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Abstract

Motivation: Genetic variation in human populations is influenced by geographic ancestry due to

spatial locality in historical mating and migration patterns. Spatial population structure in genetic

datasets has been traditionally analyzed using either model-free algorithms, such as principal com-

ponents analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models

of allele frequency evolution. We develop a general probabilistic model and an associated infer-

ence algorithm that unify the model-based and data-driven approaches to visualizing and inferring

population structure. Our spatial inference algorithm can also be effectively applied to the problem

of population stratification in genome-wide association studies (GWAS), where hidden population

structure can create fictitious associations when population ancestry is correlated with both the

genotype and the trait.

Results: Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances be-

tween samples to their spatial distances, and can be used for visually discerning population structure

as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On

both simulated and several real datasets from diverse human populations, GAP exhibits substantially

lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an as-

sociation test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-

induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits

measured in a Northern Finland cohort, which is known to exhibit significant population structure,

we find that our method has superior power to current approaches.

Availability and Implementation: Our software is available at https://github.com/anand-bhaskar/

gap.

Contacts: abhaskar@stanford.edu or ajavanma@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Modern human genomic datasets routinely contain samples from

geographically diverse populations (1000 Genomes Project

Consortium et al., 2010; Nelson et al., 2008), and analyses of these

datasets has shown that the patterns of genetic variation across

human populations encodes substantial information about their geo-

graphic ancestry (Cavalli-Sforza et al., 1994; Novembre et al., 2008;

Ramachandran et al., 2005). Inferring such spatial population struc-

ture from genetic data is of fundamental importance to many prob-

lems in population genetics — identifying genomic regions under

selective pressure (Coop et al., 2009; Lewontin and Krakauer, 1973;

Yang et al., 2012), correcting for population structure in genome-

wide association studies (Price et al., 2006), and shedding light on

ancient human history (Jakobsson et al., 2008), to name a few.

A fundamental technique for studying spatial demography is the

visualization and inference of population structure through low-

dimensional representations of genomic data. Methods like principal

components analysis (PCA) (Lao et al., 2008; Novembre et al.,

2008) and multidimensional scaling (MDS) (Jakobsson et al., 2008)

were among the first approaches that demonstrated that genotype

data could be used to accurately recapitulate geographic ancestry.

Moreover, their performance and interpretation has been backed by

theoretical work (McVean, 2009; Novembre and Stephens, 2008;

Paschou et al., 2007; Patterson et al., 2006). There is also a wide

spectrum of spatial genetic models and methods (Baran and

Halperin, 2015; Bradburd et al., 2016; Ra~nola et al., 2014; Wasser

et al., 2004; Yang et al., 2012) which have been developed for infer-

ring geographic ancestry coordinates. The SPA model Yang et al.

(2012) uses a logistic function over space to parameterize the allele

frequency at each SNP, while methods like SCAT (Wasser et al.,

2004) and SpaceMix (Bradburd et al., 2016) consider allele

frequency covariance functions which decay exponentially with geo-

graphic distance. The OriGen algorithm of Ra~nola et al. (2014),

while not positing a specific functional form for the allele frequency

function, performs an optimization which encourages smoothness in

allele frequency over space. In all these spatial models, the inference

of ancestry coordinates is performed using maximum likelihood or

expectation-maximization algorithms that are tailored to the details

of the model.

