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Abstract

The ATLAS (Altered TCR Ligand Affinities and Structures) database (https://zlab.umassmed.edu/

atlas/web/) is a manually curated repository containing the binding affinities for wild-type and 

mutant T cell receptors (TCRs) and their antigens, peptides presented by the major 

histocompatibility complex (pMHC). The database links experimentally measured binding 

affinities with the corresponding three dimensional (3D) structures for TCR-pMHC complexes. 

The user can browse and search affinities, structures, and experimental details for TCRs, peptides, 

and MHCs of interest. We expect this database to facilitate the development of next-generation 

protein design algorithms targeting TCR-pMHC interactions. ATLAS can be easily parsed using 

modeling software that builds protein structures for training and testing. As an example, we 

provide structural models for all mutant TCRs in ATLAS, built using the Rosetta program. 

Utilizing these structures, we report a correlation of 0.63 between experimentally measured 

changes in binding energies and our predicted changes.

Keywords

binding energy; protein modeling; scoring functions; adaptive immunity; 3D viewer; Rosetta

INTRODUCTION

The binding of a T cell receptor (TCR) to an antigenic peptide presented by a major 

histocompatibility complex (pMHC) is a fundamental step in cell-mediated immunity. To 

eliminate pathogens and diseased cells, TCRs recognize foreign antigens displayed by MHC 

molecules on the surface of antigen presenting cells 1, 2 (Fig 1a). This recognition triggers T 
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cell activation and an ensuing signaling cascade that leads to an antigen-directed cellular 

immune response.

The ability to manipulate TCR-pMHC recognition has broad applications in a variety of 

biomedical arenas. One example is adoptive T cell transfer, which uses tumor-recognizing T 

cells to eradicate cancer cells3. The TCRs of these T cells can be genetically engineered to 

enhance their affinities toward specific tumor antigens 4-6. In a related approach, high 

affinity TCRs can be used as soluble biologic therapeutics to target tumor-associated 

antigens 7. Another example is peptide-based vaccination, which uses peptides to selectively 

stimulate T cells capable of battling infections or cancers 8. Many tumor-associated peptides 

are derived from self proteins and are only weakly immunogenic because TCRs that strongly 

recognize self-antigens have been eliminated during negative selection in the thymus. Thus 

attempts have been made to develop modified peptides that can selectively enhance T cell 

activation 9, 10.

TCR-pMHC binding strength is an important parameter in determining the quality of the 

ensuing immune response. TCR affinity has been shown to correlate positively with T cell 

activation 11, 12; however, robust immune responses appear to result from TCR affinities in 

an optimal range, which is not necessarily high 13. Past an apparent affinity threshold, the 

strength of the T cell response may plateau or attenuate.

Another consideration while striving for a desirable immune response is to avoid the cross-

recognition of TCRs with foreign and self peptides, which can lead to autoimmune diseases, 

such as multiple sclerosis, type 1 diabetes, and paraneoplastic syndromes 14, 15. Before any 

potential therapeutic use of T cells, it is vital to identify off-target binding 16; this is 

particularly important for engineered TCRs, as demonstrated by adverse events in clinical 

trials 5, 6.

Precise prediction and manipulation of both TCR affinity and specificity is therefore 

essential for designing effective T-cell–based therapeutics. A number of methods have been 

developed for altering TCR-pMHC interactions, including in vitro molecular evolution and 

structure-guided protein design 4, 17-22. Structure-guided design algorithms can alter affinity 

and specificity directly and efficiently, but are limited by the accuracy of their scoring 

functions.

Prediction of protein-protein binding affinity from protein complex structure is a challenging 

problem. When nine unique scoring functions developed for docking programs or web 

servers were tested on a benchmark of 81 protein complexes, correlations between scores 

and binding affinities were low or nonexistent (r ranging from -0.18 to 0.32) 23. More recent 

studies utilizing supervised learning methods have increased correlations between predicted 

and experimental affinities, and there is still room for improvement 24, 25. Prediction of 

changes in binding energy due to point mutations has seen greater success. Correlations 

between predicted and experimental ΔΔG in a study analyzing over 1,500 point mutations 

ranged from 0.28 to 0.61 depending on the prediction method used 26. Progress in ΔΔG 

prediction is critical to the field of TCR design where point mutants may be made to 

increase a TCR’s affinity toward an antigen to trigger a robust immune response.
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The improvement of TCR design algorithms requires access to both structural and binding 

data. We have built the ATLAS (Altered TCR Ligand Affinities and Structures) database 

