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Abstract

Motivation: Protein complexes are one of the keys to studying the behavior of a cell system. Many

biological functions are carried out by protein complexes. During the past decade, the main strat-

egy used to identify protein complexes from high-throughput network data has been to extract

near-cliques or highly dense subgraphs from a single protein–protein interaction (PPI) network.

Although experimental PPI data have increased significantly over recent years, most PPI networks

still have many false positive interactions and false negative edge loss due to the limitations of

high-throughput experiments. In particular, the false negative errors restrict the search space of

such conventional protein complex identification approaches. Thus, it has become one of the most

challenging tasks in systems biology to automatically identify protein complexes.

Results: In this study, we propose a new algorithm, NEOComplex (NECC- and Ortholog-based

Complex identification by multiple network alignment), which integrates functional orthology infor-

mation that can be obtained from different types of multiple network alignment (MNA) approaches

to expand the search space of protein complex detection. As part of our approach, we also define a

new edge clustering coefficient (NECC) to assign weights to interaction edges in PPI networks so that

protein complexes can be identified more accurately. The NECC is based on the intuition that there is

functional information captured in the common neighbors of the common neighbors as well. Our re-

sults show that our algorithm outperforms well-known protein complex identification tools in a bal-

ance between precision and recall on three eukaryotic species: human, yeast, and fly. As a result of

MNAs of the species, the proposed approach can tolerate edge loss in PPI networks and even dis-

cover sparse protein complexes which have traditionally been a challenge to predict.
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1 Introduction

Understanding mechanisms underlying protein complexes is one of

the keys to revealing the behavior of a cell system. Protein com-

plexes are important functional units to biological processes within

a living cell. Most proteins cooperate with their protein interaction

partners and form a complex to perform their biological function.

To detect protein complexes, several experimental methods have

been proposed. The Tandem Affinity Purification with mass spec-

trometry (TAP-MS) (Rigaut et al., 1999) is one of the most preferred

experimental methods to detect protein complexes. In brief, TAP-

MS adds a designed TAP tag on the C-terminal of a target protein

and uses beads coated with antibodies or other proteins which can

bind with the tag to catch the target protein and all other proteins

which are binding with the target protein. Note that these experi-

mental approaches produce high-throughput protein–protein inter-

action (PPI) data, but they actually result in false positives and false

negatives in protein complex detection (Berger et al., 2013) due to

the designed TAP tags (Xu et al., 2010) and multiple washing in the

purification steps (Li et al., 2010). Luminescence-based mammalian

interactome mapping is another popular method to detect inter-

action between proteins (Blasche and Koegl, 2013), but it has a simi-

lar disadvantage that proteins are linked to Renilla luciferase and

affinity tags. The cell lysis step also causes the disruption of weak

and transient PPIs (Sahni et al., 2015; Snider et al., 2015; Taipale

et al., 2014).

On the other hand, genome-scale PPI data are currently available

through high-throughput methods such as yeast-two-hybrid. With

the increasing amount of PPI data, automatically identifying protein

complexes from PPI networks has become an efficient way to

achieve the objectives of this study during the past decade. Many

approaches have been developed to discover protein complexes,

such as MCL (van Dongen, 2000), MCODE (Bader and Hogue,

2003), RNSC (King et al., 2004), DPClus (Altaf-UI-Amin et al.,

2006), CFinder (Adamcsek et al., 2006), PCP (Chua et al., 2008),

CMC (Liu et al., 2009), COACH (Wu et al., 2009), ClusterONE

(Nepusz et al., 2012) and WPNCA (Peng et al., 2014). All in all,

these tools aim to extract from a single PPI network near-cliques or

highly connected clusters, which may have the potential to be con-

sidered protein complexes. However, as mentioned earlier, most

existing PPI networks have errors and missing interactions.

Therefore, other methodologies have provided different kinds

of information, such as gene expression data (Maraziotis et al.,

2007; Ulitsky and Shamir, 2007), structural interface data of pro-

tein domains (Jung et al., 2010; Singh et al., 2010) and functional

annotation (Cho et al., 2007, 2015; Li et al., 2007; Zhang et al.,

2006). The extra information might help search for protein com-

plexes, but they require wet lab experiments. Also, the functional

annotations of proteins may be unverified or outdated. In addition,

machine learning techniques have been proposed based on topo-

logical properties of protein complexes to solve this problem (Qi

et al., 2008), but they require training data. Readers may refer to

Li et al.’s (2010) survey for further details of these proposed

approaches.

As more and more PPI data from different species have been ob-

tained, a few studies have begun to use cross-species comparison to

reveal conserved protein complexes (Davis et al., 2015; Dost et al.,

2007; Hirsh and Sharan, 2006; Sharan et al., 2004). Sharan et al.

defined a complete node- and edge-weighted (pairwise) orthology

graph, in which each node contains two proteins from different spe-

cies, and it is weighted by the sequence similarity between these two

proteins. Each edge is weighted by the weights of the two

interactions within every PPI network of the two species. Then they

used a probabilistic model to define the likelihood ratio score of

each subgraph in the orthology graph and utilized a bottom-up seed-

and-extension approach to search for potential conserved protein

complexes (Hirsh and Sharan, 2006; Sharan et al., 2004). Later,

Dost et al. (2007) developed a tool for querying similar subgraphs

between PPI networks, called QNet. They considered both node and

edge similarity as well as the penalty score for node insertion and de-

letion to define the similarity between two subgraphs. Then, QNet

employed a color coding algorithm to perform tree queries in a

bounded-treewidth graph. In their computational experiments, they

obtained conserved complexes by querying known yeast protein

complexes against the PPI network of fly. Dutkowski and Tiuryn

(2007) exploited evolution-based PPI network alignment techniques

to detect conserved functional modules across multiple species. They

first clustered all the proteins from different species based on pair-

wise sequence similarity such that the proteins in each cluster are

assumed to have an evolutionary relationship. Then, the conserved

protein complexes were identified based on edge weights in a con-

served PPI network, in which edge weights are defined under the du-

plication model and speciation mode of the PPI network. Recently,

Davis et al. (2015) utilized canonical correlation analysis to analyze

the relationships between topological features and biological func-

tion in PPI networks, and clustered functionally conserved proteins

between different species.