In this work, we marry the previously mentioned model-free and

model-based approaches to geographic ancestry localization by de-

veloping a flexible spatial stochastic process model that subsumes

previously developed parametric allele frequency models such as

SPA, SCAT and SpaceMix as special cases. Furthermore, we develop

a data-driven spatial reconstruction algorithm Geographic Ancestry

Positioning (GAP), that exploits the structural properties of our sto-

chastic process while being agnostic to its minutiae. Our localization

algorithm is inspired by principles from manifold learning, and can

be viewed as a generalization of PCA. The idea behind our approach

is to infer the local spatial distances between sampled individuals

using their genotypes, and to then create a global spatial embedding

that is faithful to the local geometry information. Our probabilistic

process and associated inference algorithm bridge the long threads

of work in data-driven and model-based ancestry localization from

genotypic data. Through extensive simulations, we demonstrate that

GAP often performs substantially better than PCA at both visually

discerning spatially structured populations (Fig. 1) as well as infer-

ring the spatial coordinates of individuals (Table 1). We also prove

theoretically that, under our probabilistic model, GAP performs at

least as well as PCA in reconstructing the spatial coordinates of gen-

etic samples. We apply GAP to three public genotype datasets from

the Human Origins (Lazaridis et al., 2014), GLOBETROTTER

(Hellenthal et al., 2014) and POPRES (Nelson et al., 2008) projects.

Compared to PCA, GAP exhibits 31% lower error in spatial recon-

struction of the subpopulations in the Human Origins dataset, 10%

lower error on the GLOBETROTTER dataset, and 56% lower error

on the POPRES dataset (If we use only a subset of SNPs with minor

allele frequency � 10%, GAP and PCA perform similarly. See

Supplementary Information §1.7 for details.).

Population structure also has serious implications for genome-

wide association studies (GWAS). In the GWAS setting, one is inter-

ested in finding loci that are causal for the trait, while being resilient

to false associations arising from hidden population structure and

environmental confounders. Spurious associations can arise due to

ancestry-induced correlations between causal and non-causal loci,

Fig. 1. Simulated datasets with the PCA and GAP reconstructions. The genotype data were simulated using the isotropic covariance decay model, where the z1 and z2 coord-

inates of each individual were sampled independently and (a) uniformly, (d) according to a Beta(0.25, 0.25) distribution from the unit square. The covariance decay parameters

for the simulation are a0 ¼ a2 ¼ 1 and a1 ¼ 16. (a) and (d) True locations of sampled individuals; (b) and (e) Reconstructed locations using PCA (RMSE 0.2554 and 0.4390,

respectively), (c) and (f) Reconstructed locations using GAP (RMSE 0.0245 and 0.0293, respectively) (Color version of this figure is available at Bioinformatics online.)
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or when ancestry is correlated with both the genotype and the trait

(Campbell et al., 2005). PCA (Price et al., 2006) and linear mixed

models (LMM) (Kang et al., 2010) are two popular classes of meth-

ods for correcting ancestry confounding in human genetics studies.

Both of these methods test genetic associations in prospective models

describing the distribution of the trait conditional on the genotype.

On the other hand, retrospective models describing the distribution

of genotypes conditional on the trait are more natural in the setting

of case–control studies and have been shown to be equivalent to pro-

spective models under suitable assumptions (Prentice and Pyke,

1979; Song et al., 2015). Based on this, Song et al. (2015) developed

a testing procedure, GCAT, that controls for ancestral confounding

by using a latent factor model (Hao et al., 2016) to estimate the allele

frequencies at each SNP across the sample. We propose an alternative

allele frequency estimation procedure and association test,

Stratification Correction via GAP (SCGAP), that can effectively cor-

rect for ancestry confounding by using the spatial coordinates

inferred by GAP. SCGAP employs an allele frequency smoothing pro-

cedure using the inferred coordinates from GAP in order to estimate

the allele frequency at each SNP across the sample. Our association

testing procedure uses these estimates of the allele frequency to test

each SNP in an inverse regression of the genotype against the trait,

conditional on the estimated allele frequency. Through simulations,

we show that our allele frequency estimation procedure when used

with the ancestry coordinates from our localization algorithm GAP

has almost as high power as if the true ancestry coordinates were

known, and has considerably higher power than if the ancestry co-

ordinates were inferred using PCA. We applied SCGAP to a birth co-

hort from Northern Finland containing several quantitative

metabolic traits and observe that it compares favorably to state-of-

the-art computationally intensive approaches such as LMMs. For in-

stance, SCGAP and GCAT are the only methods to identify a SNP

(rs2814982) associated with height in this dataset.