(https://zlab.umassmed.edu/atlas/web/) to meet this demand. ATLAS links measurements of 

TCR affinity with structural information, and allows a user to query for a TCR, MHC, or 

peptide of interest. Results from such queries include details on affinity, mutation 

information, and structures of associated TCR-pMHC complexes that exist in the Protein 

Data Bank 27. ATLAS includes structural and binding data for point-mutant TCRs that have 

been studied. If PDB structures for the relevant mutant complexes are not available, the 

database provides computationally modeled TCR-pMHC structures.

The Immune Epitope Database (IEDB) 28 and the AntiJen Database 29 both provide binding 

affinities for TCR-pMHC complexes; however, these databases are peptide-epitope-centric 

and do not allow the user to query specific TCRs. Furthermore, there is no direct link 

between affinity and structural data in these databases. The IEDB does allow the user to 

filter queries based on the availability of X-ray crystallography and surface plasmon 

resonance (SPR) experiments; however, in many cases a query using one peptide epitope 

will return multiple TCR-pMHC complexes that contain the peptide. Hence, to correctly 

match a TCR-pMHC complex with its reported binding affinity, the user needs to manually 

inspect the literature.

In comparison with IEDB and AntiJen, ATLAS allows the user to search specific TCRs, 

MHCs, and peptides. Full datasets in ATLAS can also be downloaded as flat files. With the 

goal of providing a repository to train and test next generation TCR design strategies and 

scoring functions, ATLAS also provides experimental details such as the resolutions of the 

structures and references for each of its entries. As low-resolution structural data may skew 

scoring results, this information will be critical for the selection of a subset of the data to 

optimize prediction algorithms. As of this writing, the database includes data only for αβ 
TCRs, but can be readily extended as more experimental data for the γδ TCR family 

becomes available.

MATERIALS AND METHODS

Data Collection

To collect data suitable for training and testing TCR-pMHC scoring functions, we required 

all ATLAS entries to meet the following two criteria: (1) The affinity of the TCR-pMHC 

must be measured experimentally with purified proteins (most frequently) using SPR or 

isothermal titration calorimetry (ITC); and (2) The 3D structure of the complex has been 

determined experimentally, or for mutants, a template wild-type structure exists in the PDB. 

In order to provide the most comprehensive list of TCR-pMHC complexes, we did not make 

any quality restrictions pertaining to the affinity or structure data; instead, we recorded the 

resolution of crystallographic structures in the full dataset flat files available in the 

Downloads page. To identify TCR-pMHC complexes for inclusion in ATLAS, we first found 

all crystallographic structures of TCR-pMHC complexes in the IMGT database 30 verified 

by a careful inspection of the corresponding PDB entries. We next manually searched the 

literature for experiments measuring the affinity of each TCR-pMHC complex, including 

measurements with TCR or MHC mutants and/or peptide variants. If we could identify 
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quantitative data on binding affinity, we then proceeded to include the TCR-pMHC complex 

in ATLAS, along with experimental details as metadata for the entry. We describe these 

metadata fields in the following sections.

Metadata Fields

As many of the binding experiments recorded in ATLAS tested the effects of mutations on 

TCR-pMHC affinity, it follows that the majority of ATLAS entries pair mutant affinity data 

with wild-type template structures as opposed to the actual mutant TCR-pMHC complexes 

to which the binding affinities refer. Thus we recorded detailed information on the mutations 

such that one could build a 3D structure model of the mutant complex that corresponded to 

the affinity data, given the template structure. With this application in mind, the data tables 

of ATLAS are designed not only for information, but also for easy parsing by protein design 

software. The following five fields represent the information required for modeling a mutant 

TCR-pMHC complex structure from a template structure.