In summary, these previous studies used network alignment or

orthology information between different species to detect conserved

complexes only. However, they found only functionally similar

components between PPI networks of different species (Cho et al.,

2016). Moreover, network alignment approaches typically focus on

clustering similar proteins across species, whereas solving the pro-

tein complex identification problem requires clustering proteins

with high connectivity in the same species.

On the other hand, there are three significant challenges in pro-

tein complex identification. First, as mentioned, PPI networks may

have many false positive interactions and false negative edge loss

due to the limitations of high-throughput experiments, which re-

sult in the restricted search space of topology-based approaches be-

cause edge connectivity information is critical to such methods.

Second, PPI networks could have gene duplication and interaction

rewiring in the evolution process. More precisely, once gene dupli-

cation has occurred, the duplicated genes could have functional di-

vergence due to sequence mutations, which may change the

structure of the interface between interacting proteins (Zhao et al.,

2014). Moreover, interaction rewiring could also cause corres-

ponding proteins to lose original interactions or make new inter-

actions with other proteins (Arabidopsis Interactome Mapping

Consortium, 2011; Berg et al., 2004; Wagner, 2001). These evolu-

tionary events may lead to distinct topology and a different num-

ber of constituent proteins in two functionally similar protein

complexes from different species. To accurately determine protein

complexes from topology-based PPI network alignment techniques

is thus difficult.

Another problem which needs to be addressed is that the sub-

units of a heteromultimeric complex may not have similar sequences

and functions. Therefore, sequence-only-based approaches have dif-

ficulty detecting such protein complexes.

Nevertheless, the aforementioned previous work shows that

cross-species orthology information can enhance protein complex

identification. For this reason, the aim of this study is to better ad-

dress this challenging problem in a more principled and comprehen-

sive way by utilizing functional orthology information across
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multiple species to expand the search space of protein complex iden-

tification and compensate for the false negative edge loss in PPI

networks.

Unlike most of the previous protein complex identification

approaches which searched for protein complexes in a single PPI

network or aligned only conserved protein complexes across species,

our algorithm, NEOComplex, provides a seed-and-extension ap-

proach for identifying protein complexes by appending MNAs.

More importantly, the proposed algorithm discovers some biolo-

gical examples that cannot be found by conventional complex iden-

tification tools. Precisely, this evidence, such as the Mob1p–Dbf2p

kinase complex of human, the chaperonin containing TCP-

1:oligomeric protein prefoldin (CCT:PFD) complex of yeast, and the

tubulin complex of fly, derived from our computational experiment

across the three species, have very low density. Furthermore, the

proposed algorithm identifies the protein complexes even if the se-

quence similarity between the subunits in these complexes is non-

obvious. Finally, we show that NEOComplex outperforms five

popular complex identification tools on three species: human, yeast

and fly. It is expected that approaches such as ours, which employ

sequence and local topology through seed-and-extension, will ex-

pand protein complex identification as network data continues to

grow.

2 Methods

We first find local clusters through seed-and-extension in a single

PPI network and then pursue the intuition that by combing orthol-

ogy information of each protein in these clusters across multiple spe-

cies, the algorithm can compensate for missing PPIs and be tolerant

to the effects of noise in PPI data. To achieve this goal, we also de-

signed a new edge clustering coefficient (NECC) and apply this

measure to orthology relationships which are incorporated into

MNA.

2.1 New edge clustering coefficient
In order to better quantify the connectivity between two nodes, we

present a new edge clustering coefficient (NECC) in this study. As

the clustering coefficient of a node cannot indicate how its neighbors

are interconnected (Soffer and V�azquez, 2005), Wang et al. (2012)

and Peng et al. (2014) introduced the ECC to predict essential pro-

teins and protein complexes. For each edge, they attempted to meas-

ure the closeness between its two end nodes as well as the entire

neighborhood of the nodes.

ECCðu; vÞ ¼ jZu;vj
minfdðuÞ � 1;dðvÞ � 1g ; (1)

where a PPI network is represented by an undirected graph

G ¼ ðV;EÞ, and each node v 2 V represents a protein and each edge

ðu; vÞ 2 E represents an interaction between nodes u and v. Zu;v is

defined to be the set of all common neighbors of u and v. The degree

of node u is denoted by d(u).

To characterize in-depth connectivity among the neighborhoods

of the common neighbors of two adjacent nodes u and v, we intro-

duce the following NECC. The main idea is to estimate the neigh-

borhood connectivity of u and v in a more hierarchical way.

