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There have been recent proposals advocating the use of additive gene-environment interaction instead of thewidely
used multiplicative scale, as a more relevant public health measure. Using gene-environment independence en-
hances statistical power for testing multiplicative interaction in case-control studies. However, under departure from
this assumption, substantial bias in the estimates and inflated type I error in the corresponding tests can occur. In this
paper, we extend the empirical Bayes (EB) approach previously developed for multiplicative interaction, which trades
off between bias and efficiency in a data-adaptive way, to the additive scale. An EB estimator of the relative excess
risk due to interaction is derived, and the correspondingWald test is proposed with a general regression setting under
a retrospective likelihood framework. We study the impact of gene-environment association on the resultant test with
case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence
assumption in a data-adaptive way and provides a gain in power comparedwith the standard logistic regression analy-
sis and better control of type I error when compared with the analysis assuming gene-environment independence. We
illustrate themethods with data from theOvarian Cancer Association Consortium.

bias-variance tradeoff; effect modification; empirical Bayes estimation; genetic risk score; relative excess risk;
shrinkage

Abbreviations: CI, confidence interval; CML, constrained maximum likelihood; EB, empirical Bayes; GRS, genetic risk score; LRT,
likelihood ratio test; MLE, maximum likelihood estimate; OCP, oral contraceptive pill; RERI, relative excess risk due to interaction;
SNP, single nucleotide polymorphism; UML, unconstrainedmaximum likelihood; WGRS, weighted genetic risk score.

There has been increasing interest in searching for gene ×
environment (G × E) interaction in the post–genome-wide
association studies era, with limited success (1–5). A number
of methods have been proposed for efficient searching forG× E
effects that use the gene-environment independence assump-
tion (2, 6–10). Almost all of these studies have focused on testing/
estimation of multiplicative interaction, perhaps due to the fact
that standard logistic regression is the most commonly used tool

for analyzing case-control data (11–13). However, it has been
suggested in the literature that additive interaction is a more rel-
evant public health measure (3, 14, 15). If an environmental
exposure, say E, can potentially be modified via an interven-
tion, the additive G × E interaction measure can quantify the
differences in the number of cases prevented if the intervention
was offered in a prioritized way, across strata defined by genetic
risk. This characterization helps with policy questions when
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there is limited access to an intervention. Moreover, the additive
measure of interaction corresponds more closely to the notion of
mechanistic or causal measures of interaction (16, 17).

Although this is not commonly recognized, it is possible to
test for additive interaction in a logistic regression model using
case-control data. While a direct estimate of additive interac-
tion on a risk difference scale cannot be obtained from case-
control data, an alternative parameter, the relative excess risk
due to interaction (RERI), can be represented in terms of rela-
tive risks. Assuming that the disease is rare, relative risks can
be approximated by corresponding odds ratios, and thus the
RERI can be viewed as a function of both main effects and
multiplicative interaction parameters in a logistic regression
model. The standard delta theorem can be applied to provide
asymptotic variance, and subsequently a Wald test for the null
hypothesis RERI = 0 can be conducted (18–20). The fact that
RERI = 0 if and only if the additive null hypothesis holds pro-
vides us with a way to test for interaction on the additive scale
by testing H0: RERI = 0. More recently, Han et al. (21) devel-
oped a likelihood ratio test (LRT) for H0: RERI = 0, applying
the retrospective likelihood framework proposed by Chatterjee
and Carroll (22) that permits incorporation of the G-E indepen-
dence assumption and leads to a more powerful test than the
previously proposed Wald test, in modest sample sizes, for
both the unconstrained and constrained maximum likelihood
methods. However, it is not clear how to extend the LRT in an
empirical Bayes-type adaptive framework, and thus we pro-
ceeded with combining estimates of RERI instead of deriving
a combination LRT.

In this paper, we first consider the binary G, E scenario to
illustrate our method for testing additive interaction in case-
control studies. We provide closed-form expressions of the
maximum likelihood estimates (MLEs) and theWald test of the
RERI parameter while assuming gene-environment indepen-
dence (constrained MLE) and not assuming gene-environment
independence (unconstrainedMLE).We then extend the empir-
ical Bayes-type shrinkage approach for multiplicative G × E
interaction proposed by Mukherjee and Chatterjee (6) to esti-
mate RERI and test for additive interaction. An adaptively
weighted estimator of RERI that combines the constrained and
unconstrained estimators is proposed to trade off between bias
and efficiency. Finally, we extend the method to handle a
completely general regression setting using the retrospective
profile likelihood-based framework in Chatterjee and Carroll
(22). We conduct a simulation study to compare the perfor-
mance of various tests and illustrate our method by applying
it to study of the interaction between use of oral contracep-
tive pills (OCPs) and previously identified genetic factors in
a large consortium of case-control studies of ovarian cancer.

METHODS

We first consider a simple setup of an unmatched case-
control study with a dichotomous genetic factor G and a
dichotomous environmental exposure E. Let E = 1 (E = 0)
denote an exposed (unexposed) individual and G = 1 (G = 0)
denote whether an individual is a carrier (noncarrier) of the sus-
ceptible genetic marker. LetD denote disease status, where
D = 1 (D = 0) stands for an affected (unaffected) individual.

Let N0 and N1 be the numbers of selected controls and cases,
respectively. The data can be represented in the form of a 2 × 4
table as displayed in Web Appendix 1 (available at https://
academic.oup.com/aje).

