transportation

and storage. On the contrary, summary statistics from GWAS are

widely available through many public gateways. Therefore, it is very

typical for a research group to get access to summary statistics from

hundreds of GWAS with a large sample size freely, but only have

limited sample size of individual-level data (usually a few hundreds

or thousands of samples at hand). A simple strategy in this situation

is to first obtain summary statistics from individual-level data and

then conduct some meta-analyses with the collected summary data.

But this strategy does not fully make use of the individual-level data,

leading to inefficient use of data at hand. How to make the most ef-

ficient use of existing data resources to pinpoint disease-associated

genetic variants with small effects is of great interest.

In this study, we propose a statistical approach, IGESS, to inte-

grating individual level genotype data and summary statistics for ex-

ploration of genetic architechture of complex phenotypes. An

efficient algorithm based on variational inference has been de-

veloped such that it is scale up to genome-wide analysis. Not only

does IGESS provide the posterior probability of association status

between each SNP and the given phenotype, but also offer the effect

size of each SNP for risk prediction. We conducted comprehensive

simulation studies to evaluate the performance of IGESS and then

applied it to Crohn’s disease (CD). The results demonstrate that

IGESS is able to integrate different types of data, gaining increased

power in identification of risk variants and improved accuracy of

risk prediction.

2 IGESS

2.1 Model
Given a phenotype, suppose we have an individual-level GWAS

dataset fy;Xg of N samples, where y 2 R
N is the vector of pheno-

typic values and X 2 R
N�M is the genotype matrix of M SNPs from

these samples. Without loss of generality, we assume both X and y

have been centered. In addition, we collect summary statistics, i.e.

P-values for this phenotype from K independent GWAS in matrix

P ¼ ½pjk� 2 R
M�K, where pjk corresponds to the P-value of the jth

SNP in the kth GWAS. First, we consider the following linear model

that links y to X,

y ¼ Xbþ e; (1)

where b ¼ ½b1; . . . ; bM�T is a vector of effect sizes, and e � Nð0;r2
e IÞ

is an independent noise term due to non-genetic factors. Under this

model, identification of risk variants is equivalent to identifying

nonzero entries in b. For this purpose, we introduce a binary vari-

able cj to indicate whether bj is zero or not. Assuming the spike and

slab prior (Mitchell and Beauchamp, 1988) for bj, we have

bjjcj; r
2
b �

N bjj0; r2
b

� �
if cj ¼ 1;

d0 bj

� �
if cj ¼ 0;

8>><>>: (2)

where N bjj0;r2
b

� �
denotes the Gaussian distribution with mean 0

and variance r2
b and d0 bj

� �
is the Dirac function centered at zero,

and cj is assumed to be drawn from the Bernoulli distribution

Bern cjjp
� �

,

cjjp � pcj 1� pð Þ1�cj : (3)

To incorporate information from summary statistics, we also con-

sider a two-groups model, i.e. the P-values of each study are

assumed to come from the mixture of null and non-null groups.

Since we are considering the same phenotype across multiple studies,

it is reasonable to assume the vector of association status c is the

same in these studies. This gives us the following model: The ob-

tained P-values from the kth GWAS are assumed to come from a

mixture distribution

pjkjcj; ak �
U 0; 1ð Þ if cj ¼ 0;

Beta pjkjak; 1
� �

if cj ¼ 1;

8<: (4)

where P-values from the null group follow the uniform distribution

U 0;1ð Þ, and P-values of the kth study from the non-null group fol-

low a beta distribution with parameter ak;1ð Þ, which captures the

pattern that P-values from the non-null group is closer to zero.
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Comprehensive experiment results provided in the Supplementary

Document demonstrate that the beta distribution is a good approxi-

mation of the P-value distribution under the alternative. Given cj,

we assume pj1; . . . ;pjK are independent. Thus, we have

Pr Pjcð Þ ¼
YM
j¼1

YK
k¼1

akpak�1
jk

 !cj

: (5)