Precisely, we further look at the common neighbors of the common

neighbors of the two adjacent nodes. The NECC is defined as

follows:

NECCðu; vÞ ¼ ðNu;v þ ECCðu; vÞÞ
ð2jZu;vj þ 1Þ ; (2)

where

Nu;v ¼
XjZu;v j

vi2Zu;v

ðECCðu; viÞ þ ECCðvi; vÞÞ: (3)

Obviously, NECC considers more widely the connectivity of the en-

tire neighborhood of two adjacent nodes and may better determine

whether a protein belongs to a complex. Based on such an NECC

measure, we identify protein complexes in a given center species by

using a seed-and-extension approach and combine this with the

functional orthology clusters derived by MNA across other species.

We remark that there have been several other mechanisms for

describing local connectivity. For example, the edge-GDV (Graphlet

Degree Vector) centrality (Solava et al., 2012) clusters edges based

on the similarity of edge-GDV, where edge-GDV illustrates the

topological feature of the involving neighborhood of an edge

(Milenkovi�c and Przulj, 2008; Milenkovi�c et al., 2010). Solava et al.

(2012) showed that edge-GDV is a sensitive measure of the topo-

logical similarity of edges, and the proteins clustered through edge-

GDV centrality have more closely related functions. In this study,

we alternatively used NECC to cluster proteins due to its emphasis

on the connectivity between their neighborhoods.

2.2 Weighted edge density
To ensure the high quality of our candidate complexes, we extend

the definition of edge density defined by Coleman and More (1983)

and redefined weighted edge density. We use weighted edge density

to remove the proteins that have a weak connection with the other

proteins in a candidate complex. Given a graph G ¼ ðV;EÞ;
v 2 V; e 2 E, the weighted edge density is defined as follows:

denðGÞ ¼ 2
P

e2EwðeÞ
jVj � ðjVj � 1Þ ; (4)

where w(e) is the NECC weight of edge e.

2.3 Functional orthologs
Any kind of orthology relationship between different species can be

used in NEOComplex. However, a series of studies used network

alignment to construct the orthology relationship and find conserved

patterns or pathways between PPI networks of different species (Kelly

et al., 2003; Sharan et al., 2004). In this study, we employed one of

the popular MNA methods, IsoRankN (Liao et al., 2009), to con-

struct the functional orthology relationship between proteins of mul-

tiple species. IsoRankN builds up an MNA by using the Personalized

PageRank algorithm to do the local partitioning of the functional

similarity graph constructed by the IsoRank algorithm (Singh et al.,

2008); it has been demonstrated that IsoRankN outperforms other

existing global network alignment algorithms in coverage and consist-

ency on multiple species. Also, IsoRankN is error tolerant, computa-

tionally efficient and can provide many-to-many functional similarity

relationships between proteins in different species. In the

Supplementary Material, we compare IsoRankN with several recent

MNA tools and show the advantages of IsoRankN over them. Here,

we note that the MNA tools cannot successfully derive protein com-

plexes on their own because they consider functionally conserved clus-

ters only as opposed to protein complex identification approaches.
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2.4 Redundant complex filtering
We use the overlapping score OS(A, B) to measure the similarity of

two protein complexes A, B and remove redundant predicted com-

plexes. If the OS score of two protein complexes is larger than a

given threshold, the complex with the lower weight edge density is

eliminated. The definition of OS(A, B) is as follows:

OSðA;BÞ ¼ jVA \ VBj2

jVAj � jVBj
; (5)

where jVAj and jVBj are the protein numbers of a predicted complex

A and a known complex B, respectively, and jVA \ VBj is the num-

ber of common proteins between complex A and complex B.

Notably, the OS score has been used in many previous studies

(Bader and Hogue, 2003; Jung et al., 2010; Li et al., 2008; Peng

et al., 2014; Wu et al., 2009) to determine whether a predicted com-

plex matches a known complex. Typically, if the OSðA;BÞ � 0:2, A

and B are considered to be matched. We count only those proteins

that belong to at least one known complex in each output cluster.

2.5 Main algorithm
Our algorithm, NEOComplex, proceeds in the following steps:

1. For every protein v in a chosen species, order the neighbors of v

by the NECC weight of the edge between v and its neighbors.

2. Let each protein be a seed. Insert one neighbor of the seed pro-

tein at a time into a set from the neighborhood with the highest

NECC weight. Then, repeat to add neighbors of the neighbor, if

needed, with the currently highest NECC, until the weighted

edge density of the complex is lower than the threshold (i.e.

denðGÞ < 0:009

3. After the extension step, such a complex is considered a candi-

date complex (called a NECC complex).

4. Collect all candidate complexes and filter out the highly overlap-

ping candidate complexes and the candidate complexes with less

than three member proteins.

5. For each of the target NECC complexes, include the previously-

determined functional orthologs of all the proteins in the com-

plex from the other species as a cluster. Consider those proteins

which are included by a functional orthology relationship from

the other species to be orthology complexes. For each orthology

complex, calculate NECC pairwisely for those protein pairs

which do not have an edge in their PPI network and add an edge

between a protein pair if the NECC weight between them is

non-zero. Finally, remove the proteins that do not have any edge

in the orthology complexes.

6. Output complex clusters, where each cluster contains one

NECC complex and several orthology complexes (as shown in

Fig. 1).

2.6 Performance comparison
We compared the performance of NEOComplex against five protein

complex identification approaches: MCL (van Dongen, 2000),

MCODE (Bader and Hogue, 2003), CMC (Liu et al., 2009),

COACH (Wu et al., 2009) and ClusterONE (Nepusz et al., 2012).

