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Abstract

Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are associated with 

significant morbidity and mortality. Effective therapies to prevent or curtail the advancement to 

organ failure, however, remain a major clinical challenge. Chronic kidney disease, in particular, 

constitutes an increasing medical burden affecting >15% of the US population. Regardless of 

etiology (diabetes, hypertension, ischemia, acute injury, urologic obstruction), persistently elevated 

TGF-β1 levels are causatively linked to the activation of profibrotic signaling networks and 

disease progression. TGF-β1 is the principal driver of renal fibrogenesis, a dynamic 

pathophysiologic process that involves tubular cell injury/apoptosis, infiltration of inflammatory 

cells, interstitial fibroblast activation and excess extracellular matrix synthesis/deposition leading 

to impaired kidney function and, eventually, to chronic and endstage disease. TGF-β1 activates the 

ALK5 type I receptor (which phosphorylates SMAD2/3) as well as non-canonical (e.g., src kinase, 

EGFR, JAK/STAT, p53) pathways that collectively drive the fibrotic genomic program. Such 

multiplexed signal integration has pathophysiological consequences. Indeed, TGF-β1 stimulates 

the activation and assembly of p53-SMAD3 complexes required for transcription of the renal 

fibrotic genes plasminogen activator inhibitor-1, connective tissue growth factor and TGF-β1. 

Tubular-specific ablation of p53 in mice or pifithrin-α-mediated inactivation of p53 prevents 

epithelial G2/M arrest, reduces the secretion of fibrotic effectors and attenuates the transition from 

acute to chronic renal injury, further supporting the involvement of p53 in disease progression. 

This review focuses on the pathophysiology of TGF- β1-initiated renal fibrogenesis and the role of 

p53 as a regulator of profibrotic gene expression.
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Introduction

Sustained inflammation and repeated cycles of kidney injury/repair (or incomplete recovery) 

leads to tubular atrophy, progressive fibrosis, functional decline and, ultimately, organ failure 

[1–7]. Episodic acute injury (AKI) to the proximal tubular (largely S3 segment) epithelium 

is a major factor in the transition to chronic kidney disease (CKD) [e.g., 6–8]; patients who 

survive AKI have an increased risk of development of CKD [8]. Excessive accumulation of 

extracellular matrix (ECM; e.g., the fibrillar collagens, fibronectin) in the glomerular, 

interstitial and vascular compartments is accompanied by a significant decline in glomerular 

filtration rate and impaired epithelial regeneration [1]. In this regard, interstitial fibrosis is 

both a pathophysiologic hallmark feature and prognostic biomarker of end-stage renal 

disease (ESRD) [1,9–12]. The primary sources of ECM synthesis during interstitial 

fibrogenesis are activated fibroblasts or myofibroblasts [13,14]. Although controversial in 

origin, recent biomarker analysis and lineage-tracing studies suggest that this cell type-

predictor of disease progression likely derives from FoxD1+ mesenchymal precursors (i.e., 

vascular pericytes and tissue-resident fibroblasts) with perhaps minor varying contributions 

from endothelial cells, completely or partially transdifferentiated tubular epithelia, and bone 

marrow fibrocytes [15–21]. The persistence of such activated fibroblasts is a critical factor in 

the initiation and development of renal disease where they likely participate in the silent 

scarring phase prior to development of significant organ dysfunction [22].

Signaling Transducers of the Renal Fibrotic Phenotype

Transforming growth factor-β1 (TGF-β1) drives the myofibroblastic phenotype, particularly 

in the context of a stiff microenvironment such as a fibrosing tissue. Signals generated from 

an increasingly non-compliant stroma, moreover, distort the latency constraints on TGF-β1 

releasing the active TGF-β1 dimer facilitating interaction with its receptor complex to 

promote myofibroblast differentiation and/or retention [23] while activating cellular 

pathways that impact chromatin architecture and transcription of disease-relevant genes 

[24,25]. Elevated levels of TGF-β1 in the injured kidney, moreover, orchestrates a program 

of pathologic renal ECM synthesis and advancing fibrosis in response to diabetes, 

hypertension, ischemic or repeat tubular injury and urinary tract obstruction [e.g., 12,26–31]. 