Let = ( )r r r r r, , ,0 01 02 03 04 and = ( )r r r r r, , ,1 11 12 13 14 de-
note the vectors of observed cell frequencies in the controls
and the cases, respectively. Let = +r r rG 03 04 denote the fre-
quency of G = 1 and = +r r rE 02 04 denote the frequency of
E = 1 among controls. Let = ( )p p p p p, , ,0 01 02 03 04 and

= ( )p p p p p, , ,1 11 12 13 14 denote the true population param-
eters of the cell probabilities corresponding to a particular
G-E configuration in the underlying control and case popula-
tions, respectively. Let = +p p pG 03 04 denote the marginal
prevalence of G = 1 among controls and = +p p pE 02 04
denote the marginal prevalence of E = 1 among controls. The
observed vectors of the cell counts can be viewed as random
draws from 2 independent multinomial distributions in con-
trols and cases, respectively, namely r0 ~ multinomial (N0, p0)
and r1 ~ multinomial (N1, p1).

Let us introduce the following notation for the key param-
eters of interest. Let

= ( = | = = )
( = | = = )

( = | = = )
( = | = = )

=

P D E G

P D E G

P D E G

P D E G
p p p p

OR
1 1, 0

0 1, 0
/

1 0, 0

0 0, 0
/

E

01 12 02 11

denote the odds ratio (OR) associated with E for nonsuscepti-
ble individuals (G = 0),

= ( = | = = )
( = | = = )

( = | = = )
( = | = = )

=

P D G E

P D G E

P D G E

P D G E
p p p p

OR
1 1, 0

0 1, 0
/

1 0, 0

0 0, 0
/

G

01 13 03 11

denote the odds ratio associated withG for unexposed indivi-
duals (E = 0), and

= ( = | = = )
( = | = = )

( = | = = )
( = | = = )

=

P D E G

P D E G

P D E G

P D E G
p p p p

OR
1 1, 1

0 1, 1
/

1 0, 0

0 0, 0
/

GE

01 14 04 11

denote the joint odds ratio associated with the subgroup G = 1
and E = 1 compared with the reference group of G = 0 and
E= 0. The multiplicative interaction parameterψ is defined as

ψ = = =
( )

(θ )
p p p p

p p p p

p p p pOR

OR OR exp
,GE

G E GE

02 03 11 14

01 04 12 13

11 14 12 13

where

θ =
p p

p p
log .GE

01 04

02 03

The parameter θGE represents the log odds ratio betweenG and
E among the controls, characterizing the gene-environment
association. On the additive scale, the measure of interaction
is defined as
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= [ ( = | = = )
− ( = | = = )]
− [ ( = | = = )
− ( = | = = )]
− [ ( = | = = )
− ( = | = = )]

= ( = | = = )
− ( = | = = )
− ( = | = = )
+ ( = | = = ) ( )

p P D E G

P D E G
P D E G

P D E G
P D E G

P D E G
P D E G

P D E G
P D E G
P D E G

1 1, 1

1 0, 0
1 1, 0

1 0, 0
1 0, 1

1 0, 0
1 1, 1

1 1, 0
1 0, 1
1 0, 0 . 1

additive

Dividing equation 1 throughout by ( = | = = )P D E G1 0, 0 ,
we obtain a new measure, the RERI:

= − − + ( )RERI RR RR RR 1. 2GE G ERR

When the disease is rare, the odds ratio approximates the rel-
ative risk (RR). Hence, we have

≈ − − + ( )RERI OR OR OR 1. 3GE G EOR

Note that by equations 1 and 3, testing =pH : 00 additive is equiv-
alent to testing =H : RERI 00 RR , which is typically translated
into =H : RERI 00 OR in a case-control study, as described by
VanderWeele (23). After defining the above relevant parameters
of interest, we use the definition of RERI in equation 3 in terms
of odds ratios to proceed with inference under case-control sam-
pling, assuming that the disease is rare for all configurations of
G and E.

Unconstrainedmaximum likelihood estimation

The unconstrained maximum likelihood (UML) estimate for
all odds ratio parameters mentioned above is obtained by simply
substituting pdj with itsMLE, ˆ =p r N/dj dj d , implying

ψ̂ = =
r r r r

r r r r

OR

OR OR
GE

G E
UML

02 03 11 14

01 04 12 13


 

and

∑ ∑σ̂ = ( (ψ̂ )) =
= = r

Var log
1

.
d j dj

UML
2

UML
0

1

1

4

The G-E association log odds ratio in controls can also be
estimated as θ̂ = ( )r r r rlogGE 01 04 02 03 .

The UML estimate of RERI can be easily obtained by plug-
ging the corresponding estimated odds ratios in an uncon-
strained model into equation 3, and by the invariance property
of MLE, it serves as a consistent and asymptotically unbiased
estimate of RERI regardless of the gene-environment indepen-
dence assumption.

= − − + ( )r r

r r

r r

r r

r r

r r
RERI 1 4UML

01 14

11 04

01 13

11 03

01 12

11 02



Note that r0 and r1 are realizations from 2 independent mul-
tinomial distributions, and we can employ the delta method

(Web Appendix 2) to obtain the asymptotic variance of
RERIUML
 , which is the same as noted in references 17–19.
The Wald test for interaction is based on the standardized Z
statistic

= ( )Z RERI / Var RERI ,UML UML UML 

which follows anN (0, 1) distribution under the null RERI = 0.