Prior work: Basically, these approaches can be divided into two

categories: local clustering of a single PPI network: MCL, MCODE

and ClusterONE, and searching for clique-based complexes in a sin-

gle PPI network: CMC and COACH. MCL (Markov Clustering) is a

classic graph clustering algorithm which applied two operators, ex-

pansion and inflation, on an adjacency matrix to simulate random

walks within the graph. The expansion operator was in charge of

extending the distance of random walks. The inflation operator then

changed the probabilities for all the walks in the graph, which

increased the probabilities of intra-cluster walks and reduced the

probabilities of inter-cluster walks. Finally, iterative expansion and

inflation separated the graph into many different segments.

MCODE is a seed-and-extension approach, which initially assigned

every node a weight, based on their local neighborhood densities.

Then, it chose the nodes with high weights as seed nodes to form ini-

tial clusters and expanded these clusters by outward traversing from

the seeds. Finally, MCODE filtered out the non-dense subgraphs

and outputted overlapping complexes. On the other hand, CMC, a

maximal-clique-based algorithm proposed by Liu et al. (2009) iden-

tified protein complexes from a single PPI network. First, CMC

applied a maximal clique mining algorithm (Tomita et al., 2006) to

obtain all maximal cliques. CMC then weighed all the interactions

based on a reliability measure (Liu et al., 2008) and ranked each cli-

que with its weighted density. In the last step, for any two highly

overlapping cliques, CMC either merged the two cliques into one or

removed the one that had lower weighted density depending on its

inter-connectivity. COACH (Wu et al., 2009) also detected protein

complexes based on finding cliques or highly dense subgraphs.

Moreover, it considered the core–attachment structure of protein

complexes to provide insights into the inherent organization of pro-

tein complexes. Recently, ClusterOne (Nepusz et al., 2012), which

is most similar to local clustering, is one of the state-of-the-art pro-

tein complex identification algorithms. Nepusz et al. (2012) defined

a cohesiveness score for a group of proteins based on two properties

of a subgraph representing a protein complex: (1) the subgraph

should have many reliable interactions between its subunits, and (2)

it should be well separated from the rest of the graph. Also, a pen-

alty term was defined to model the uncertainty in the data by assum-

ing the existence of undiscovered interactions in the PPI network.

Finally, they used a greedy seed-and-extension procedure to generate

predicted protein complexes.

We refer to the previous studies (Brohee and van Helden, 2006;

Liu et al., 2009; Nepusz et al., 2012; Wu et al., 2009) and follow

their recommended settings. A list of the parameter settings used in

our experiments is as follows. For MCL, we set inflation to 3.0. For

MCODE, we set node score percentage to 0, depth to 100 and per-

centage for complex fluffing to 0.3 (Brohee and van Helden, 2006).

For CMC, we set the number of iterations to 1, filter method to

Adjusted CD-distance, filter min score to 0, add method to Adjusted

Fig. 1. An example illustrating one of the output clusters derived by

NEOComplex: each output cluster contains one NECC complex extracted

from a single PPI network (e.g. the PPI network of human) based on NECC

and may derive additional orthology complexes across other species (e.g.

from yeast and fly) based on the orthology information of the proteins in the

NECC complex
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CD-distance, add min score to 0, min size to 3, overlap threshold to

0.5 and merge threshold to 0.15 (Liu et al., 2009). For COACH, we

used the recommended setting. For ClusterONE, we used the recom-

mended parameter setting and set density threshold to 0.6, merging

threshold to 0.8, and penalty value of each node to 2 (Nepusz et al.,

2012).

3 Results

Here, we introduce the evaluation method and compare

NEOComplex against the five well-known complex identification

approaches. We demonstrate that our predicted complexes match

with the reference set and the algorithm achieves the best balance in

precision and sensitivity. Moreover, we show that MNA is capable

of tolerating the edge loss of PPI networks and discovering very

sparse complexes that have missing interactions in PPI networks.

Note that we did not compare NEOComplex against the previous

approaches for cross-species comparison because these studies

focused on finding only conserved protein complexes between spe-

cies rather than all possible protein complexes. Our goal is to use

network similarity to expand the list of complexes.

3.1 Datasets
We carried out all the experiments on three eukaryotic PPI net-

works: Homo sapiens (human), Saccharomyces cerevisiae (yeast)

and Drosophila melanogaster (fly). For human, the PPI network was

constructed by combining the data from HPRD (Human Protein

Reference Database, 7/2010) (Keshava Prasad et al., 2009) and

BioGRID (version 3.2.109) (Chatr-aryamontri et al., 2013). For

yeast and fly, both of the PPI networks were retrieved from

BioGRID. The numbers of nodes and edges are 15459 and 144895,

6194 and 74852, and 7970 and 36047 in the three PPI networks of

human, yeast, and fly, respectively.

3.2 Reference sets
For the purpose of evaluating the predicted protein complexes, we

used the protein complexes catalog compiled by Vinayagam et al.

(2013). The catalog was divided into two parts: one was extracted

from the literature and the other was predicted by their approach.

Here, we used only the former to compile our reference set due to

the high confidence interactions. In particular, for human, they used

the data collected from the Comprehensive Resource of Mammalian

protein complexes (CORUM) (Ruepp et al., 2008), and protein

complexes were annotated by GO (Ashburner et al., 2000), Proteins

Interacting in the Nucleus database (PINdb) (Luc and Tempst,

2004) and KEGG modules (Kanehisa et al., 2012). For yeast, the

data source came from the Wodak database (CYC2008) (Pu et al.,

2009), PINdb and GO complexes. For fly, they used GO complexes

and 556 protein complexes identified by the affinity purification

mass spectrometry pull-down study (AP-MS) in Guruharsha et al.