Let h ¼ fp;r2
b; r

2
e ; ak;k ¼ 1 . . . Kg be the collection of model param-

eters. The probabilistic model can be written as

Pr y; P; b; cjX; hð Þ ¼ Pr yjX; b; hð ÞPr bjc; hð ÞPr cjhð ÞPr Pjc; hð Þ: (6)

Our goal is to first obtain bh (the estimate of h) by maximizing the

marginal likelihood (known as type II maximum likelihood estimate

or Empirical Bayes estimate)

Pr y; PjX; hð Þ ¼
X

c

ð
b

Pr y; P; b; cjX; hð Þdb; (7)

and then compute the posterior

Pr b; cjy;X;P;bh� �
¼

Pr y;P; b; cjX;bh� �
Pr y; PjX;bh� � : (8)

The above IGESS model was developed with quantitative traits fol-

lowing a Gaussian distribution. Although it can be extended to han-

dle case-control studies using the logit or probit link function, the

performance has very minor difference from the Gaussian assump-

tion as long as the sample size is moderate (e.g. a few hundreds) but

the computational cost is much more expensive. In fact, direct appli-

cation of linear models to the analysis of case-control GWAS data-

sets has been justified in Kang et al. (2010). Therefore, we focus on

the Gaussian assumption in this paper. Results from both simulation

study and real data analysis suggest that linear models (Gaussian as-

sumption) can often provide satisfactory performance on risk vari-

ant identification and risk prediction in case-control studies when

the population structure is not very complex (see comprehensive re-

sults in the Supplementary Document).

2.2 Algorithm
The challenge is that the exact evaluation of (7) is intractable. To over-

come this difficulty, we derive an efficient algorithm based on vari-

ational inference (Bishop, 2006). Before we describe the algorithm, we

first reparameterize our model to get rid of the Dirac function such that

we can have an easier derivation. Let ~bj be a Gaussian variable with

N ~bjj0;r2
b

� �
, and cj be a Bernoulli variable with Bern cjjp

� �
, respect-

ively. Their product ~bjcj has the exact the same distribution as bj in (2).

With this reparameterization, the joint model (6) becomes

Pr y;P; ~b; cjX; h
� �

¼ Pr yjX; ~b; c; h
� �

Pr ~b; h
� �

Pr cjhð ÞPr Pjc; hð Þ; (9)

where

Pr yjX; ~b; c; h
� �

¼ N yj
P

j xj
~bjcj; r

2
e I

� �
;

Pr ~b; h
� �

¼
YM

j

N ~bjj0;r2
b

� �
;

Pr cjhð Þ ¼
YM

j

pcj 1� pð Þ1�cj ;

Pr Pjc; hð Þ ¼
YM

j

YK
k

akpak�1
jk Þ

cj

:

 
(10)

Clearly, the Dirac function is not involved and the prior of ~bj does

not depend on cj anymore. Next, we apply variational approxima-

tion to Pr y;P; ~b; cjX; h
� �

. Let q ~b; c
� �

be an approximated distribu-

tion of the posterior Pr ~b; cjy;X; P; h
� �

. Then we have a lower bound

of the logarithm of the marginal likelihood

log Pr y; PjX; hð Þ

¼ log
P

c

Ð
~bPr y; P; ~b; cjh
� �

d~b

�
P

c

Ð
~bq ~b; c
� �

log
Pr y; P; ~b; cjX; h
� �

q ~b; c
� � d~b

¼ Eq log Pr y; P; ~b; cjX; h
� �

� log q ~b; c
� �� �

:¼ ‘ qð Þ;

(11)

where the inequality follows Jensen’s inequality and the equality

holds if and only if q ~b; c
� �

is the true posterior Pr ~b; cjy;P;X; h
� �

.

Instead of working with the marginal likelihood, we can iteratively

maximize ‘ qð Þ. To make it feasible to evaluate this lower bound, we

use mean-field method (Bishop, 2006), assuming that q ~b; c
� �

can be

factorized as

q ~b; c
� �

¼
YM
j¼1

qj
~bj; cj

� �
: (12)

This is the only assumption we made in variational approximation.