Within hours after ureteral occlusion, for example, the affected kidney exhibits changes in 

hydrostatic forces and increased oxidative stress [32–34]. Tubular stretch, in turn, further 

stimulates TGF-β1 expression (>20-fold), increases the epithelial apoptotic index and leads 

to the development of an inflammatory inflitrate [30,35]. Non-resolving inflammation and 

continued interstitial ECM deposition accompanies tubular dilation and atrophy, nephron 

loss and scarring [9,11,13,27,37–41]. Maintenance of renal TGF-β1 expression in response 

to ischemic or obstructive stimuli, results in escalating tissue injury, impaired regenerative 

growth, and eventual loss of organ function [28,42,43].
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Early findings suggested that renal disease onset and progression could be attenuated by 

blockade of TGF-β1 expression or function. TGF-β-neutralizing antibodies reduced trauma-

initiated inflammation, tubular epithelial apoptosis, and fibrosis [30,44] while retrograde 

ureteral introduction of TGF-β1 antisense oligodeoxynucleotides or small interfering RNA 

(siRNA) blunted both collagen I mRNA expression and interstitial involvement [45,46]. 

Overexpression of latent TGF-β1, to minimize availability of bioactive TGF-β1, resulted in 

a decrease in both SMAD2/3 activation (the transcriptional effectors of canonical TGF-β1 

signaling) and the number α-smooth muscle actin-positive cells (presumably 

myofibroblasts) in the injured kidney [47] consistent with the finding that SMAD3 knockout 

mice are protected from renal fibrosis [31,48]. A caveat regarding SMAD involvement in 

gene control, however, is that positioning of an activated SMAD complex on a target 

promoter requires repeat SMAD-binding elements (SBEs) and complicated, in part, by 

recognition of the increasing number of SMAD-interacting transcriptional partners [49]. For 

SMAD2/3, the most relevant SMADs in fibrotic disorders, these various co-factors 

contribute to the defined self-enabling, switch enhancer and derepression modes of SMAD-

dependent transcription (Hill, 2016) suggesting a model of “contextual” signaling in the 

varied responses to TGF-β family ligands [50].

The repertoire of TGF-β-dependent non-canonical signaling contributors to normal and 

dysfunctional tissue repair is expanding and includes the three mitogen-activated protein 

kinase (MAPK) families (ERK, p38, JNK) as well as the Wnt/β-catenin, Jagged/Notch, 

Hedgehog, JAK/STAT, Hippo/YAP-TAZ, epidermal growth factor receptor (EGFR), p53, 

RhoA/ROCK/PTEN, Numb and Toll-like receptor (TLR) networks [e.g., 51–55]. There is, 

however, considerable pathway cross-talk [56]. Numb increases TGF-β1 expression and 

promotes a p53-dependent tubular epithelial G2/M arrest, a prominent profibrotic response 

in the injured renal epithelium [8,12,40], following ischemia/reperfusion or ureteral 

obstruction [57] while the Hippo/YAP-TAZ axis integrates mechanochemical and TGF-β/

SMAD signaling as a function of YAP-TAZ phosphorylation [24,58]. A progressively non-

compliant microenvironment, in fact, induces the YAP-TAZ, SMAD2/3-dependent 

expression of a subset of profibrotic TGF-β1 target genes including several collagens, 

plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) [e.g., 

24,59]. The impact of increasing biomechanical strain, as is likely encountered in a fibrosing 

tissue, however may well transcend just the YAP-TAZ system since mechanical stress 

regulates (as least in some cell types) several network “hubs” and their constituent genes by 

activating the TGF-β1, tumor necrosis factor α (TNFα) and p53 pathways [60,61].

Integration of TGF-β1-Activated p53 in Renal Fibrogenesis

Various species-, tissue- and cell type-specific cis-acting factors regulate the genomic 

program of fibrosis [62]. Recent findings, however, indicate a further layer of complexity to 

TGF-β1 signaling and implicate p53 in the transcriptional control of renal disease-causative 

genes (Figure 1A) [40,55,63]. p53 isoforms are involved in a subset of TGF-β1 responses 

attributable to, in part, interactions between phosphorylated p53 (p-p53) and SMADs to 

form transcriptionally-active multi-protein complexes [64–66]. Binding specifically involved 

the N-terminal MAD homology 1 (MH1) domain of SMAD2/3 and the receptor tyrosine 

kinase/Ras/MAPK cascade-phosphorylated N-terminus of p53 [63,66]. Increased p53S15 