(2011). There were 3638, 2173 and 3077 protein complexes for

human, yeast and fly, respectively. We further eliminated those pro-

teins that are not in our PPI networks. Moreover, complexes that

contained at most two proteins were ignored. Consequently, there

were a total of 2351, 1278 and 1637 protein complexes in the refer-

ence sets of human, yeast and fly, respectively.

3.3 Quality of complex identification
To formally evaluate the quality of our predicted results, we calcu-

lated two statistic measures which are widely used in the literature:

precision and recall. Precision is the fraction of the number of the

predicted complexes that match at least one known complex over the

total number of all predicted complexes. On the other hand, recall is

the fraction of the known complexes that match at least one predicted

complex among all known complexes. The F-measure is the harmonic

mean of precision and recall and shows the overall performance of a

predicted result. The definition of F-measure is as follows:

F �measure ¼ 2� Precision� recall

Precisionþ recall
: (6)

As mentioned in Section 2, we used the overlapping score (OS)

to determine the correctness of our predicted complexes. Note that a

predicted complex is defined to be matched with a known complex

if the OS score between them is not <0.2. Moreover, for each pre-

dicted complex, we only count its best match with the highest OS

score in our experimental results.

3.4 Performance comparison result
We compared the performance of NEOComplex against the five

protein complex identification approaches (see Section 2.6). For our

algorithm, we found that the best value for the threshold of

weighted edge density through experimental observation was 0.009.

Similar to many previous studies, we set the OS threshold to 0.2 to

determine whether two complexes are matched or not. For

IsoRankN, since the topology of protein complex could be rewired

between species, we set alpha to 0.2 to reduce the effect of topology,

and set K to 3.

Table 1 shows the comparison results in the PPI networks of the

three species. The results demonstrate that NEOComplex outper-

forms the other approaches in F-measure in all cases. In particular,

the performance of NEOComplex is stable in the PPI network of

each species. This demonstrates that our algorithm has the best bal-

ance between precision and recall. More precisely, as shown in

Table 1, MCODE and MCL have good precision in yeast (and

MCODE also has good precision in fly); however, their recall is very

low due to the fact that the number of their total output complexes

is small. The number of our output complexes is at least 42 and 5

times larger than that of MCODE’s complexes in yeast and fly, re-

spectively (777 versus 18 for yeast, and 483 versus 90 for fly). The

number of our output complexes for yeast is 16 times as large as

MCL’s (777 versus 46). Moreover, although ClusterONE has better

precision than NEOComplex for the three species, its recall is rela-

tively smaller (0.26 versus 0.47 for human, 0.28 versus 0.41 for

yeast and 0.19 versus 0.29 for fly). The number of our output com-

plexes is at least twice as large as that of ClusterONE’s complexes

for every species (1154 versus 495 for human, 777 versus 259 for

yeast and 483 versus 224 for fly). On the other hand, CMC and

COACH generated a large set of predicted complexes, and thus

have better results in #Matched complexes, i.e. more predicted com-

plexes that match a known complex. However, NEOComplex actu-

ally has similar performance in the number of matched known

complexes (see Column 4 in Table 1), though it generally has higher

F-measure than that of CMC and COACH.

As shown in Table 1, ClusterONE has good precision in the three

species. Note that, like our algorithm, ClusterONE performed a

greedy seed-and-extension approach to generating predicted protein

complexes. The difference between these two seed-and-extension al-

gorithms is how to quantify the within-connectivity of a protein com-

plex. ClusterONE used a cohesiveness score to describe how likely a

cluster of proteins is a complex (Nepusz et al., 2012). In contrast, in

this study, we developed NECC to measure the closeness between

two proteins, i.e. the weight of their PPI edge. Moreover, we
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incorporated orthology information into protein complex identifica-

tion by appending network alignments across multiple species. We

have further compared with ClusterONE in the Supplementary

Material.

3.5 Robustness and error-tolerance
Due to many false negatives in most PPI networks, we further verify

the error tolerance of NEOComplex to PPI edge loss. For this pur-

pose, we randomly removed the PPI edges from our test yeast net-

work (with 6194 nodes and 74 852 edges) to create four simulated

yeast networks, and evaluated the performance of NEOComplex on

them (Liu et al., 2009). The current edge density of the test yeast

network is 0.0039. We reduced the edge number from 74 852 to

65 211, 55 621, 46 031 and 38 400 to uniformly decrease the edge

density of the yeast network from 0.0039 to 0.0034, 0.0029, 0.0024

and 0.002, respectively. Note that the value of the lowest edge dens-

ity, 0.002, is the same as the edge density of the yeast PPI network in

highly reliable Krogan dataset (Krogan et al., 2006). Another highly

confident PPI datasets such as Gavin et al. (2006) and Collins

(2007) have larger edge density though.

Figure 2 shows that the performance of NEOComplex remains

stable in F-measure for the four simulated yeast networks.

Specifically, in comparison with the performance of the other

approaches conducted in the simulated yeast network with the low-

est edge density, the F-measure of NEOComplex is 0.31, while

MCL, CMC, COACH and ClusterONE derived relatively lower F-

measure: 0.03, 0.18, 0.19 and 0.24, respectively. Note that

MCODE output only eight complexes in this experiment. These

tools cannot perform as they did because the edge connectivity infor-

mation is critical to them. NEOComplex utilized functional orthol-

ogy information and can tolerate the effects of missing interactions

in PPI data. More precisely, for the simulated yeast network with

edge density equal to 0.002, 22% (143/641) of total output com-

plexes, 25% (58/233) of matched complexes and 35% (119/343) of

matched known complexes are contributed by orthology complexes

in our result. We will discuss more benefits derived by the orthology

complexes in the next section.