According to the nice property of factorized distributions in variational

inference (Bishop, 2006), we can obtain the best approximation as

log qj
~bj; cj

� �
¼ Ei 6¼j log Pr y;P; ~b; cjX; h

� �� �
þ const ; (13)

where the expectation is taken with respect to all of the other factors

qi
~bi; ci

� �n o
for i 6¼ j. After some derivations (refer to Section 1.1 of

the Supplementary Document), we have

qj
~bj; cj

� �
¼ pjN ~bjjlj; s

2
j

� �h icj

1� pj

� �
N ~bjj0;r2

b

� �h i1�cj

; (14)

where

s2
j ¼

r2
e

xT
j xj þ r2

e

r2
b

;

lj ¼
xT

j y�
P

i 6¼j E ci
~bi

h i
xT

j xi

xT
j xj þ r2

e

r2
b

; (15)

and

pj ¼
1

1þ exp �wj

� � ;
wj ¼ log

p
1� p

þ 1

2
log

s2
j

r2
b

þ
l2

j

2s2
j

þ
XK

k¼1

log akpak�1
jk

� �
: (16)

Since q ~b; c
� �

is an approximation to the true posterior, the above re-

sult (14) can be interpreted as follows. Here pj can be viewed as an

approximation of Pr cj ¼ 1jy;X; P; h
� �

. As we can see, the posterior

of cj ¼ 1 is affected by its prior and the evidence from both

individual-level data and P-values. When SNP j is irrelevant to the

phenotype (cj ¼ 0), the approximated posterior of ~bj remains the

same as its prior, i.e. ~bj � N ~bjj0;r2
b

� �
. When SNP j is relevant, its

posterior changes accordingly as ~bj � N ~bjjlj; s
2
j

� �
.
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With qj
~bj; cj

� �
given in (14), we can evaluate the lower bound

analytically

L qð Þ ¼ Eq log Pr y; ~b; c; PjX; h
� �� �

� Eq log q ~b; c
� �h i

¼ �N

2
log r2

e �
jjy�

PM
j¼1 pjljxjjj2

2r2
e

� 1

2r2
e

XM
j¼1

pj s2
j þ l2

j

� �
� pjlj

� �2
� 	

xT
j xj

� 1

2r2
b

XM
j¼1

pj l2
j þ s2

j

� �
þ 1� pj

� �
r2

b

h i

þ
XM
j¼1

pj log
p
pj


 �
þ
XM
j¼1

1� pj

� �
log

1� p
1� pj


 �

þ
XM
j¼1

pj

XK

k¼1

log akpak�1
jk

� �
þ
XM
j¼1

1

2
pj log

s2
j

r2
b

þConst :

Therefore, model parameters in h can be updated by solving @‘
@h ¼ 0

as

p ¼
P

j pj

M
; r2

b ¼
P

j pj l2
j þ s2

j

� �
P

j pj
; ak ¼

PM
j¼1 pjPM

j¼1 pj �log pjk

� � ;

r2
e ¼
jjy�

PM
j¼1 pjljxjjj2 þ

PM
j¼1 pj s2

j þ l2
j

� �
� pjlj

� �2

 �

xT
j xj

N
:

In summary, our algorithm can be viewed as a variational

expectation-maximization (EM) algorithm. In the expectation step,

we evaluate the expectation w.r.t. the distribution q to obtain the

lower bound ‘ qð Þ given in (11). In the maximization step, we maxi-

mize current ‘ qð Þ w.r.t. model parameters in h. Hence, the lower

bound increases in each EM iteration and the convergence of the

proposed algorithm is guaranteed. Alternatively, the variational EM

algorithm can be considered as a deterministic approximation to a

Monte-Carlo EM algorithm which is a golden standard for statis-

tical inference. We have provided detailed discussions about their

connection in the Supplementary Document.

2.3 Identification of risk variants and risk prediction
After the convergence of the algorithm, we extract information from

our model for identification of risk variants and risk prediction.

Since pj given in (16) is an approximation to the true posterior Pr

cj ¼ 1jy; P;X; h
� �

of SNP j, we use fdrj ¼ 1� pj as an approxima-

tion of the local false discovery rate (FDR) of SNP j (Efron, 2010)

and thus SNP j will be considered as a risk variant if fdrj is close to

0, e.g. fdrj � 0:05.