• TCR mutation: <wild-type residue><residue number><mutant residue>

• TCR mutation chain: <chain>; A for α or B for β chain

• MHC mutation: <wild-type residue><residue number><mutant residue>

• MHC mutation chain: <chain>; A for α chain B for β chain

• Peptide mutation: <wild-type residue><residue number><mutant residue>

Some fields may be left empty if one or more molecules in the template structure are the 

same as the molecules used to measure affinity. In the case of a complete match between the 

complex structure and the complex tested for binding, all mutation fields may be left empty. 

As mentioned previously, all entries are required to have at least a template structure and in 

some cases both experimental and template structures for mutants exist. These cases could 

be particularly helpful in assessing the accuracy of the structural modeling.

Inconsistent chain naming, structure boundaries, and prevalence of water molecules 

complicate the design and scoring process. To overcome these challenges, we also supply a 

set of files for all experimentally determined TCR-pMHC structures in ATLAS with the 

following consistency adjustments: renaming of chains, truncation of chains to the binding 

domains, and removal of water molecules. When there were multiple complexes in the 

asymmetric unit of a crystal structure, the first complex was selected.

Protein Modeling

As a proof of principle, we wrote a script to parse ATLAS and build models using Rosetta 

for all listed mutations upon the adjusted template structures. These models were built using 

the fixed backbone design option of Rosetta, fixbb, and are available for download. The 

example parser script, ‘build_models.py’, is also available at the github site of ATLAS 

(https://github.com/weng-lab/ATLAS). Although this example is specific for design via the 

Rosetta protein modeling software, the ATLAS database can be easily integrated with any 

other design software.
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Regression Analysis

Many ATLAS entries have low affinities with unreliable ΔGs or undetectable binding. 

Hence, we assigned all entries with a ΔG > -5.05 kcal/mol (KD > 200 μM) and all non-

binding entries to have ΔG = -5.05 for the regression analysis.

The following equation was used to calculate ΔG for each independent variable in the 

regression model:

(1)

where ΔGCOMPLEX is the energy of a feature in the regression model for the TCR-pMHC 

complex and ΔGTCR and ΔGpMHC are the energies of a feature for the isolated TCR 

structure and isolated pMHC structure, respectively.

Similarly, we use the following equation to define ΔΔG for changes in energy upon 

mutation:

(2)

where ΔGWT is the ΔG for a wild type TCR-pMHC entry and ΔGMUT is the ΔG for a 

mutated version of the wild type (mutations may involve multiple residues).

Coefficients for the regression models were estimated by the ordinary least squares method. 

P-values were calculated from the t-statistics of the coefficients using a two tailed t-test. All 

regression calculations were made using the python statistics module statsmodels.

Architecture

The backend of ATLAS was built using the archetypal web service solution stack, LAMP, 

consisting of Linux (Ubuntu version 14.04), Apache (version 2.4.7), MySQL (version 

5.5.41) and PHP (version 5.5.9). The front end was designed using the Bootstrap framework 

(version 3.3.5). All programs related to ATLAS are available at github (https://github.com/

weng-lab/ATLAS).

RESULTS

The ATLAS database currently contains affinity and structural data on human and mouse 

TCR-pMHC complexes, with a total of 694 measured affinities ranging from high 

nanomolar affinities to low affinities with KD > 200 μM (Fig. 1b-c). As more affinity data 

exist in comparison to structural data, ATLAS also contains a set of models for all TCR-

pMHC affinity entries lacking crystal structures (see Methods). Below we first illustrate a 

usage case for the data in ATLAS, then we describe how to query the ATLAS database via 

the web interface.
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Using the Data in ATLAS to Develop Energy Functions

As a proof of concept, we performed multiple linear regression using ATLAS data to 

develop scoring functions capable of affinity prediction. We examined two cases of energy 

prediction: prediction of TCR-pMHC binding energy, ΔG, and prediction of change in 

binding energy upon mutation, ΔΔG (see Methods). Prior to regression analysis, no 

correlation was found between experimental and predicted ΔGs (or ΔΔGs) using the Rosetta 

modeling software’s standard scoring function 31. Eight energy terms from Rosetta —

solvation, hydrogen bonding expressed in four terms, attractive and repulsive van der Waals, 

and a statistical pair potential—were used in the regression model (Fig. 2a).