2 Methods

2.1 Model
Suppose that we are given genotype or sequence data from n individ-

uals at p SNPs. We will use X to denote the n�p genotype matrix,

where entry xi‘ 2 f0; 1;2g is the number of alleles at SNP ‘ in indi-

vidual i. We let zi 2 R2 denote the unknown ancestral origin of indi-

vidual i. In our spatial probabilistic model, the allele frequencies for

different SNPs are assumed to be drawn from independent stochas-

tic processes defined over the two-dimensional geographical space.

Specifically, letting q‘ðzÞ be the allele frequency of SNP ‘ at location

z, we let l‘ :¼ E½q‘ðzÞ� denote the mean allele frequency of SNP ‘ in

the population. The covariance Covðq‘ðzÞ; q‘ðz0ÞÞ in allele frequen-

cies between pairs of locations z and z0 is captured by a covariance

decay function g as follows,

Covðq‘ðzÞ;q‘ðz0ÞÞ ¼ E½ðq‘ðzÞ � l‘Þðq‘ðz0Þ � l‘Þ� ¼: gðz� z0Þ: (1)

This assumption allows us to model the phenomenon of isolation by

distance, where the covariance in allele frequencies decays with geo-

graphic separation, while also allowing for different rates of covariance

decay in different spatial directions. Such observations of anisotropic

isolation by distance have been reported by previous studies of African,

Asian and European populations (Jay et al., 2013). Moreover, several

previous spatial genetic models (Bradburd et al., 2016; Wasser et al.,

2004; Yang et al., 2012) can be recast as specific parametrizations of

the autocovariance function g of our model (Supplementary

Information §1.4). However, in contrast to these models, we do not

impose any explicit parametric form on the autocovariance function g.

Supplementary Figure S2 shows example allele frequency surfaces from

two such previously proposed spatial processes (Wasser et al., 2004;

Yang et al., 2012) that are captured by our model formulation.

2.2 Algorithm
Our localization algorithm GAP takes a data-driven approach while

exploiting the structure of the autocovariance function in (1). The

idea behind our algorithm is to define a genetic squared-distance d2

between each pair of sampled individuals as follows,

d2
ij ¼ gð0Þ � gðzi � zjÞ: (2)

We can exploit the structure of our model in (1) to relate the genetic

squared-distances d2
ij between genetically similar pairs of individuals

to their spatial squared-distances kzi � zjk2. More precisely, we

show that,

d2
ij � kJðzi � zjÞk2 ; for i; j where dij is small enough: (3)

In (3), J is a 2�2 invertible matrix that is determined by the under-

lying stochastic process. We use (3) only for those pairs of individ-

uals i and j where dij is smaller than some threshold parameter s.

Our localization algorithm consists of three main steps, which

we describe below, leaving some of the involved details to §1.2 of

the Supplementary Information:

(1) Using the genotype matrix X, we construct provably consistent

estimators bg0 and bg ij for gð0Þ and gðzi � zjÞ respectively. These

estimators are given in Theorem 1 in the Supplementary

Information.

(2) We estimate the genetic squared-distances bd2

ij according to (2)

using the estimates for gð0Þ and gðzi � zjÞ computed in the previ-

ous step. Applying relation (3), local genetic distances are good

proxies for the spatial distances. We therefore keep estimates bdij

only for those pairs of individuals where bdij � s.
(3) We find a global embedding of individuals in the geographic