Besides identification of risk variants, we are also interested in

risk prediction. Based on the reparameterized model, the effect size

of SNP j is given as E cj
~bj

� �
¼ pjlj. Given a genotype vector ~x

¼ ~x1; . . . ; ~xM½ �T of an individual, the predicted phenotypic value will

be by ¼ c0 þ
P

j ~xj � cj

� �
pjlj, where c0 and c1; . . . ; cp are the mean of

the phenotype and each SNP before centering, respectively. For

case-control study, by should only be interpreted as the relative risk

score rather than the absolute risk score (Chatterjee et al., 2016).

2.4 Selection of informative studies from summary

statistics data
As given in Equations (2–4), we assume variant j has the same asso-

ciation status (denoted as cj) across all studies. This assumption is

reasonable when all the studies are conducted for the same pheno-

type in the same population. However, this assumption may be vio-

lated if GWAS are conducted in different populations. Here we

propose a forward stepwise procedure to select informative studies

from summary statistics data. We use prediction accuracy by cross-

validation as the criterion to select summary statistics from relevant

study. Precisely, the prediction accuracy is measured by correlation

between predicted values and observed values in quantitative trait

studies or the area under the receiver operating characteristic (ROC)

curve (AUC) in case-control studies. In forward stepwise selection,

IGESS tries to add one summary-statistic data at a time and picks

the summary-statistic dataset which maximizes prediction accuracy.

If prediction accuracy gets worse when a summary-statistic data is

incorporated, IGESS will automatically exclude this study in the fol-

lowing steps. More specifically, we start with individual level data

fX; yg to have a baseline model. Then we try to add each column of

P to the baseline model to check the model performance and select

the best one into the model. We keep adding the columns of P in

such a way until all relevant columns have been included in the

model. The cross-validation is used to determine the right model.

2.5 Computational cost of the variational EM algorithm
Regarding the computational time of IGESS, here we report the

CPU time for 100 iterations with different sample size N and dif-

ferent number of SNPs M in Figure 1. All the timings were carried

out on a notebook with a configuration of 2.6 GHz Intel Core i7

and 16G memory. The computational time is nearly linear with re-

spect to N and M. In real data analysis, the total number of iter-

ations depends on the strength of the GWAS signal. The stronger

the GWAS signal, the faster the algorithm converges. IGESS often

takes less than twenty minutes to handle a GWAS dataset with

thousands of samples and hundreds of thousands of SNPs. The R

package of IGESS is available at https://github.com/daviddaigi

thub/IGESS.

3 Results

3.1 Simulation
In this section, we describe how to evaluate the performance of

IGESS in simulation studies. We first evaluated its performance on

identification of risk variants, in comparison with Lasso (Tibshirani,

1996) and BVSR (Carbonetto et al., 2012) which only take

individual-level data as input, as well as P-value-based ranking and

CPASSOC (Zhu et al., 2015) which only use summary statistics

(specifically, z-scores). After that, we evaluated its accuracy on risk

prediction, where the performance of BVSR (Carbonetto et al.,

2012) and Lasso (Friedman et al., 2010; Tibshirani, 1996) served as

a reference because they only use individual-level data.

Fig. 1. Timing (CPU seconds) with respect to different sample size N and different

number of SNPs M (Color version of this figure is available at Bioinformatics online.)
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3.1.1 Simulation settings

The simulation datasets were generated as follows. For the individual-

level dataset, the genotype matrix X was first simulated from normal

distribution, where autoregressive correlation qjj�j0j was set to mimic

the linkage disequilibrium between variants j and j0. Next, the entries

in X were discretized to genotype codes {0, 1, 2} according to the

Hardy-Weinberg principle based on the minor allele frequencies

drawn from U 0:05; 0:5½ �. The number of samples and the number of

variants were set to be N¼2000 and M¼10000, respectively. To

simulate the vector of effect sizes b, we randomly chose 500 nonzero

entries and simulated their values from N(0, 1). Accordingly, the asso-

ciation status was recorded in c. Since heritability is defined as

h ¼ Var Xbð Þ
Var Xbð Þþr2

e
, the noise level was specified according to the pre-

specified heritability at f0:3;0:5;0:8g.
To simulate summary statistics, we did not adopt the generative