3.6 Orthology complexes
Our other contribution is that we demonstrate that there are some

predicted complexes that cannot be revealed by other conventional

approaches due to false negative edge loss in PPI networks. We call

these complexes sparse complexes. These are in fact not sparse in

real biological systems, but they are sparse in PPI networks due to

experimental false negatives. Note that each cluster derived by

NEOComplex contains one NECC complex and several orthology

complexes, as illustrated in Figure 1. In Figure 3, the proteins col-

ored in gray belong to the NECC complex in each cluster. Here, in

particular, we consider the sparse orthology complexes and show

the benefit of utilizing MNA. The number of such complexes is 17,

49 and 43 in human, yeast and fly, respectively. These complexes

actually contain few PPI edges so that they are neither near-cliques

Table 1. Performance comparison result

Tools #Matched complexes #Total complexes #Matched known complexes Precision Recall F-measure

Human

NEOComplex 538 1154 1100 0.47 0.47 0.47

MCL 153 389 391 0.39 0.17 0.23

MCODE 33 63 115 0.52 0.05 0.09

CMC 1402 5417 1673 0.26 0.71 0.38

COACH 1024 4274 1150 0.24 0.49 0.32

ClusterONE 271 495 609 0.55 0.26 0.35

Yeast

NEOComplex 334 777 519 0.43 0.41 0.42

MCL 27 46 72 0.59 0.06 0.10

MCODE 17 18 41 0.94 0.03 0.06

CMC 367 2316 520 0.16 0.41 0.23

COACH 341 1517 333 0.22 0.26 0.24

ClusterONE 184 259 359 0.71 0.28 0.40

Fly

NEOComplex 191 483 468 0.40 0.29 0.33

MCL 113 324 292 0.35 0.18 0.23

MCODE 45 90 97 0.5 0.06 0.11

CMC 167 445 453 0.38 0.28 0.32

COACH 274 701 484 0.39 0.30 0.33

ClusterONE 131 224 317 0.58 0.19 0.29

Note: #Matched complexes is the number of predicted complexes that match at least a known complex. #Total complexes is the total number of predicted com-

plexes generated by each approach. #Matched known complexes is the number of known complexes in a reference set matched with the complexes derived by

each approach. Note that the number of the known complexes in human, yeast and fly are 2351, 1278 and 1637, respectively.

Fig. 2. Simulation experiments for the robustness of NEOComplex
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nor highly dense clusters. Precisely, these complexes have very low

density no matter what kind of edge weight is used to define dens-

ity. The reason why such sparse protein complexes can be dis-

covered by NEOComplex is that, MNA across different species

can compensate for missing PPI edges in one species from the other

species.

Figure 3a–c shows three examples of these predicted complexes.

The first example is the Mob1p–Dbf2p kinase complex of human

cells (see Fig. 3a). There are only three edges between the member

proteins in this complex, but our algorithm can correctly predict the

Mob1p–Dbf2p kinase complex in the PPI network of human and

match four proteins (in pink color) in the complex. For the other

two examples, the CCT:PFD complex of yeast (see Fig. 3b) and the

tubulin complex of fly (see Fig. 3c), they have few interactions be-

tween member proteins in their corresponding PPI networks (i.e.

only one edge in the CCT:PFD complex and no edge in the tubulin

complex), which results in restricted search space. Similarly,

NEOComplex reveals these two complexes through network align-

ment across species. We specifically consider the performance of the

orthology complexes derived by our algorithm. As mentioned,

NEOComplex can extract sparse complexes, because they are actu-

ally derived from orthology complexes. Table 2 presents the detailed

performance of the orthology complexes, which emphasizes the

benefit of the multiple alignment process. The numbers of the total

predicted orthology complexes are only 247, 195 and 147 for

human, yeast and fly, respectively (i.e. only 21.4, 25.0 and 30.4% of

the total output complexes obtained for human, yeast and fly, re-

spectively). Note that the average precision of our orthology com-

plexes can achieve over 32%, which guarantees the quality of such

network-alignment-based complexes. Moreover, we filtered out

those orthology complexes that can be identified by other

approaches and derived the so-called sparse complexes (as shown in

Fig. 3). Most of the sparse complexes have too few interaction edges

in their PPI networks to be detected. Our algorithm, surprisingly,

can discover such complexes with the assistance of MNA across the

three species. The ratios of the sparse complexes derived to the total

output orthology complexes are 6.8% for human, 25.1% for yeast

and 29.2% for fly.

4 Conclusion

This study has demonstrated the benefit of combing orthology rela-

tionships across species with the proposed seed-and-extension ap-

proach to identify protein complexes. Our algorithm, NEOComplex,

can include the result of an arbitrary MNA algorithm as an input to

provide orthology information. Moreover, in the Supplementary

Material, we further analyzed the effect of weighted edge density

threshold used in NEOComplex and ClusterONE. Also, we investi-

gated the performance of using different functional orthology rela-

tionships obtained by different network alignment algorithms. The

further comparison has showed the usefulness of our algorithm by

incorporating orthology information. We hope that our algorithm fills

the gap in network data to enable better identification of particularly

sparse protein complexes, which may reveal novel biological findings.