Performing leave-one-out cross-validation (LOO-CV) on all 694 ATLAS entries, we report a 

correlation of 0.65 between predicted ΔG and experimentally measured ΔG with a root mean 

square error (RMSE) of ~1.09 kcal/mol. However, many of the ATLAS entries differed by 

only a few residues and used the same PDB structure as the template for structure modeling. 

To accurately assess scoring function performance, we ran a cross-validation scheme where 

the training set for each prediction excluded any entries that used the same PDB structure as 

the template to model the structures. For example, many ATLAS entries were mutants of the 

A6-Tax/HLA-A2 TCR-pMHC complex and used the 1AO7 PDB structure as the template 

for modeling the mutant structures. For prediction of any of these mutants, we exclude from 

the training set all other mutants that were also modeled using 1AO7 as the template. 

Following this leave-one-complex-out cross-validation (LOCO-CV) scheme, we report a 

correlation r of 0.45 between experimental and predicted ΔGs and an RMSE of 1.52 kcal/

mol.

The attractive van der Waals energy along with the solvation energy were the most important 

features for prediction, judged by the p-values for these features (10-41 and 10-23). We asked 

whether steric clashes in the modeled structures might have caused the poor performance of 

the repulsive van der Waals term. However, even after removing outlier entries with 

unfavorable repulsive van der Waals terms from the regression model, the coefficient for the 

repulsive van der Waals term remained insignificant. To extract the best predicting 

combination of features, we implemented LOCO-CV on all 255 combinations of the eight 

energy features. A slight increase in performance was seen when the van der Waals repulsive 

and pair potential terms were removed from the regression model, r = 0.48 and RMSE = 

1.48 kcal/mol (Fig. 2b).

We then proceeded to build multiple linear regression models for prediction of ΔΔGs. We 

included all multiple residue mutation cases in this study; however, 73% of the ΔΔG 

mutations were single residue mutations. Following the LOCO-CV scheme and analyzing all 

feature combinations, we report the maximal correlation of 0.63 between experimental and 

predicted ΔΔG with an RMSE of 1.58 kcal/mol (Fig. 2c). This best performing model used 

only the attractive van der Waals energy, solvation energy, and side-chain–side-chain 

hydrogen bond energy to predict ΔΔG.

Given that the majority of structural data used for training in the regression model was 

designed via Rosetta, we assessed the accuracy of these modeled structures. Twenty-one out 

of the 694 ATLAS entries had both wildtype and mutant crystal structures available (Table 
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S1). Seven of these 21 entries were point mutations to residues with at least one side-chain 

dihedral angle (χ). The other 14 entries were either point mutations to Ala or were 

complexes designed with multiple mutations. We used these seven entries to evaluate the 

accuracy of the modeled mutant structures in ATLAS. The Dunbrack rotamer library was 

used to assess whether Rosetta designed mutant side chains had the same rotamers as those 

of the mutant crystal structures 32. Here, a side chain conformation is defined as one of the 

combinations of multiple χ angle conformations for a side chain. We found that four of the 

seven mutant side chains were of identical conformation to the side chain in the crystal 

structure. For two of the three side chains with incorrect conformations, only the terminal χ 
angle was inaccurate (χ2 in Asp and χ3 in Glu). Hence, only one side chain, a mutation 

from Val to Arg, was completely mismodeled (Table S2). Although this is only a small 

sample of the entire dataset, it provides some evidence that the majority of the designed 

ATLAS mutations have correctly modeled side chain conformations.

The modeled TCR-pMHC complexes from the regression analysis were generated using a 

fixed backbone approach. However, the complementarity-determining region (CDR) loops 

of TCRs can change conformations upon binding with pMHC 33-35. To assess whether 

modeling flexibility of CDR loops could improve affinity prediction performance, we also 

generated another set of modeled complexes via the Rosetta backrub application which 

accounted for flexibility of the CDR loops. These structures were then employed in our 

LOCO-CV scheme. Analyzing all features combinations, we saw a modest reduction in ΔG 

prediction performance, r = 0.45 and RMSE = 1.50 kcal/mol for the set of best performing 

features. A larger reduction in performance was found in prediction of ΔΔG, r = 0.47 and 

RMSE = 1.80 kcal/mol (compared with r = 0.63 and RMSE = 1.58 kcal/mol for the fixed 

backbone approach) (Fig. S1). This result was not entirely surprising as previous studies 

have reported poorer correlations when modeling backbone flexibility compared with using 

fixed backbone calculations 36.