Constrainedmaximum likelihood estimation

Under G-E independence among controls (i.e., θ = 0GE )
and the rare disease assumption, Zhang et al. (24) proposed the
constrained maximum likelihood (CML) estimates for p0 and
p1 as follows:

ˆ = ( + )( + ) ˆ = ( + )( + )

ˆ = ( + )( + ) ˆ = ( + )( + )

p
r r r r

N
p

r r r r

N

p
r r r r

N
p

r r r r

N

, ,

, ,

01
01 03 01 02

0
2 02

01 02 02 04

0
2

03
01 03 03 04

0
2 04

02 04 03 04

0
2

and

ˆ = =p
r

N
j, 1, 2, 3, 4.j

j
1

1

1

We obtain the corresponding odds ratio estimates by substitut-
ing pdj with its constrainedMLE underG-E independence:

=
( + )
( + )

=
( + )
( + )

=
( + )( + )
( + )( + )

r r r

r r r

r r r

r r r

r r r r r

r r r r r

OR , OR ,

OR ,

E G

GE

12 01 03

11 02 04

13 01 02

11 03 04

14 01 02 01 03

11 02 04 03 04







and

∑ψ̂ = σ̂ = ( (ψ̂ )) =
=

r r

r r r
, Var log

1
.

j j
CML

11 14

12 13
CML
2

CML
1

4

1

Note that the estimated multiplicative interaction parameter ψ̂
is a function of only r1 and is identical to the case-only estima-
tor. The CML estimate of RERI can be computed by plugging
the estimated odds ratios under the constraint into equation 3.
Formally, the CML estimator for RERI is given by

=
( + )( + )
( + )( + )

−
( + )
( + )

−
( + )
( + )

+ ( )

r r r r r

r r r r r

r r r

r r r

r r r

r r r

RERI

1. 5

CML
01 03 01 02 14

02 04 03 04 11

01 02 13

03 04 11

01 03 12

02 04 11



Under the G-E independence assumption among controls,
the CML estimator is consistent and asymptotically unbiased
for the true RERI parameter. It is more precise than the UML
estimator of RERI in equation 4 based on our simulations. The
asymptotic variance of the CML estimator can also be approx-
imated by means of the delta method, which is shown in Web
Appendix 3. The Wald test for RERI in a constrained model
again uses the standardized Z statistic
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= ( )Z RERI / Var RERI ,CML CML CML 

and the power of the test is slightly lower than that of the LRT for additive interaction in Han et al. (21), as will be illustrated
through our simulations. Under violation of the G-E independence assumption, θ ≠ 0GE , the CML estimate is asymptotically
biased for the true RERI parameter and the tests are invalid.

Empirical Bayes estimation

Mukherjee and Chatterjee (6) proposed an empirical Bayes (EB) estimator of the multiplicative interaction which shrinks the
UML and CML estimators in a data-adaptive way. It relaxes the G-E independence assumption and makes a tradeoff between bias
and efficiency. Formally, the EB estimator of multiplicative interaction is given by

(ψ̂ ) =
σ̂

θ̂ + σ̂
(ψ̂ ) +

θ̂

θ̂ + σ̂
(ψ̂ ) ( )log log log , 6

GE

GE

GE

EB
UML
2

2
UML
2 CML

2

2
UML
2 UML

where ψ̂ = ( )r r r r/CML 11 14 12 13 , ψ̂ = ( )r r r r r r r r/ ,UML 02 03 11 14 01 04 12 13 σ̂ =UML
2 ∑ ∑ ( )= = r1/ ,d j dj0

1
1

4 and θ̂ =GE ( )r r r rlog / .01 04 02 03

We employ the same idea of adaptive weighting and propose the EB estimator for RERI as

=
( − )

( ) + ( − )
+

( )
( ) + ( − )

= + ( − ) ( )K

RERI
RERI RERI

Var RERI RERI RERI
RERI

Var RERI

Var RERI RERI RERI
RERI

RERI RERI RERI , 7

EB
UML CML

2

UML UML CML
2 UML

UML

UML UML CML
2 CML

UML CML UML







 
  




  


  

where = ( + κ̂κ̂ )−K V V T 1 is a shrinkage factor of the same
form as defined in Chen et al. (25) with κ̂ = −RERIUML


RERICML
 and = ( )V Var RERIUML

 . To explain the intuitive
rationale behind the estimator, observe that as θ → 0GE

 —

that is, as the data provide the evidence in favor of G-E inde-
pendence ( − →RERI RERI 0UML CML

  )—the estimator puts
more weight on the CML estimator to gain more efficiency;
and as θ → ∞GE

 —that is, as the G-E dependence becomes
stronger in the control population and −RERI RERIUML CML

 
becomes larger—then the EB estimator puts more weight on
the UML estimator to reduce bias. In large samples, the EB
estimator converges to the UML estimate and thus is asymptot-
ically unbiased for the true RERI parameter (6). The asymp-
totic variance of RERIEB

 is derived via the delta method (see
Web Appendix 4), assuming ( )Var RERIUML

 as a constant rel-
ative to the order of magnitude of the point estimates (6). We
use the Wald test for the EB estimator based on the standard-
ized Z statistic

= ( )Z RERI / Var RERI .EB EB EB 

Remark 1. We also consider 2 other forms of adaptive
weights. One is to modify the shrinkage factor K in equation 7
and let = θ̂⁎k GE

 instead of −RERI RERIUML CML
  , namely,

= + *( − )KRERI RERI RERI RERI ,EB1 UML CML UML  

where * = ( + κ κ )⁎ ⁎ −K V V T 1 . The other is to plug in the EB es-
timates (OREB

 ) obtained from using the retrospective likelihood
framework inMukherjee and Chatterjee (6), as implemented in R
packageCGEN (RFoundation for Statistical Computing, Vienna,
Austria) (6, 22, 25), directly into equation 3, namely,

= − − +RERI OR OR OR 1,GE G EEB2
  

where all estimated odds ratios are EB estimates proposed
under the multiplicative model. The EB estimator we proposed
in equation 7 demonstrates superior performance among the 3
choices, based on our simulation study.