model (4) but obtain them from the individual-level data. This helps

us to evaluate whether the Beta distribution can model the P-values

from the non-null group. We considered two scenarios to simulate

the positions of nonzero entries. In the first scenario, the vector of

association status c kð Þ of the kth study was set to be the same as c,

for k ¼ 1; . . . ;K. Clearly, this setting is favorable to our model as all

studies share the same sets of associated risk variants. In the second

scenario, c kð Þ was allowed to be different from c. To do so, we varied

the conditional probability uk ¼ Pr c
kð Þ

j ¼ 1jcj ¼ 1
� �

at f0:05; 0:1;

0:3; 0:5; 0:7; 0:9; 1g. In such a way, c kð Þ was simulated and the cor-

responding nonzero entries of b kð Þ were simulated from N(0, 1). The

assumption of IGESS is violated in this scenario. For each study k,

we first used the above steps to generate genotype matrix X kð Þ and

phenotype data y kð Þ, then we conducted univariate linear regression

to get summary statistics (z-score and P-value) for each SNP across

K studies.

For IGESS, both the individual-level data fX; yg and the P-value

matrix P were used, where fX kð Þ; y kð Þg were pretended to be unavail-

able. For BVSR and the Lasso, only the individual level dataset fX; y
g was used and their performance could serve as a reference. For

CPASSOC, an M� 1þKð Þ matrix Z containing the z-scores from

fX; yg and the z-scores from K studies was used as its input.

3.1.2 Results

To evaluate the performance of risk variant identification, we

adopted the area under the receiver operating characteristic (ROC)

curve (AUC). We started with the results evaluated in the first scen-

ario where c kð Þ ¼ c for k ¼ 1; 2; . . . ;K. Figure 2 shows the compari-

son results of IGESS, BVSR, CPASSOC, Lasso and P-value-based

ranking for autoregressive correlation q ¼ 0:6 and K¼1, 2, 6. The

results for other parameter settings, e.g. q ¼ 0; 0:3, are given in the

Supplementary Document. Here the results of BVSR, Lasso and

P-value-based ranking only serve as a reference since they only used

fX; yg as input. In the left panel, the AUC of both IGESS and

CPASSOC steadily increases as the number of summary statistics

datasets K increases. IGESS has similar performance with CPASSOC

when heritability is moderate (h¼0.5) and outperforms CPASSOC

when the heritability is high (h¼0.8). We have observed that

CPASSOC is slightly better than IGESS in terms of AUC when herit-

ability is very small (e.g. h¼0.3). A closer examination reveals that

both methods have nearly zero power with the nominal FDR con-

trolled at 0.1. This implies that the slightly better AUC of CPASSOC

is due to the ranking results of risk variants with a larger false posi-

tive rate which is not of interest in practice (see more results in the

Supplementary Document). Because the top findings with small false

positive rate (FPR) are of more interest, the ROC curves of the three

methods with FPR<0.1 are provided in the Supplementary

Document. To see the benefits of integrating individual-level data

with summary statistics in risk predication, we evaluated prediction

accuracy of IGESS, where the performance of BVSR and Lasso can

serve as a reference. The right panel of Figure 2 shows the perform-

ance of the three methods, indicating that prediction accuracy can

be steadily improved by incorporating summary statistics.

Next, we investigated the performance of IGESS in the second

scenario. We simulated P-values from K¼7 studies, where

uk ¼ Pr c kð Þ
j ¼ 1jcj ¼ 1

� �
2 f0:05; 0:1; 0:3; 0:5; 0:7; 0:9; 1g. Note

that uk also indicates the proportion of nonzero effect sizes shared

between the study with individual-level data and each study with

summary statistics. The stepwise strategy (Section 2.4) was used to

select relevant studies. Figure 3 shows performance of risk variant

identification (measured by AUC in the left panel) and prediction ac-

curacy (measured by the correlation between the observed values

and predicted values in the right panel) during the stepwise process.