Although there is room for improvement, TCR-pMHC binding affinity prediction is feasible 

through the use of the structural information in ATLAS. As a starting point for engineering 

TCRs, peptides, or MHCs to enhance binding affinity, the ATLAS database is a useful 

resource to guide the design process.

The Web-based User Interface of ATLAS

As many users may be only interested in a specific TCR or peptide, ATLAS provides a 

searchable interface so that the user can extract the relevant data of interest. To browse the 

entire ATLAS dataset, the user may simply submit a search leaving all fields with their 

default parameters.

As a demo, we queried for all entries that contain the human A6 TCR, the MHC allele HLA-

A*02:01, and a peptide whose amino sequence contained LFGYPVY, with binding free 

energies lower than -6 kcal/mol (Fig. 3a). Note that the user may also search ATLAS by 

specifying TRAV or TRBV genes, as well as MHC allele or class. Submission of the search 

form brings the user to the results page (Fig. 3b). Each ATLAS entry (row) of the search 

results corresponds to a unique TCR-pMHC complex with an experimentally determined 

binding affinity and a 3D structure which can be used as a template for design. The binding 
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affinity is reported in both KD (μM) and ΔG (kcal/mol). The PDB column provides the PDB 

ID for a structure matching the TCR-pMHC complex with the reported experimental binding 

affinity. For many entries an exact structure corresponding to the recorded binding affinity 

does not exist. To make use of such binding data, the Template PDB column refers to the 

PDB ID for a template structure for which a TCR-pMHC complex matching the reported 

binding affinity may be generated by modeling the mutations described in the TCR 
mutation, MHC mutation, and Peptide mutation columns of the entry. For further 

information on each entry, the results page provides a link to the abstract of the publication 

in which the binding affinity was determined in the PMID column. Lastly, the query results 

can be downloaded as individual files directly from the results page.

Selecting a PDB ID from the results page brings the user to the PV Javascript Protein Viewer 
37 and downloadable PDB content. Continuing the demo, we selected the template PDB 

1AO7 for the D26W TCR mutant from our previous results page (Fig. 3c). The Rosetta 

modeled mutant structure is displayed in the PV viewer. The modeled mutant tryptophan 

side chain of the TCR is highlighted in ball-and-stick style in the protein complex. From this 

page the user can download the individual template PDB complex along with the Rosetta-

designed mutant PDB complex, both structures adjusted for consistency as described in the 

Methods.

Downloading Data Tables of ATLAS

The Downloads page provides the four tables used to build ATLAS in Microsoft Excel 

format. The TCR gene table contains the TRAV and TRBV genes for all TCRs in ATLAS. 

The MHC class table contains the classes for all MHC alleles. The ATLAS table provides all 

of the structural and affinity data for each ATLAS entry and is the extended version of tables 

found by browsing or searching the web interface. Lastly, we also provide the set of 

consistency adjusted TCR-pMHC structures described earlier, TCR-pMHC structures, which 

contain the template PDB structures and the mutant structures. We provide two sets of 

mutant structures: (1) structures predicted using the fixed backbone approach and (2) 

structures predicted allowing flexibility in CDR loops via the Rosetta backrub application. 

All mutant structures are generated using the mutation information recorded in ATLAS.

DISCUSSION

The multiple search parameters of ATLAS make it particularly useful for studying specific 

subsets of TCR or MHC. One recent application involved identifying TCRs that recognized 

the human Class I MHC allele HLA-A*02:01 and TCRs that recognized human Class I 

MHC alleles that were not HLA-A*02:01. The links to PDB structures were used to make 

structural comparisons between the two groups of TCRs 38. Additionally, the option to 

search entries by TRAV/TRBV genes, MHC allele, and peptide sequence allow for 

comparisons to be made involving these parameters. For example, searching by a variable 

chain segment can allow the user to compare the effects that mutations within the shared 

chain have on binding affinity. The accumulation of affinity values for all published binding 

studies also allows for the identification of potentially important residues for pMHC 

recognition. Similarly, searching by peptide sequence can identify all TCRs known to 
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recognize a particular peptide (or a substring of residues in a peptide), as well as how 

mutations on the peptide impact TCR binding.