Remark 2. As is shown in Chen et al. (25), the asymptotic
theory for CML and consequently EB is nonregular under the
independence assumption. The delta method does not technically
apply for estimation of the asymptotic variance. Theoretically, the
test statistic also fails to be asymptotically normal underG-E inde-
pendence (25, 26). However, in practice, the estimated variance
derived by the delta method approximates the empirical variance
very well, as noted in the simulation studies (see Web Appendix
5, Web Tables 1 and 2, and Web Figures 1 and 2). Under G-E
dependence, the EB estimate converges in large samples to the
UML estimate and thus to the true RERI parameter, and standard
likelihood asymptotics holds (6).

Profile likelihood framework for general regression
setting

Consider the retrospective likelihood considered in the
papers by Chatterjee and Carroll (22) and Mukherjee and
Chatterjee (6) and as implemented in the R package CGEN:

( | )

= ( = | ) ( | ) ( )
∑ ( = | ) ( | ) ( )

( )
Z

Z Z Z
Z Z Z

P G E D
P D G E P G E P E

P D G E P G E P E

, ,
1 , , , ,

1 , , , ,
. 8

ZG E, ,

The 3 ingredients of the above retrospective likelihood are as
follows.
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1. The logistic regression disease risk model of interest with
multiplicative G × E interaction parameter ( = |P Dlogit 1

β) = β + β + β + β × +Z ZG E G E G E, , ,Z
T

G E GE0 whereZ
denotes other covariates.

2. θ θ( | ) = θ + +Z ZP G E ELogit , GZ
T

GE0 . While this is
the gene model used for UML, allowingG-E dependence,
in theCMLmethod, ( | )ZP G E, reduces to ( | )ZP G under
the assumption of G-E independence conditional on Z,
implying θ ≡ 0GE .

3. The distribution ( )ZP E, is allowed to be completely
nonparametric. We then maximize the retrospective like-
lihood using existing routines in CGEN to obtain βUML


and βCML
 , the vector of all of the parameter estimates of

the disease risk model in point 1 above, namely, (β β, ,G0
ββ β ), , ZE GE .

When it comes to defining RERIwith a generalG andE var-
iable adjusting for covariates Z, particularly with case-control
data, as described in VanderWeele (23), let us denote the RERI
by ( )E E G GRERI , , ,OR 0 1 0 1 , by replacing risk ratios with cor-
responding odds ratios in the RERI expression in equation 3 as
is typically done in a case-control study. With general continu-
ous and ordinal exposures, one has to consider the magnitude
of change in exposure for which one is examining the interac-
tion. Let us consider the situation where the environmental risk
factor changes fromE0 toE1 and the genetic risk factor changes
from G0 to G1 but other covariates z are held constant. For-
mally, it is defined as

( )
= ( ) − ( ) − ( ) +
= {β ( − ) + β ( − )

+ β ( × − × )}
− {β ( − ) + β × ( − )}
− {β ( − ) + β ( − ) × } +

= (β β β ) ≈ ( ) ( )

E E G G

G E G E G E

G G E E

G E G E

E E G E E

G G G G E

f E E G G

RERI , , ,
OR , OR , OR , 1
exp

exp

exp 1

, , RERI , , , . 9

G E

GE

E GE

G GE

G E GE

OR 0 1 0 1

1 1 1 0 0 1

1 0 1 0

1 1 0 0

1 0 0 1 0

1 0 1 0 0

0 1 0 1

This last approximation of risk ratios by odds ratios holds
when the outcome is rare in each stratum defined by the 2 ex-
posures or when controls are selected from the entire popula-
tion, not just the noncases (27). More generally, if G and E
are both categorical factors with I and J levels with coeffi-
cients corresponding to different levels of each factor, then
β β β, , andG E GE in equation 9 become (I − 1)-, (J − 1)-, and
[(I − 1)(J − 1)]-dimensional vectors instead of scalars. Note
that β= ( )fRERIUML UML

 and β= ( )fRERICML CML
 can be

viewed as functions of UML and CML estimates of relative
risk parameters, where f is the function in equation 9. The vari-
ance of RERIUML

 and RERICML
 can be calculated by means of

the delta method. The EB estimator of RERI is the same as in
equation 7, and its estimated variance is calculated by the delta
method using the joint distribution of β̂ β̂( ),UML CML as pro-
posed byMukherjee and Chatterjee (6) (Web Appendix 6). The
Wald tests for the 3 estimators are all based on the standardized
Z statistic. We have provided general codes to test for RERI on
GitHub (28).