space from their estimated local pairwise distances. To this end,

we borrow tools from the area of manifold learning. In this

work, we have used the ISOMAP algorithm (Tenenbaum et al.,

2000) for this step. However, other algorithms developed for

Table 1. Isotropic covariance decay model

a2 a1
RMSE GAP
RMSE PCA RMSE PCA RMSE GAP

0.5 1 1.010 0.0879 0.0888

2 0.978 0.1030 0.1008

4 0.699 0.1001 0.0700

8 0.414 0.1151 0.0477

16 0.307 0.1372 0.0421

1 1 1.018 0.0716 0.0729

2 0.880 0.0929 0.0818

4 0.359 0.1285 0.0461

8 0.094 0.1733 0.0163

16 0.096 0.2554 0.0245

1.5 1 1.028 0.0555 0.0570

2 0.857 0.0983 0.0843

4 0.212 0.1647 0.0349

8 0.100 0.2842 0.0285

16 0.100 0.3114 0.0311

Comparison of the localization accuracy of GAP and PCA in the isotropic model

simulation setup described in Simulations, with parameters b ¼ a0 ¼ 1. Bold

entries indicate those parameter combinations where GAP outperforms PCA.
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manifold learning can be applied in this step too, some of which

are discussed in the Supplementary Information.

The spatial reconstruction accuracy of our procedure will de-

pend on the threshold s that is chosen in step (2) above. The optimal

choice of the threshold s will depend on the dataset and the validity

of the second-ordinary stationarity assumption of our model. One

can pick s in a similar manner to how parameter tuning is done in

machine learning. Specifically, we will use a small subset (20%) of

the samples as a training set with known spatial coordinates, and

perform cross-validation over a grid of s (see Supplementary

Information §1.2 and §1.3).

3 Results

3.1 Simulations
We considered two simulation scenarios to model isotropic and

direction-dependent allele frequency covariance decay. For both

simulation scenarios, we simulated n ¼ 2000 individuals at p ¼ 50

000 SNPs. The true geographic origin zi of individual i was simu-

lated by sampling each coordinate according to a Beta(b;b) distribu-

tion from the unit square. This distribution lets us smoothly

interpolate between dense sampling of individuals in the interior of

the space to dense sampling at the boundaries (Fig. 1(a) and (d)),

with the setting b¼1 representing uniform sampling. The spatial al-

lele frequencies at each SNP were generated by applying the logistic

function to sample paths from a spatial Gaussian process. Assuming

Hardy-Weinberg equilibrium, the genotypes of each individual i

were drawn according to a binomial distribution from the allele fre-

quencies at their geographic origin zi.

• Isotropic covariance decay: The allele frequency q‘ðzÞ of SNP ‘ at

location z is given by q‘ðzÞ ¼ 1=ð1þ exp ðG‘ðzÞÞÞ, where G‘ðzÞ
is a sample path of a two dimensional stationary Gaussian pro-

cess with mean zero and covariance kernel Kðz; z0Þ ¼
exp ð�ða1kz� z0kÞa2 Þ=a0. Such models have been previously con-

sidered by the SCAT (Wasser et al., 2004) and SpaceMix

(Bradburd et al., 2016) methods. In order for Kðz; z0Þ to be a valid

covariance kernel, 0 � a2 � 2.
• Directional covariance decay: The allele frequency q‘ðzÞ of SNP ‘

at location z is given by q‘ðzÞ ¼ 1=ð1þ exp ðG‘ðzÞÞÞ, where G‘ðzÞ
is a sample path of a two dimensional stationary Gaussian

process with mean zero and covariance kernel Kðz; z0Þ ¼
exp ð�ða1j<u; z� z0>jÞa2 Þ=a0, and u is a unit-length direction vec-

tor in R2. The resulting allele frequencies are equal along direc-

tions perpendicular to u, and this model can thus be viewed as a

generalization of the SPA model (Yang et al., 2012)

(Supplementary Information §1.4). In the simulations, we drew

100 different direction vectors uk from a von Mises distribution (a

circular analogue of the Normal distribution), and simulated 500

SNPs using each of these direction vectors.