At the first step, the stepwise strategy attempted to combine

individual-level data fX; yg with P-values from each study. The first

subplot of the left panel shows that the performance of risk vari-

ant identification degrades when the P-values from studies with

uk 2 f0:05;0:1;0:3g are incorporated and the performance starts to

be improved from uk ¼ 0:5. Since IGESS adopts the forward step-

wise strategy, it will select the study which offers the best improve-

ment of the prediction performance at each step and keep adding P-

values from remaining studies, as indicated by s ¼ 1; . . . ; 7. As we

can see clearly, the performance of IGESS improves steadily until ir-

relevant or nearly irrelevant studies included (s¼5). The similar pat-

tern has been observed for the performance of prediction accuracy,

Fig. 2. Comparison of IGESS, BVSR, CPASSOC, Lasso and P-value-based ranking with different heritability h, and different number of GWAS studies K. Left panel:

Performance of risk variant identification measured by AUC. Right panel: Performance of risk prediction measured by correlation between the observed pheno-

type values and the predicted values. The autoregressive correlation q ¼ 0:6 and the number of summary statistics datasets k ¼ 1, 2 and 6. All the results are sum-

marized based on 50 replications (Color version of this figure is available at Bioinformatics online.)
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as shown in the right panel of Figure 3. In summary, it is clear that

the performance improvement of IGESS does not require uk¼1,

suggesting that IGESS is robust to the noise in the P-value dataset.

3.2 Real data analysis
We applied IGESS to analyze GWAS data of Crohn’s disease (CD).

The individual-level data is from the Welcome Trust Case Control

Consortium (WTCCC) (Burton et al., 2007). There are 5009 sam-

ples, of which 2005 are cases and 3004 are controls. The summary

data of Crohn’s Disease is from Franke et al. (2010), comprised of

the P-values of six GWAS in total.

3.2.1 Quality control on the individual-level data

We performed strict quality control on the individual-level data

from WTCCC using PLINK(Purcell et al., 2007) and GCTA (Yang

et al., 2011). First, we removed individuals with > 2% missing

genotypes. For the case of CD and the two control datasets, we

removed SNPs with minor allele frequencies < 0:05 and SNPs with

missing rate > 1%. Then we combined the case sets of CD and the

two control sets into case/control studies. SNPs with P-value<0.001

in Hardy-Weinberg equilibrium test were removed. Pairs of subjects

with estimated relatedness > 0:025% were identified and one mem-

ber of these pairs was removed at random by GCTA (Yang et al.,

2011). After quality control, we had a dataset including 1656 cases

and 2880 controls, each with 308 950 SNPs.

3.2.2 Summary-statistic data for CD

Besides the WTCCC data, Franke et al. (2010) provided sum-

mary statistics of CD. The samples were from Germany, Cedars-

Sinai Medical Center (Los Angeles, California, USA), the

Children’s Hospital of Philadelphia, Scotland, Toronto and Italy

Crohn’s and Colitis in Childhood Study consortium (of early

onset cases), and the National Institute of Diabetes and Digestive

and Kidney Disease (NIDDK) and Belgian-French Studies.

According to Franke et al. (2010), the samples from the Cedars-

Sinai Medical Center were divided into two studies (Cedar1 and

Cedar2) and the samples from NIDDK were divided into the

Jewish study (NiddkJ) and the non-Jewish study (NiddkNJ).

After extracting overlapped SNPs of individual-level data (after

quality control) and summary statistics, we had the individual-

level data fXgN�M; yN�1 and P 2 R
M�K for the analysis, where

N¼4536, M¼248 409 and K¼7.

3.2.3 Analysis result of Crohn’s disease

We first applied IGESS to analyze the WTCCC data only and then

incorporated P-values from each of the seven studies. The results are

summarized in Table 1, where the number of GWAS hits is reported

based on fdr � 0:05. The locations of those GWAS hits in the

genome are shown in the Manhattan plots in Figure 4. As a refer-

ence, the analysis result of Lasso is also reported in Table 1. Clearly,

the P-values from the Early Onset dataset offers most relevant infor-

mation, improving prediction accuracy (measured by AUC) from

63.28% (6 0.37%) to 68.62% (6 0.36%). Meanwhile, we also ob-

serve that the incorporation of P-values from the Belge and Cedar2

studies degraded the performance. This is because the P-values from

these two studies are inflated, as pointed out in Franke et al. (2010).