As a further example to demonstrate the utility of a large TCR database, ATLAS was 

recently used in a separate study to identify single point mutations when training a 

generalized approach for engineering TCRs 39. In this study, nearly 200 point mutations in 

multiple HLA-A2 restricted TCRs (A6, B7, DMF5, DMF4) and one HLA-B8 restricted 

TCR (LC13) were modeled using Rosetta and utilized in a multiple linear regression model. 

Using Rosetta energy terms and molecular dynamics-derived flexibility terms as predictor 

variables and the experimental binding energies as the response variable, a score function 

was parameterized which emphasized van der Waals forces, solvation effects, and flexibility. 

This score function was rigorously cross-validated and found to estimate the effects of any 

given mutation relative to wild type with an average error of less than 1.5 kcal/mol and was 

used to identify additional affinity enhancing mutations in the B7, DMF5, and DMF4 TCRs.

CONCLUSION

We have developed the ATLAS database as a centralized resource to link structural and 

binding data for TCR-pMHC complexes, with an emphasis on the impacts of mutations 

within TCR-pMHC interfaces. The database can be queried multiple ways, and when 

structures do not exist, ATLAS provides modeled structures, as well as the means to 

visualize experimental or modeled structures. We anticipate that ATLAS will be useful in the 

design and optimization of TCRs, including the development of next-generation design 

algorithms for TCR-pMHC interactions. It can also be used in combination with other large 

datasets of structural and affinity data, such as the AB-Bind database of antibody affinities 
40, which would be useful in structure-based immune receptor design. Beyond this, the 

database may serve as a resource for studies aiming to correlate structural and biophysical 

binding data with immunological outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
ATLAS data statistics. (a) A6/Tax/HLA-A*02:01 TCR-pMHC complex (PDB: 1AO7). TCR 

α and β chains (green, orange), MHC molecule (cyan), peptide (magenta), and β2 

microglobulin (yellow) are shown in cartoon style. (b) Histogram of the binding affinities of 

TCR-pMHC complexes in ATLAS. (c) Pie charts for percentage of entries with modeled 

mutations made to the TCR, the MHC or the peptide (left), percentage of MHC subclasses 

(right).
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Fig. 2. 
Results of predicting binding free energies in ATLAS. (a) Table of coefficients and p-values 

for all energy features of the regression analysis. One insignificant feature (repulsive van der 

Waals) is highlighted in red. (b) Scatterplot of predicted ΔG versus ΔG determined by SPR 

for all ATLAS entries. Linear regression analysis was performed to predict ΔG using the 

following features: attractive van der Waals energy, Lazaridis-Karplus solvation energy and 

all four hydrogen bond energy terms. r = 0.48 and RMSE = 1.48 kcal/mol. (c) Scatterplot of 

predicted ΔΔG versus ΔΔG determined by SPR for 575 mutant ATLAS entries determined 

by regression analysis using the following features: attractive van der Waals energy, 

Lazaridis-Karplus solvation energy and sidechain-sidechain hydrogen bond energy. r = 0.63 

and RMSE = 1.58 kcal/mol. Red line represents perfect prediction.
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Fig. 3. 
ATLAS web interface and data accession. (a) The search page for querying the ATLAS 

database. ATLAS is searchable by TCR (1) and MHC (2) features, binding energies ΔG 

below a user specified kcal/mol (3) and by case-insensitive peptide sequence motifs (4). (b) 

The search results page linking binding energies to complex structures. The PDB structure 

specified in (1) refers to a structure identical to the TCR-pMHC used in the binding assay. 

The template PDB structure in (2) can be designed to replicate the TCR-pMHC used in the 

binding assay by modeling the mutations listed in the TCR mutation, MHC mutation, and 

Peptide mutation columns. (c) Protein Viewer and individual PDB downloads. An example 

shows the selection of PDB ID 1AO7 from the Template PDB column for the D26W TCR 

mutant. Template structures and Rosetta designed structures are both available for download.
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