Example: analysis ofG× E interactions in case-control
studies of ovarian cancer

Epithelial ovarian cancer is one of the most common malig-
nancies of the female reproductive tract. Approximately 14,080
women in the United States died from ovarian cancer in 2017
(29), comprising more deaths than those from any other cancer
of the female reproductive system. There are several well-
established nongenetic risk factors for ovarian cancer (30–36),
and recent genome-wide association studies have identified and
replicated 18 genetic variants that influence disease risk (37).
To this end, the Ovarian Cancer Association Consortium has
undertaken an effort to study interactions focusing on the 18
confirmed single nucleotide polymorphisms (SNPs) and 7 well-
established risk factors: race, history of endometriosis, first-
degree family history of ovarian cancer, OCP use, parity, tubal
ligation, and age. In our illustrative analysis, we focus onOCP ×
SNP interaction and use genetic data from 15 Ovarian Cancer
Association Consortium studies (30, 38–55) that also have data
on epidemiologic risk factors (seeWeb Table 3).

Each SNP is coded as the number of risk alleles a subject car-
ries, and all subsequent analysis assumes this additive genetic
susceptibility model. Published odds ratios for the 18 confirmed
loci inWeb Table 4 are from analyses presented in the Collabo-
rative Oncological Gene-Environment Study (38, 39, 56–61).
As a parsimonious and succinct way of summarizing the ef-
fects of genetic variants across all loci for each subject, we
construct a “genetic risk score” (GRS) variable as the sum of
the risk allele counts across all loci and a “weighted genetic
risk score” (WGRS) as the weighted sum, where the weight
for each individual SNP is determined by the published log
odds ratio in large meta-analysis. Polygenic risk scores have
been used for risk stratification in multiple G × E papers
recently (3, 62). Analysis of the marginal effect for GRS and
WGRS is shown in Web Table 5. Each environmental factor
is coded as a categorical variable, as described in Web Table 6.
The mergedG × E data set has a sample size of 11,661 subjects
of European ancestry, with 4,135 cases and 7,526 controls from
13 study sites (Web Table 3).

To illustrate our inference for interactions between OCP use
(1 = ever and 0 = never) and genetic risk factors, we consider
both single SNP × OCP interaction andW/GRS × OCP interac-
tion (i.e., GRS or WGRS × OCP interaction). For single-SNP
analysis, we consider the top 2 hits in the 18 confirmed loci—
that is, rs62274042 (SNP 1) and rs10962691 (SNP 2) as reported
in Web Table 4. We used additive coding for our SNP × OCP
analysis. For GRS andWGRS,we use the quartiles in controls
to define a categorical variable with 4 categories. The analysis
model adjusts for study site and all other environmental risk
factors except race.

Simulation design

In our simulation study, we first investigate the type I error,
standard power at level α , and power at empirical α (empirical
type I error is used to report power in situations where type I
error is not maintained) ofWald tests forRERIUML

 ,RERICML
 ,

and RERIEB
 under various alternative values of RERI across a

spectrumof scenarios, varying the strength of theG-E association,
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the main effects of G and E, the minor allele frequency of G, the
prevalence of exposureE, the test size, and sample sizes.We com-
pare the power of theWald test forRERICML

 with the previously
proposed LRT for additive interaction under G-E independence
(21). We also explore estimation properties like the absolute rela-
tive bias and MSE of the 3 estimators, as well as those of 2 alter-
native proposals, RERIEB1

 and RERIEB2
 . Note that both RERI

and multiplicative interaction parameters are obtained from the
underlying true logistic regressionmodel

( = | ) = β + β + β + βP D G E E G GElogit 1 , ,E G GE0

where = (β + β + β ) − (β ) − (β ) +RERI exp exp exp 1G E GE G E
and ψ = (β )exp GE , so that the value of RERI is well-defined
given ψ and vice versa, once the main effect parameters =ORG

(β )exp G and = (β )OR expE E have been specified.
We set the prevalences of G and E in controls, = (p 0.1,G

)0.2, 0.3 and = ( )p 0.3, 0.4, 0.5E ; the main effects =ORG
( )1.1, 1.2, 1.3 and = ( )OR 1.3, 1.5, 1.7E ; the sample size

= = ( )N N 4,000, 20,0000 1 ; the size of test α = ( ×0.05, 5
)−10 ;6 a change in the strength of theG-E association, (θ )exp GE ,

from 0.8 to 1.2 at a grid of 0.1; and a change in the RERI from
0 to 1.5 with a grid of 0.1. The number of simulated data sets
is 1,000 when α = 0.05, and it is 106 when α = × −5 10 6.
The population parameters of cell probability p0 and p1
are defined by solving the equations in Web Appendix 7
(9, 63).

We generate data independently from the 2 multinomial dis-
tributions corresponding to the case and control populations,
according to the above probabilities, with numbers of cases
and controls as N0 and N1, respectively. We also consider
another simulation setting to mimic a large-scale genome-wide
search of interactions where we use random distribution for the
parameters corresponding to the set of null markers. We first
compute theUML,CML, and EB estimators using equations 4,
5, and 7 and then compare their type I error, power, power at
empirical α, absolute relative bias, MSE, and type I error over
1,000 replications. Power is estimated by the proportion of null

Table 1. Estimates of Ovarian Cancer Risk for Interactions Between Either Single Nucleotide Polymorphisms or
Genetic Risk Scores and Use of Oral Contraceptive Pills on Both theMultiplicative and Additive Scalesa

Interaction
Multiplicative (ψ) Additive (RERI)