Funding

This work was supported by the National Science Council (Taiwan) (NSC102-

2221-E007-075-MY3 and NSC105-2628-E007-010-MY3 to C.-S.L. and

C.-Y.M.) and Australian Research Council Grant (ARC DP130104770 to

Y.-P.P.C.). This work was also supported by the National Institutes of Health

(United States) (NIH R01GM081871 to B.B.).

Conflict of Interest: none declared.

References

Adamcsek,B. et al. (2006) Cfinder:locating cliques and overlapping modules in

biological networks. Bioinformatics, 22, 1021–1023.

Altaf-Ul-Amin,M. et al. (2006) Development and implementation of an algo-

rithm for detection of protein complexes in large interaction networks.

BMC Bioinformatics, 7, 207.

Fig. 3. The protein complexes that can only be discovered by NEOComplex

with functional orthology information: the pink nodes represent the matched

proteins in the reference complexes by NEOComplex in (a) human, (b) yeast

and (c) fly

Table 2. Performance of orthology complexes identification

Species #Matched orthology

complexes

#Total orthology

complexes

Precision #Sparse

complexes

Human 71 247 0.29 17

Yeast 68 195 0.35 49

Fly 51 147 0.35 43

Note: #Matched orthology complexes is the number of identified orthology

complexes that match at least one known complex. #Sparse complexes repre-

sents the number of complexes that can only be found by NEOComplex.

Identification of protein complexes by integrating multiple alignment 1687

Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx0025;
Deleted Text: &hx0025;,
Deleted Text: ,
Deleted Text:  percent
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx043/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx043/-/DC1


Arabidopsis Interactome Mapping Consortium. (2011) Evidence for network

evolution in an Arabidopsis interactome map. Science, 333, 601–607.

Ashburner,M. et al. (2000) Gene Ontology: tool for the unification of biology.

Nat. Genet., 25, 25–29.

Bader,G.D., and Hogue,C.W.V. (2003) An automated method for finding mo-

lecular complexes in large protein interaction networks. BMC

Bioinformatics, 4, 2.

Berg,J. et al. (2004) Structure and evolution of protein interaction networks: a

statistical model for link dynamics and gene duplications. BMC Evol. Biol.,

4, 51.

Berger,B. et al. (2013) Computational solutions for omics data. Nat. Rev.

Genet, 14, 333–346.

Blasche,S., and Koegl,M. (2013) Analysis of protein-protein interactions using

LUMIER assays. Methods Mol. Biol., 1064, 17–27.

Brohee,S., and van Helden,J. (2006) Evaluation of clustering algorithms for

protein-protein interaction networks. BMC Bioinformatics, 7, 488.

Chatr-Aryamontri,A. et al. (2013) The BioGRID interaction database: 2013

update. Nucleic Acids Res., 41, D816–D823.

Cho,H. et al. (2016) Compact integration of multi-network topology for func-

tional analysis of genes. Cell Systems, 3, 540–548. Also appeared in

RECOMB (2015), LNCS, vol. 9029, 62–64.

Cho,Y.R. et al. (2007) Semantic integration to identify overlapping functional

modules in protein interaction networks. BMC Bioinformatics, 8, 265.

Chua,H.N. et al. (2008) Using indirect protein-protein interactions for protein

complex prediction. J. Bioinform. Comput. Biol., 6, 435–466.

Coleman,T.F., and More,J.J. (1983) Estimation of sparse Jacobian matrices

and graph coloring problems. SIAM J. Numer. Anal., 20, 187–209.

Collins,S.R. et al. (2007) Toward a comprehensive atlas of the physical inter-

actome of Saccharomyces cerevisiae. Mol. Cell. Proteomics, 6, 439–450.

Davis,D. et al. (2015) Topology-function conservation in protein-protein

interaction networks. Bioinformatics, 31, 1632–1639.

Dost,B. et al. (2007) QNet: a tool for querying protein interaction networks.

In: Proceedings of the Of the 11th Research in Computational Molecular

Biology (RECOMB), LNCS, 4453, 1–15.

Dutkowski,J., and Tiuryn,J. (2007) Identification of functional modules from

conserved ancestral protein-protein interactions. Bioinformatics, 23,

149–158.

Gavin,A. et al. (2006) Proteome survey reveals modularity of the yeast cell ma-

chinery. Cell, 440, 631–636.

Guruharsha,K.G. et al. (2011) A protein complex network of Drosophila mel-

anogaster. Cell, 147, 690–703.

Hirsh,E., and Sharan,R. (2006) Identification of conserved protein complexes

based on a model of protein network evolution. Bioinformatics, 23,

e170–e176.

Jung,S.H. et al. (2010) Protein complex prediction based on simultaneous pro-

tein interaction network. Bioinformatics, 26, 385–391.

Kanehisa,M. et al. (2012) KEGG for integration and interpretation of large-

scale molecular data sets. Nucleic Acids Res., 40, D109–D114.

Kelly,R.M. et al. (2003) Conserved pathways within bacteria and yeast as re-

vealed by global protein network alignment. PNAS, 100, 11394–11399.

Keshava Prasad,T.S. et al. (2009) Human protein reference database!X2009

update. Nucleic Acids Res., 37, D767–D772.

King,A.D. et al. (2004) Protein complex prediction via cost-based clustering.

Bioinformatics, 20, 3013–3020.

Krogan,N.J. et al. (2006) Global landscape of protein complexes in the yeast

Saccharomyces cerevisiae. Nature, 440, 637–643.

