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Abstract

Summary: Integrative omics is a central component of most systems biology studies. Computational

methods are required for extracting meaningful relationships across different omics layers. Various

tools have been developed to facilitate integration of paired heterogenous omics data; however most

existing tools allow integration of only two omics datasets. Furthermore, existing data integration tools

do not incorporate additional steps of identifying sub-networks or communities of highly connected

entities and evaluating the topology of the integrative network under different conditions. Here we pre-

sent xMWAS, a software for data integration, network visualization, clustering, and differential network

analysis of data from biochemical and phenotypic assays, and two or more omics platforms.

Availability and implementation: https://kuppal.shinyapps.io/xmwas (Online) and https://github.

com/kuppal2/xMWAS/ (R)

Contact: kuppal2@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Technological advances have led to a major paradigm shift where

multi-assay molecular profiling of biological samples is increasingly

being used to understand molecular mechanisms for diseases and

host responses to environmental exposures (Hawkins, 2010). Most

cellular processes in a biological system are dependent on complex

molecular interactions (Barabasi, 2011). Integrative omics allows re-

searchers to address such complexity and answer challenging biolo-

gical questions, such as function of genetic variants and unknown

metabolites, mechanisms of gene regulation, signaling and metabolic

pathway responses to infection and toxicity (Chandler, 2016;

Hawkins, 2010; Uppal, 2016).

Numerous data-driven/unsupervised and knowledge-based tools

allow integration of data from different omics technologies and other

molecular assays (Meng, 2016; Wanichthanarak, 2015). Most exist-

ing data integration tools allow integration of only two datasets and

do not allow identification of community structure and evaluation of

network changes between different conditions (Supplementary Table

S1). Community detection reveals topological modules comprised of

functionally related biomolecules (Barabasi, 2011; Yang, 2016).

Differential network analysis allows characterization of nodes that

undergo changes in topological characteristics between different con-

ditions, e.g. healthy versus disease (Lichtblau, 2016).

To advance these capabilities, we present, xMWAS, which provides

an automated workflow for integrative analysis, differential network

analysis and community detection to improve our understanding of

complex molecular interactions and disease mechanisms.

2 Implementation

xMWAS utilizes existing algorithms and provides an automated frame-

work for integrative and differential network analysis of up to four

datasets from unpaired (two or more classes) or paired (repeated meas-

ures with one or two factors) study designs (Supplementary Fig. S1A).

Pairwise data integration is performed using Partial Least Squares

(PLS), sparse PLS and multilevel sparse PLS methods (Le Cao, 2009;

Liquet, 2012; Gonzalez, 2012). The igraph package in R is used to

generate a multi-data integrative network (Csardi 2006). Community

detection is performed using the multilevel community detection

method (Blondel, 2008). Eigenvector centrality measure (ECM) and

betweenness centrality measure are used to evaluate and compare the

importance of nodes between different conditions (Lichtblau, 2016;
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Odibat and Reddy, 2012). Supplementary Section S1 provides details

for different stages of xMWAS. xMWAS is available as an R package

and a web-based application. A tutorial is provided in Supplementary

Section S2 that includes information related to installation and usage.

3 Example and conclusion

We tested xMWAS using cytokine, transcriptome and metabolome

datasets from a recently published case-control study to examine H1N1

influenza virus infection-altered metabolic response in mouse lung

(Chandler, 2016). For comparisons, we used data from only control

samples (Fig. 1A) and only H1N1 influenza samples (Fig. 1B). More in-

formation related to Methods is provided in Supplementary Section S3.

The results show that xMWAS allows identification and visualiza-

tion of associations between genes, cytokines, and metabolites (Fig.

1A and B). In the control group, 5 cytokines, 348 genes, and 71 me-

tabolites were selected in the sPLS analysis that was grouped into five

communities in the three-way integrative network (Fig. 1A and

Supplementary Table S2). The five cytokines were assigned to com-

munities C3 (IL-1beta), C4, (IL-6, RANTES, IP-10) and C5 (MCP-1)

and had significant associations (P < 0.05) with genes related to im-

mune response, cell signaling, bacterial infections, cell death and sur-

vival, serotonin-melatonin biosynthesis and amino acids metabolism

(Supplementary Table S2). Cytokines are known to be involved in the

recruitment of the inflammatory cells and influence the adaptive im-

mune response during influenza (Chandler, 2016). In the H1N1 in-

fected group, 4 cytokines, 806 genes, and 55 metabolites were

selected in the sPLS analysis that was grouped into six communities in

the three-way integrative network (Fig. 1B and Supplementary Table

S3). The cytokines were assigned to communities C5 (IL-1beta, IL-10,

and TNF-alpha) and C6 (MCP-1) and had significant associations (P

< 0.05) with genes related to immune response, antiviral actions, and

cell damage (Supplementary Table S3).

The analysis also allows identification of nodes that undergo net-

work changes, which is determined based on the eigenvector central-

ity (importance) measure (Supplementary Table S4). IL-1beta, TNF-

alpha and IL-10 had the largest change in eigenvector centrality

between control and H1N1 groups (Fig. 1C, Supplementary Table

S4). Overall, the centrality of the cytokines was much higher in the

H1N1 network, which is expected based on the current knowledge

about their role in H1N1 infection (Chandler, 2016). Pathway ana-

lysis of genes with jECMcontrol – ECMH1N1j> 0.1 showed enrichment

of pathways related to immune response, autoimmune disease, and

other inflammatory disease (Fig. 1D). Metabolites associated with

cytokines (P < 0.05) in H1N1 sub-group were evaluated using

Mummichog (Li, 2013), which showed enrichment of pathways

related to leukotrienes, steroids, and lipids (Supplementary Table S5).

These pathways have previously been associated with influenza infec-

tion (Chandler, 2016; Le Bel, 2014).

In summary, xMWAS provides a platform-independent frame-

work for integrative network analysis, identification of communities

of functionally related biomolecules, and differential network ana-

lysis. The results show that xMWAS can improve our understanding

of disease pathophysiology and complex molecular interactions.
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Fig. 1. Integrative network analysis of cytokine, metabolome and transcriptome

datasets from a study of H1N1 virus infection of mice. (A). Using only control

samples. Five communities (C1. . .C5; represented by different colors) were de-

tected using the multilevel community detection algorithm (Supplementary

Table S2). (B) Using only H1N1 infected samples. Six communities (C1. . .C6)

were detected (Supplementary Table S3). (C) Delta centrality based on the

ECM, jECMcontrol – ECMH1N1j, for the cytokines in the integrative networks in (A)

and (B). (D) Pathway analysis of genes with delta centrality (jECMcontrol –

ECMH1N1j) > 0.1 using MetaCore (https://portal.genego.com/); only top 5 path-

ways are shown). Note: (rectangle: metabolite, circle: gene, triangle: cytokine)
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