Supplementary Figure S2 shows example allele frequency sur-

faces from these two covariance decay models. For each parameter

combination in the above models, we simulated 10 random datasets,

and used PCA and our algorithm GAP to infer the spatial coordin-

ates zi. PCA infers the locations up to an orthogonal transformation,

while GAP infers these locations up to an invertible linear trans-

formation which is related to the curvature of the allele frequency

variance gð0Þ. We use the true geographic locations of a random

subset of 20% of the simulated individuals to rescale the coordinates

inferred by PCA and GAP. As a measure of spatial reconstruction

accuracy, we use the root mean squared error (RMSE) between

the inferred locations bz i and the true locations zi measured asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn
i¼1

kzi � bz ik2

s
.

For most parameter combinations in both the covariance decay

models, the RMSE of GAP is substantially lower than that of PCA

(Table 1 and Supplementary Table S6). In fact, we prove that under

our spatial probabilistic model, GAP performs at least as well as PCA

in the asymptotic regime where the sample size n goes to infinity

(Supplementary Information §1.4). For some simulation parameter

combinations, the RMSE of PCA is slightly better than the RMSE of

GAP by a few percent (Table 1 and Supplementary Table S6), which

is due to the sample size being finite. Figure 1 illustrates the concep-

tual difference between GAP and PCA. PCA tries to embed individ-

uals into a two dimensional space which preserves the pairwise

genetic distance between all pairs of individuals as estimated from

their genotype data. On the other hand, GAP takes a more local ap-

proach by using the genotype data from only genetically similar pairs

of individuals to estimate their spatial distance. This leads to a quali-

tatively better low-dimensional embedding. Simulation results for

other parameter settings for these isotropic and directional covariance

decay models bear out this intuition (Supplementary Tables S1–S10).

3.2 Analysis of diverse human population datasets
We applied GAP to three public genotype datasets that have been

previously analyzed in studies of population structure—(i) the

Human Origins dataset containing 198 diverse populations that has

been used to analyze ancient admixture (Lazaridis et al., 2014), (ii)

the GLOBETROTTER dataset of 95 populations (Hellenthal et al.,

2014) and (iii) the Population Reference Sample (POPRES) dataset

(Nelson et al., 2008) (Supplementary Information §1.6).

• Human Origins: The publicly available release (Lazaridis et al.,

2014) contains 1945 individuals genotyped at 600 841 SNPs.

We used a subset of 863 individuals from 91 diverse populations

from North Africa and Western Eurasia in order to have fairly

uniform sampling over the relevant geographic region. We con-

sidered autosomal SNPs which were filtered using plink for devi-

ation from Hardy-Weinberg equilibrium, and also excluded

SNPs in linkage disequilibrium by pruning SNP pairs which had

a pairwise genotypic linkage disequilibrium r2 of greater than

10% within sliding windows of 50 SNPs (with a 5-SNP incre-

ment between windows). This left us with a set of 127 922

SNPs. PCA applied to this dataset produced a visually poor sep-

aration of the populations in Eastern Europe and Western Asia

(Fig. 2(c)). However, population structure is better discerned

using our localization algorithm GAP, which also shows a strong

correlation between the true sampling locations and the inferred

population locations (Fig. 2(b)). This pulling together of individ-

uals from geographically disparate regions by PCA is consistent

with our observations in simulated data (Fig. 1), where we see

that the genetic correlation between distant samples is not as in-

formative about spatial ancestry as that between spatially prox-

imate samples. On the other hand, our approach of using local

genetic distances alleviates this issue and better preserves the sep-

aration between geographically dispersed populations.