Estimate 95%CI P Valueb Estimatec 95%CI P Valueb

SNP1d × OCPe

UML 0.94 0.73, 1.22 0.645 −0.25 −0.60, 0.10 0.162

CML 1.06 0.88, 1.28 0.548 −0.09 −0.33, 0.14 0.432

EB 1.00 0.78, 1.29 0.970 −0.16 −0.50, 0.18 0.348

SNP2d × OCP

UML 0.93 0.82, 1.05 0.255 0.08 −0.18, 0.34 0.552

CML 0.94 0.85, 1.04 0.224 0.03 −0.18, 0.25 0.757

EB 0.94 0.85, 1.04 0.222 0.04 −0.11, 0.18 0.598

GRSc × OCP

UML 0.82 0.65, 1.02 0.073 −0.64 −1.01,−0.27 0.001

CML 0.92 0.77, 1.08 0.305 −0.43 −0.68,−0.18 0.001

EB 0.86 0.69, 1.07 0.197 −0.54 −0.93,−0.16 0.005

WGRSc × OCP

UML 0.90 0.76, 1.06 0.212 −0.61 −0.99,−0.23 0.002

CML 0.95 0.83, 1.08 0.417 −0.40 −0.67,−0.14 0.003

EB 0.93 0.81, 1.08 0.366 −0.52 −0.91,−0.13 0.009

Abbreviations: CI, confidence interval; CML, constrained maximum likelihood; EB, empirical Bayes; GRS, genetic risk
score; RERI, relative excess risk due to interaction; SNP, single nucleotide polymorphism; UML, unconstrainedmaximum
likelihood;WGRS, weighted genetic risk score.

a The analysis was based on subjects with European ancestry, using data on 4,135 cases and 7,526 controls from
13 study sites in the Ovarian Cancer Association Consortium (30, 38–55). The model adjusted for history of endome-
triosis, first-degree family history of ovarian cancer, parity, tubal ligation, age, and study site.

b Wald testP value.
c W/GRS is a categorical variable defined by the quartiles of WGRS in controls—for example, W/GRS = 3 if it is at

or above the 75th percentile in controls and 0 if it is below the 25th percentile in controls. The minimal, 25th, 50th, and
75th percentiles and the maximum are 3, 11, 12, 14, and 22 for GRS and 0.32, 1.33, 1.53, 1.75, and 2.86 for WGRS,
respectively. In this table, we present only the coefficient for the interaction term corresponding to a change in OCP
from 0 to 1 and a change inWGRS from 0 to 3.

d SNP1 denotes rs62274042 and SNP2 denotes rs10962691. Marginal disease odds ratios corresponding to these
SNPs are 1.45 (95%CI: 1.37, 1.54) and 1.25 (95%CI: 1.20, 1.30), respectively.

e OCP = 1 if the individual had ever usedOCPs and 0 if she had never used OCPs.
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hypothesis =H : RERI 00 rejected at the given level of signifi-
cance α—that is, the proportion of times > −αZ Z1 /2 , where
Z is the Wald test statistic. Power at empirical α is a modified
power which utilizes an empirical P value threshold as the
rejection rule to control the type I error around the given signif-
icance level when the type I error at the desired nominal level
is not maintained. The absolute relative bias is calculated by
averaging −RERI RERI /RERI , and MSE is calculated by
averaging ( − )RERI RERI 2 .

RESULTS

Ovarian cancer data example

The distributions of GRS and WGRS in cases and controls
are displayed in Web Figure 3. Relative to the control distribu-
tions, the upper tails of the case distributions are shifted slightly
rightward. We calculate UML, CML, and EB estimators of
interactions on both the multiplicative and additive scales.
The estimates, corresponding confidence intervals, andWald
test P values are shown in Table 1. In SNP1 × OCP analysis,
the strength of G-E association is modest: exp(θGE) = 1.07
(95% confidence interval (CI): 0.94, 1.21); the EB estimate of
RERI is −0.16 (95% CI: −0.50, 0.18), where the weight on
RERIUML
 is 43%. In SNP2 × OCP analysis, the G-E associa-
tion seems weaker, with exp(θGE) = 0.96 (95% CI: 0.83,
1.11). The EB estimate of RERI is 0.04 (95% CI: −0.11,
0.18), with its weight on RERIUML

 decreasing to 11%. The
confidence intervals corresponding to RERIEB

 are narrower
than the corresponding intervals for RERIUML

 . The point esti-
mate RERIEB
 lies between RERIUML

 and RERICML
 , reflect-

ing the combined efficiency-robustness feature of the EB
estimator. In WGRS × OCP analysis, we evaluate interactions

associated with a change in OCP use from 0 to 1 (ever users to
never users) and a change in WGRS from the lowest quartile
to the highest quartile (as defined through the distribution of
WGRS in controls). The multiplicative measure of interaction
ψ̂EB is not significant at α = 0.05, but RERIEB

 departs from 0
significantly, with an estimate of −0.52 (95% CI: −0.91,
−0.13) and a very small P value (P= 0.009).