Therefore, IGESS would not consider the P-values from the Belge

and Cedar2 studies in the selection process. As the P-values from the

remaining studies been selected in the stepwise manner, the predic-

tion accuracy of IGESS keeps increasing until 69.4% (60:1%), as

shown in Figure 5. The complete list of GWAS hits (fdr � 0:05)

and their corresponding genes are provided in the Supplementary

Document.

At last, we demonstrated the benefit of using IGESS with differ-

ent sample sizes of the individual-level data. To do so, we randomly

partitioned the WTCCC data (N¼4536) into five folds of nearly

equal sample size. We used IGESS to integrate the P-values from the

Early Onset study with individual-level data of different sample

sizes. Specifically, we used the first k ¼ 1; 2;3;4 folds of the

WTCCC data as the training data (with sample size N¼908,

N¼1815, N¼2722 and N¼3629, respectively) and the fifth fold

as the testing data. The prediction accuracies of different sample

sizes are shown in Figure 6. As we can see here, a more noticeable

improvement in prediction can be achieved when the sample size of

the individual-level data is smaller. For example, when N¼908, the

prediction accuracy is improved by 8.7% from 55:6% 62:8%ð Þ to

64:3% 61:9%ð Þ. This result suggests that more benefits can be

gained by integrating summary statistics when the sample size of in-

dividual level data is small.

Fig. 3. Performance evaluation in presence of irrelevant studies. Left panels: Performance of risk variant identification measured by AUC. Right panels:

Performance of risk prediction measured by correlation between the observed phenotype values and the predicted values. In all panels, fX; yg in the x-axis indi-

cates the performance of individual-level data only, q corresponds to the performance of integrating the individual-level data with P-values from a study simu-

lated using parameter uk ¼ PrðcðkÞj ¼ 1jcj ¼ 1Þ 2 f0:05; 0:1; 0:3; 0:5; 0:7; 0:9; 1g, and s indicates the stepwise performance achieved at the s-step

Table 1. Summary of IGESS analysis result on Crohn’s disease

Data No. of hitsa Prediction accuracy (AUC)

WTCCC only (BVSR) 7 63.2% 6 0.4%

WTCCC only (Lasso) 227b 63.5% 6 0.5%

WTCCCþBelge 10 62.1% 6 0.6%

WTCCCþCedar1 2 64.3% 6 0.5%

WTCCCþCedar2 17 61.9% 6 0.7%

WTCCCþEarly Onset 120 68.6% 6 0.3%

WTCCCþGerman 10 65.4% 6 0.3%

WTCCCþNiddkJ 7 64.1% 6 0.4%

WTCCCþNiddkNJ 3 64.3% 6 0.5%

aThe number of GWAS hits is reported based on estimated fdr � 0:05.
bFor Lasso, we reported the number of nonzero coefficients with regular-

ization parameter selected by cross-validation using R package ‘glmnet’

(Friedman et al., 2010).
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4 Conclusion

It is often difficult to get approval of accessing individual-level data

of a large sample size. In contrast, the summary statistics of many

GWAS have been widely available via public gateway. The integra-

tion of individual-level data and summary statistics is a promising

direction to address the challenges raised by the polygenicity of com-

plex phenotypes. There is a great demanding of the methods and

tools that can help researchers to mine scientific evidence hidden in

the rich data resources. In this paper, we propose a statistical ap-

proach, IGESS, to integrating data from both the individual-level

and the summary level. The variational EM algorithm is shown to

be scalable to handle genome-wide data in minutes. The results from

comprehensive simulations suggest the advantages of IGESS and the

real data analysis of Crohn’s disease indicates the applicability of

IGESS in practice. We believe that IGESS can serve as an effective

tool in integrating individual-level data and summary statistics for

more powerful genetic analysis.
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