• GLOBETROTTER: This dataset contains 486 669 SNPs from 1

530 individuals from 95 diverse human populations. We considered

the subset of individuals sampled from Europe, the Middle East,

North and East Africa and Western, Central and South Asia in

order to have a fairly uniform sampling across geography. We fil-

tered SNPs in linkage disequilibrium and violating Hardy-Weinberg

equilibrium in the same manner as for the Human Origins dataset,

882 A.Bhaskar et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
Deleted Text: &hx0026; 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
Deleted Text:  
Deleted Text:  
Deleted Text: a
Deleted Text: b
Deleted Text: ,
Deleted Text: c
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw720/-/DC1
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,


resulting in a final dataset of 71 736 SNPs from 1046 individuals

from 59 subpopulations. Applying PCA and our localization algo-

rithm GAP to this dataset (Supplementary Fig. S3), we noticed a

similar pattern as in the Human Origins dataset, where PCA pulls

together individuals from Southern Europe, North Africa and the

Middle East into a cluster, much more so than GAP.

3.3 Spatial reconstruction accuracy
The spatial coordinates assigned by GAP are effective at visually dis-

cerning population structure (Fig. 2, Supplementary Figs S3 and S4),

even where PCA has difficulty distinguishing them. We also evaluated

the performance of GAP in assigning spatial coordinates to new samples

given access to the sampling locations of a subset of individuals. We

used a random subset of 20% of the subpopulations in each dataset

to transform the PC coordinates from PCA and the coordinates

inferred by GAP into latitude-longitude coordinates (Supplementary

Information §1.6). Since there is substantial variability in the recon-

struction error depending on the subset that is used for rescaling coord-

inates, we used 100 random training data subsets and computed the

reconstruction RMSE on each of them. We find that GAP exhibits 31%

lower error for the Human Origins dataset than PCA, and 10% lower

error for the GLOBETROTTER dataset (Supplementary Table S11).

3.4 Application to correcting ancestry confounding

in GWAS
Consider the following prospective model for a quantitative pheno-

type y,

yi ¼ aþ
Xp

‘¼1

b‘xi‘ þ ki þ ei; (4)

where a is an intercept term, b‘ is the effect size of SNP ‘ and ki and

ei are the environmental and noise contributions respectively. The

linear model in (4) can also be adapted to binary phenotypes using

the following generalized linear model,

yi � Binomial 2; logit�1 aþ
Xp

‘¼1

b‘xi‘ þ ki

 ! !
: (5)

Population structure can induce correlations between the genotypes

at different SNPs ‘ and ‘0, and also between the genotypes and envir-

onmental contribution k. Unaccounted structure can thus lead to

spurious genotype-phenotype associations (Campbell et al., 2005).

PCA-correction (Price et al., 2006) and linear mixed models

(LMM) (Kang et al., 2010) are popular approaches for dealing with

ancestral confounding which use the above prospective models for

testing if b‘ ¼ 0. Song et al. (Song et al., 2015) showed that testing

b‘ ¼ 0 in (4) or (5) is equivalent to testing R‘ ¼ 1 in the following

inverse regression model,

xi‘ j yi; zi � Binomial ð2; hi‘Þ

hi‘ ¼
j‘R

yi

‘ q‘ðziÞ
1� q‘ðziÞ þ j‘R

yi

‘ q‘ðziÞ
:

(6)

In (6), R‘ is the genetic risk factor of the alternate allele at SNP ‘

and j‘ is an intercept term that absorbs the effects of the other

SNPs. The retrospective model in (6) accounts for population

Fig. 2. PCA and GAP visualization of the North African and West Eurasian samples in the Human Origins dataset. Each data point corresponds to the sampling lo-

cation of a population. (a) True sampling locations, (b) GAP reconstructed locations, (c) PCA reconstructed locations and (d) population legends. The areas of the

circles are proportional to the estimated variance in the reconstructed locations of the samples in each subpopulation, while the areas of the diamonds are pro-

portional to the number of sampled individuals from the population (Color version of this figure is available at Bioinformatics online.)
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structure by testing the distribution of the genotype conditional on

the ancestry-dependent allele frequency function q‘ðzÞ. Our associ-

ation testing procedure, Stratification Correction via GAP (SCGAP),

also operates in the retrospective model of (6). We first estimate the

ancestry coordinates bz i for each individual i in the sample using our

localization algorithm GAP. We then estimate j‘ under the null hy-

pothesis (while setting R‘ ¼ 1), and estimate R‘ and j‘ under the al-

ternate hypothesis for each SNP as follows:

(1) Estimate the spatial allele frequency function q‘ðzÞ for each

SNP ‘ by assuming that the allele frequencies vary smoothly over

space. To this end, we use the squared exponential kernel,

bq‘ðbz iÞ /
Xn

j¼1

xj‘

2
exp �1

2
kH�1ðbz i � bz jÞk2

� �
: (7)

The two-dimensional kernel bandwidth matrix H in (7) is chosen

using Scott’s rule (Scott, 1979).

(2) Estimate the genetic risk factor R‘ and intercept term j‘ using

Newton’s method (Supplementary Information §2).

In principle, one could perform the above two steps using the co-

ordinates bz i inferred from some other algorithm, and we thus also

compare performance using the (unknown) true ancestry coordin-

ates zi and using the coordinates inferred by PCA. We refer to the

work of Song et al. (2015) for a comparison of the retrospective

model association test common to their method GCAT and our

work, with the prospective model association tests performed by the

PCA-correction and LMM approaches.

3.4.1 Simulations

We simulated genotype data for n ¼ 2000 individuals at p ¼ 50 000

SNPs using the isotropic and directional allele frequency covariance

decay models described earlier. We generated phenotype data using a

linear model with genotypic, ancestry-dependent and random environ-

mental effects, with 20%, 10% and 70% contributions respectively to

the phenotypic variance, and with 10 SNPs randomly chosen to have

non-zero effects drawn from a standard Normal distribution. In our

simulations, we inferred the two-dimensional ancestral coordinates

using GAP and PCA, and also compared them against an oracle which

has access to the true ancestry coordinates. Since our hypothesis test

conditional on estimated allele frequencies operates in the same retro-

spective model as the GCAT method (Song et al., 2015), we also com-

pare our results using GCAT with 2 and 6 latent factors. For most

parameter combinations, SCGAP has higher power than PCA or

GCAT (Fig. 3 and Supplementary Figs S5–S10 and Supplementary

Tables S12–S13), and has similar power as the oracle procedure that

uses the true ancestry coordinates in our association test.

3.4.2 Analysis of Northern Finland Birth Cohorts dataset

We analyzed a dataset of 10 quantitative metabolic traits from 364

590 SNPs of 5,402 individuals of a birth cohort from Northern

Finland (NFBC) (Sabatti et al., 2009). We filtered individuals and

SNPs using the same criteria described by Song et al. (2015), and

were left with 335 143 SNPs and 5246 individuals. We added fea-

tures for known confounders such as sex, oral contraceptive use,

pregnancy status and fasting status according to the same procedure

described in the first analysis of this dataset by Sabatti et al. (2009),

and performed a Box-Cox transform on the median 95% of trait

values to make the distribution of traits as close to a normal distri-

bution as possible (We also performed the association test on the un-

transformed values for the C-reactive protein and Triglyceride level

traits, since these traits appear exponentially distributed and the

equivalence of the retrospective and prospective models that we rely

on also holds for exponentially distributed traits (Song et al.,

2015).). After applying genomic control (Devlin and Roeder, 1999)

to correct for inflation of the log-likelihood ratios from our associ-

ation test (Supplementary Fig. S11), we identified 17 significant loci

(Supplementary Tables S14 and S15), 16 of which were also re-

ported by GCAT, at a significance threshold of p < 7:2� 10�8 that

has been used in previous works on this data. Other association tests

that operate in the prospective model identify between 11 and 14

loci (Kang et al., 2010). Out of these 17 loci identified by SCGAP,

15 have been identified in independent association studies on differ-

ent samples (Supplementary Table S16).