To visually present the results, we fit a standard logistic
regression model including the main effects of OCP use and
quartiles of WGRS as a categorical factor, and an interaction
term for WGRS × OCP adjusting for study sites and other
risk factors. Figure 1 shows the odds ratio for OCP and its
corresponding 95% confidence interval according to WGRS.
The odds ratio for OCP is 0.61 (95% CI: 0.50, 0.74) in the
lowest WGRS quartile and 0.51 (95% CI: 0.43, 0.60) in the
highest quartile. The overlapping confidence intervals indi-
cate a nonsignificant multiplicative interaction. Additionally,
if we assume that approximately 1.3% of women will be diag-
nosed with ovarian cancer at some point during their lifetime
(29) and that 70% of women will use OCPs at some point in
their life in this population (estimated from the Ovarian Cancer
Association Consortium data), we can calculate the estimated
lifetime risk of ovarian cancer and its corresponding 95% con-
fidence interval within each WGRS stratum (Figure 2) for OCP
users and nonusers. Estimates of lifetime absolute risk are 0.75%
(95% CI: 0.57, 0.98) for OCP users and 1.23% (95% CI: 1.00,
1.51) for OCP nonusers in the lowest WGRS stratum, with a
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Figure 1. Odds ratio for use of oral contraceptive pills (OCPs) by
quartile of weighted genetic risk score in a simulated analysis of gene-
environment interaction and ovarian cancer risk. Data were obtained
from 15 studies in the Ovarian Cancer Association Consortium (30,
38–55). The odds ratios were estimated using standard logistic
regression with adjustment for history of endometriosis, first-degree
family history of ovarian cancer, parity, tubal ligation, age, and study
site. Bars, 95% confidence intervals.
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Figure 2. Predicted probability of ovarian cancer among oral con-
traceptive pill (OCP) users and nonusers by quartile of weighted
genetic risk score in a simulated analysis of gene-environment inter-
action and ovarian cancer risk. Data were obtained from 15 studies in
the Ovarian Cancer Association Consortium (30, 38–55). The relative
risk parameters were obtained from a standard logistic regression
model adjusting for history of endometriosis, first-degree family his-
tory of ovarian cancer, parity, tubal ligation, age, and study site. We
assumed that approximately 1.3% of women would be diagnosed
with ovarian cancer at some point during their lifetime and that 70% of
women would use OCPs at some point in their life. The predicted
probabilities were estimated by fixing other covariates at their most
frequent value. Bars, 95% confidence intervals.
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Table 2. Empirical Familywise Type I Error Rate at a 5%Overall Level of Significance and Expected Number of
False-Positive Findings Corresponding to UML, CML, and the EBWald Test

Proportion of Markers Satisfying Gene-Environment Independence (pind)
a

0.95 0.99 0.995 0.9975 0.9995 1.00

Empirical familywise type I errorb

UML 0.084 0.072 0.062 0.071 0.041 0.058

CML 1.000 0.994 0.966 0.745 0.874 0.064

EB 0.138 0.056 0.045 0.038 0.042 0.035

Expected no. of false positivesc

UML 0.085 0.073 0.062 0.071 0.042 0.059

CML 23.451 3.761 2.814 1.050 0.937 0.067

EB 0.150 0.060 0.045 0.039 0.044 0.035

Abbreviations: CML, constrained maximum likelihood; EB, empirical Bayes; RERI, relative excess risk due to inter-
action; SD, standard deviation; UML, unconstrainedmaximum likelihood.

a The population-level gene-environment (G-E) association structure among null loci is assumed to be of the form
of a mixture distribution reflecting the fact that a large fraction (i.e., pind) of the single nucleotide polymorphisms are
indeed independent of E in the population, whereas the remaining − p(1 )ind single nucleotide polymorphisms show
some departures from the independence assumption following anN (0, SD = ln(1.5)/2) distribution.

b The Wald test is for RERI = 0 under a large-scale genome-wideG × E scan simulation scenario with 10,000 mar-
kers and 2,000 cases and controls. Empirical familywise type I error is estimated as the empirical proportion of data
sets declaring at least 1 null marker to be significant using the level of significance α/10,000. This estimates the proba-
bility of at least 1 false-positive discovery under the global null hypothesis.

c The expected number of false positives is estimated as the average number of falsely rejected null hypotheses,
averaged over 1,000 data sets.

RERI/exp(βGE)

A) B) C)

D) E) F)

RERI/exp(βGE) RERI/exp(βGE)

RERI/exp(βGE) RERI/exp(βGE) RERI/exp(βGE)

P
ow

er

0/0.94 0.5/1.22 1/1.5

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0/0.94 0.5/1.22 1/1.5

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0/0.94 0.5/1.22 1/1.5

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0/0.94 0.5/1.22 1/1.5

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0/0.94 0.5/1.22 1/1.5

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0/0.94 0.5/1.22 1/1.5

0.0

0.2

0.4

0.6

0.8

1.0

UML
CML
EB

Figure 3. Power curves of unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), and the empirical Bayes (EB) Wald
test for the relative excess risk due to interaction (RERI) under different strengths of gene-environment (G-E) association in a simulated analysis of
gene-environment interaction and ovarian cancer risk. Data were obtained from 15 studies in the Ovarian Cancer Association Consortium (30, 38–55).
Data were generated on 4,000 cases and 4,000 controls with the fixed parameters p = 0.2G , p = 0.3E , OR = 1.2G , and OR = 1.5E . RERI changes
from 0 to 1.5 with a grid level of 0.1, and correspondingmultiplicative interaction changes from 0.94 to 1.78. The top panels (A, B, and C) correspond to
the raw power, whereas the bottom panels (D, E, and F) correspond to the power at empiricalα. The left, center, and right panels correspond to different
values of theG-E association odds ratio (OR)—that is, exp(θGE) = 0.8, exp(θGE) = 1.0, and exp(θGE) = 1.2, respectively.
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difference of 0.48% (95% CI: 0.02, 0.94); for subjects in the
highest WGRS stratum, the corresponding numbers are 1.40%
(95% CI: 1.08, 1.81) and 2.72% (95% CI: 2.05, 3.60), respec-
tively, with a difference of 1.32% (95%CI: 0.24, 2.52), showing
why the test for RERI is significant.