Li,X.L. et al. (2007) Discovering protein complexes in dense reliable neigh-

borhoods of protein interaction networks. IN: Proceedings of the

Computational Systems Bioinformatics (CSB), pp. 157–168.

Li,X.L. et al. (2010) Computational approaches for detecting protein com-

plexes from protein interaction networks: a survey. BMC Genomics,

11(Suppl. 1), S3.,

Li,M. et al. (2008) Modifying the DPClus algorithm for identifying protein

complexes based on new topology structures. BMC Bioinformatics, 9, 398.

Liao,C.S. et al. (2009) IsoRankN: spectral methods for global alignment of

multiple protein networks. Bioinformatics, 25, i253–i258.

Liu,G. et al. (2008) Assessing and predicting protein interactions using both

local and global network topological metrics. In: Proceedings of the 19th

International Conference on Genome Informatics. Gold Coast, Australia,

pp. 138–149.

Liu,G. et al. (2009) Complex discovery from weighted PPI networks.

Bioinformatics, 25, 1891–1897.

Luc,P.V., and Tempst,P. (2004) PINdb: a database of nuclear protein com-

plexes from human and yeast. Bioinformatics, 20, 1413–1415.

Maraziotis,I.A. et al. (2007) Growing functional modules form a seed protein

via integration of protein interaction and gene expression data. BMC

Bioinformatics, 8, 408.

Milenkovi�c,T., and Przulj,N. (2008) Uncovering biological network function

via graphlet degree signatures. Cancer Inf., 6, 257–273.

Milenkovi�c,T. et al. (2010) Uncovering biological network function via graph-

let degree signatures. Cancer Informatics, 9, 121–137.

Nepusz,T. et al. (2012) Detecting overlapping protein complexes in protein-

protein interaction networks. Nat. Methods, 9, 471–472.

Peng,W. et al. (2014) Identification of protein complexes using weighted

Pagerank-nibble algorithm and core-attachment structure. IEEE/ACM

Trans. Comput. Biol. Bioinformatics, 12, 179–192.

Pu,S. et al. (2009) Up-to-date catalogue of yeast protein complexes. Nucleic

Acids Res., 37, 825–831.

Qi,Y. et al. (2008) Protein complex identification by supervised graph local

clustering. Bioinformatics, 24, i250–i268.

Rigaut,G. et al. (1999) A generic protein purification method for protein complex

characterization and proteome exploration. Nat. Biotech., 17, 1030–1032.

Ruepp,A. et al. (2008) CORUM: the comprehensive resource of mammalian

protein complexes. Nucleic Acids Res., 36, D646–D650.

Sahni,N. et al. (2015) Widespread macromolecular interaction perturbations

in human genetic disorders. Cell, 161, 647–660.

Sharan,R. et al. (2005) Identification of protein complexes by comparative analysis

of yeast and bacterial protein interaction data. J. Comp. Biol., 12, 835–846.

Singh,R. et al. (2008) Global alignment of multiple protein interaction net-

works with application to functional orthology detection. Proc. Natl Acad.

Sci. USA, 105, 12763–12768.

Singh,R. et al. (2010) Struct2Net: a web service to predict protein-protein

interactions using a structure-based approach. Nucleic Acids Res., 38,

W508–W515.

Snider,J. et al. (2015) Fundamentals of protein interaction network mapping.

Mol. Syst. Biol., 11, 848.

Soffer,S.N., and V�azquez,A. (2005) Network clustering coefficient without

degree-correlation biases. Phys. Rev. E, 71, 057101.

Solava,R.W. et al. (2012) Graphlet-based edge clustering reveals pathogen-

interacting proteins. Bioinformatics, 28, i480–i486.

Taipale,M. et al. (2014) A quantitative chaperone interaction network reveals

the architecture of cellular protein homeostasis pathways. Cell, 158, 434–448.

Tomita,E. et al. (2006) The worst-case time complexity for generating all maximal

cliques and computational experiments. Theor. Comput. Sci, 363, 28–42.

Ulitsky,I., and Shamir,R. (2007) Identification of functional modules using

network topology and high-throughput data. BMC Syst. Biol., 1, 8.

van Dongen,S. (2000) Graphclusteringbyflowsimulation.PhD thesis,

University of Utrecht, Utrecht, The Netherlands.

Vinayagam,A. et al. (2013) Protein complex-based analysis framework for

high-throughput data sets. Sci. Signal, 6, rs5.

Wang,J. et al. (2012) Identification of essential proteins based on edge cluster-

ing coefficient. IEEE/ACM Trans Comput Biol a Bioin, 9, 1070–1080.

Wagner,A. (2001) The yeast protein interaction network evolves rapidly and

contains few redundant duplicate genes. Mol. Biol. Evol., 18, 1283–1292.

Wu,M. et al. (2009) A core-attachment based method to detect protein com-

plexes in PPI networks. BMC Bioinformatics, 10, 169.

Xu,X. et al. (2010) The tandem affinity purification method: an efficient sys-

tem for protein complex purification and protein interaction identification.

Protein Express. Purif., 72, 149–156.

Zhang,S.H. et al. (2006) Prediction of protein complexes based on protein

interaction data and functional annotation data using kernel methods. Lnbi,

4115, 514–524.

Zhao,N. et al. (2014) Determining effects of non-synonymous SNPs on

protein-protein interactions using supervised and semi-supervised learning.

PLoS Comput. Biol., 10, e1003592.

1688 C.-Y.Ma et al.


	btx043-TF1
	btx043-TF2