4 Discussion

In this paper, we developed a novel spatial probabilistic model of

allele frequency evolution that avoids imposing any explicit para-

metric form for the dependence of allele frequencies on geographic

location. The flexibility of our model allows us to generalize sev-

eral popular parametric models of allele frequency evolution.

Based on our model, we develop an ancestry localization algorithm

GAP that generalizes parameter-free dimensionality reduction

approaches such as PCA, and that we prove performs at least as

well as PCA for large sample sizes. Our algorithm, which can be

viewed as a form of manifold learning, also adds to the rich litera-

ture on theoretical population genetic models (McVean, 2009;

Paschou et al., 2007; Patterson et al., 2006) that can motivate the

application of PCA for detecting population structure from geno-

type data. Our algorithm is also very efficient: for any candidate

distance threshold used for estimating local spatial distances from

local genetic distances, our algorithm has computational complex-

ity Oðn2pÞ (assuming p	 n), which is the cost of computing the

inner product matrix from a genotype matrix with n individuals

and p SNPs. This is also the same computational complexity

required by dimension-reduction methods such as PCA.

Our spatial probabilistic model can also be extended to incorpor-

ate other demographic and evolutionary forces, and we leave these

for future work. One can potentially infer the spatial origin of the an-

cestors of admixed samples by applying our method to the output of

local-ancestry inference algorithms (Price et al., 2009). Admixture

Fig. 3. ROC curves for our stratification correction procedure with ancestral co-

ordinates inferred using GAP (SCGAP), PCA, or using the true coordinates. We

also compared our results with the GCAT method, which uses a latent factor

model (indexed by d) to estimate the allele frequencies for each individual at

each locus. Genotypes were drawn according to the isotropic covariance

decay model with a0 ¼ a2 ¼ 1 and a1 ¼ 16 (same simulation parameters as

Figure 1(a)) (Color version of this figure is available at Bioinformatics online.)
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might also be directly incorporated into our spatial probabilistic

model by jointly inferring admixture proportions along with the spa-

tial covariance function, similar in approach to the SpaceMix

(Bradburd et al., 2016) and SPA (Yang et al., 2012) models.

Our probabilistic model assumes that the decay in allele frequency

covariance around a given spatial location does not depend on the lo-

cation itself. This is an idealized model of isolation by distance where

there are no sharp geographic or genetic barriers to random mating

between spatially proximate populations. We leave the extension of

our model to handle such spatial heterogeneity for future work.

We also developed an association testing procedure, SCGAP, for

genotype-trait association that uses the ancestral coordinates

inferred by GAP and an exponential kernel to estimate smooth allele

frequency functions for every SNP. Our association test is based on

a retrospective model that tests the distribution of the genotype con-

ditional on the phenotype and the estimated allele frequency func-

tion (Song et al., 2015). We find that using the ancestry coordinates

inferred by GAP in our association test performs almost as well as

knowing the true spatial ancestry coordinates. Moreover, for simu-

lated datasets, our association test exhibits slightly better perform-

ance than the GCAT test that uses a different allele frequency

estimation procedure (Hao et al., 2016). On the NFBC dataset, our

method recovers the same set of associations as GCAT. However,

our procedure can control for ancestry confounding using just two

ancestry components, as opposed to GCAT which was used with six

latent factors and an intercept, in both the simulations and for the

NFBC dataset. Our maximum likelihood estimation for the hypoth-

esis test at each SNP is also very efficient, employing the quadrati-

cally converging Newton method to estimate the intercept and

genetic risk factors at each SNP.

Data: The POPRES and NFBC datasets were obtained from

dbGaP (Study Accession phs000145.v4.p2 and phs000276.v2.p1,

respectively). The Human Origins dataset was obtained from

https://genetics.med.harvard.edu/reich/Reich_Lab/Datasets_files/

EuropeFullyPublic.tar.gz, and the GLOBETROTTER dataset was

made available by George Busby.

Software: The source code for our software is available at

https://github.com/anand-bhaskar/gap.
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