Results from the simulation study

Type I error. Web Table 7 presents type I errors for differ-
ent tests of RERI. One can observe that UMLmaintains a nom-
inal level α across different choices of θGE. An inflated type I
error associated with CML is observed when the G-E inde-
pendence assumption is violated. The EB test is valid when
exp(θGE) = 1 andmodestly inflates type I error whenG is asso-
ciated with E. The maximal observed type I error of EB at α =
0.05 is 0.099 when the sample size is 40,000, the test size is
0.05, and exp(θGE) = 1.1.Web Figure 4 shows how type I error
varies with exp(θGE) for the 3 estimators. The type I error of CML
is very sensitive to the G-E association, but the performance of
EB is relatively robust, with a marked reduction in type I error
comparedwith CML. The findings remain similar for different
choices of pG, pE,ORG, andORE (Web Tables 8 and 9).

Results from additional simulation mimicking a genome-
wide association study. To justify the use of the EB estima-
tor in genome-wide assessment of G-E interaction, we conduct
another simulation study similar to that in Mukherjee et al. (8),
which generates 2,000 cases and controls with 1 causal marker
together withM − 1 null markers, whereM is 10,000. TheG-E
independence parameter θGE in controls has a random mixture
distribution with a point mass around independence, and pind
is the proportion of null loci that follow G-E independence.
The detailed simulation setting is presented in Web Appendix 8.
The expected nominal level for both the familywise error rate
and the expected false-positive rate is 0.05 when G-E indepen-
dence holds. However, if there is G-E dependence for a propor-
tion of markers, Bonferroni correction cannot guarantee the
nominal level for EB and CML. As shown in Table 2, when 99%
of the markers are independent, EBmaintains a familywise type I
error rate of 0.06 and an expected number of false positives of
0.06. The performance of CML is significantly worse, with a fa-
milywise error rate of 99% and an expected number of false posi-
tives of 3.76.

Power. Figure 3 shows the power curves of the Wald test
for 3 estimators with =H : RERI 00 under different strengths
of G-E association (Web Tables 10–15). It is hard to compare
the estimated powers directly from the figure, as the inflated
type I error of CML and EB leads to misleadingly high power
values. Hence, we assess the power at empirical α for CML
and EB, which controls the corresponding type I error at 0.05.
UML is most efficient when exp(θGE) = 0.8, CML is most effi-
cient when exp(θGE) = 1 and 1.2, and EB power always lies in
between. For a sample numerical comparison, let us compare
the powers of the 3 approaches at RERI = 0.5 to represent one
typical scenario. When exp(θGE) = 0.8, the empirical power of
EB (0.275) is 41% lower than that of UML (0.672); mean-
while, CML has nearly 0 power. When exp(θGE) = 1, the
empirical power of EB (0.870) is 25% higher than that of
UML (0.693) but 10% lower than that of CML (0.970). When
exp(θGE) = 1.2, the empirical power of EB (0.718) is slightly

higher than that of UML (0.714) but 28% lower than that of
CML (0.993). We then compare the power of the Wald test for
RERICML
 with that of the LRT for additive interaction (see
Web Figure 5). The power of the LRT is uniformly slightly
higher than that of the Wald test, with a true value of RERI
varying from 0 to 0.5 with a grid of 0.1. Results for absolute
relative bias and MSE are shown in Web Appendix 9, Web
Tables 16–19, andWeb Figure 6.

DISCUSSION

In this paper, we extend the EB estimator of G × E interac-
tion proposed earlier on the multiplicative scale to the additive
scale in case-control studies. The EB estimator exploits the G-
E independence assumption to perform a tradeoff between bias
and efficiency. The simulation study showed that the test based
on the EB estimator can provide good control of type I error
and that it is always intermediate between UML and CML
with respect to power, relative bias, and mean squared error. In
the ovarian cancer data example, we conducted a W/GRS ×
OCP analysis to illustrate the application of the proposed method.
We found a significant additiveW/GRS × OCP interaction but
insignificant multiplicative interaction at α = 0.05.

As an inherent limitation of case-control studies, only the
relative risk can be estimated (e.g., RERI) instead of the under-
lying direct measure (e.g., padditive in equation 1), because p11
can only be estimated from cohort data. However, general pop-
ulation incidence data from cohort studies can be combined
with case-control risk-factor models to estimate absolute risks
in population-based case-control studies (64), as we carried out
in Figure 2. If the rare disease assumption for each configura-
tion of G and E does not hold, approximating the relative risk
by means of the odds ratio in case-control studies will not be
accurate, and thus the proposed estimate of RERI may depart
from the truth. By using the retrospective maximum likelihood
estimates, prior guesses for disease prevalence, and adaptive
combinations like the EB procedure, we can make our infer-
ence less biased under violation of the rare disease and G-E
independence assumptions.

There is increasingly more interest in inference for additive
interaction using case-control data. Tchetgen Tchetgen et al.
(65) described a general approach to test for G × E additive
interaction exploiting G-E independence which is robust to
possible misspecification of main effects in the outcome regres-
sion. Han et al. (66) proposed a score test for UML andCML esti-
mators of genetic associations under the additive null hypothesis.
In the future, it will be of analytical interest to establish an EB ver-
sion of the adaptive score test and the adaptive LRT, since most
of the recent work has been in terms of combining estimators but
not tests.
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