Higgins et al. Page 3

Cell Signal. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phosphorylation, accelerating renal damage and compromised organ function are evident 

following ureteral obstruction-, ischemia/reperfusion- or nephrotoxin-induced (e.g., 

cisplatin, aristolochic acid) injury as well as in the dysmorphic tubular epithelium and 

interstitial cells of renal allograft patients (Figure 1B,C) consistent with a role for p53 in 

promoting tubular cell apoptosis and proliferative inhibition [67,68]. Recent studies, 

furthermore, link epithelial growth arrest following both acute (e.g., due to ischemia/

reperfusion, nephrotoxins) and more protracted (i.e., ureteral ligation) injury to the 

development of renal fibrosis via mechanisms involving p53 and JNK with retention of 

TGF-β signaling [2,40]. p53 inactivation by pifithrin-α or siRNA-directed p53 silencing 

suppresses p53 phosphorylation, attenuates tubular epithelial apoptosis and G2/M arrest 

reducing the severity of cisplatin- or ischemia-induced kidney damage and subsequent renal 

fibrosis [2,40,69].

p53 is a critical co-factor in the TGF-β1-initiated transcription of a subset of pro-fibrotic 

genes [54,55,70,71] suggesting widespread involvement in the TGF-β1-directed genomic 

response to tissue injury. Cluster analysis indicated, moreover, that the p53/TGF-β1 synergy 

specifically involves genes that regulate growth inhibition, extracellular matrix remodeling 

and cell substrate attachment [63,72–74]. p53 response element(s) are present in the 

promoters of the PAI-1, collagen 1α, smooth muscle α-actin and other TGF-β1 target pro-

fibrotic genes [75,76]. Oligonucleotide mobility shift and DNase I footprinting/methylation 

interference analyses confirmed that p53 binds to specific motifs in the PAI-1 promoter, 

including the two p53 half-sites (AcACATGCCT, cAGCAAGTCC) at −224 bp to −204 bp 

relative to the transcription start site as well as to the upstream 4G/5G polymorphic sequence 

[75,77] (Figure 2A). Application of the p53MH algorithm, which identifies genome-wide 

p53-binding motifs, confirmed that the two PAI-1 half-site motifs meet the >90 cut-off score 

threshold for potential p53-responsive genes [78]. Induction is due to, in part, the formation 

of transcriptionally-active p-p53/SMAD multi-protein complexes [54,64–66] with DNA site 

occupancy reflected in both p53 sequence-driven reporter gene transcription and induced 

expression of the endogenous PAI-1 gene. Multiple approaches established the involvement 

of p53 in TGF-β1-stimulated PAI-1 gene expression [54,55,71] and revealed that: (a) TGF-

β1 induced binding of p53 to the PAI-1 promoter in human proximal tubular epithelial cells, 

(b) p53-null fibroblasts do not express PAI-1 upon stimulation with TGF-β1, (c) PAI-1 

expression “rescue” was evident in p53-null cells engineered to re-express human p53, (d) 

pre-treatment of a PAI-1 promoter-luciferase reporter cell line with the p53 inhibitor 

pifithrin-α suppressed TGF-β1-dependent PAI-1 transcription and protein synthesis, (e) 

transient siRNA knockdown or pharmacologic blockade of p53 in kidney epithelial cells 

inhibited PAI-1 induction in response to TGF-β1, and (f) the p53/SMAD2/SMAD3 complex 

recruits histone acetyltransferase CREB-binding protein to the PAI-1 promoter enhancing 

H3 acetylation and TGF-β1-stimulated PAI-1 transcriptional activation.

PAI-1 transcripts are short-lived (<2 hours), as is typical of unstable p53-induced mRNAs, 

and targeted by the microRNAs miR-143-3p and miR-145-5p both of which are also p53- 

responsive [79–81]. The 3′ untranslated regions (UTRs) of unstable p53 inducible 

transcripts are typically longer, and have a higher incidence of U-, AU- and GU-rich 

sequences, than 3′ UTRs from stable mRNAs [79]. Indeed, an AU-rich region is followed 

by an AUUUA instability pentamer in the 3′ UTR of the short-lived 3.0-kb PAI-1 transcript. 
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This rather brief PAI-1 mRNA half-life may provide at least a partial basis for the 

translational utility of designed expression suppression since in vivo delivery of p53 siRNA 

or pifithrin-α effectively reduced cisplatin- or ischemia/reperfusion-induced renal injury and 

blunted advancement to CKD [40,69,82].

While the mechanism is uncertain, proximal tubular p53 deficiency down-regulated 

expression of specific genes involved in apoptosis, signaling and oxidative stress and 

attenuated ischemia-induced inflammation and interstitial fibrosis [83]. Recent findings, 

moreover, suggest promoter level competition among certain p53 family members, with p53 

target gene control implications. Overexpression of the Δ133p53 isoform (which lacks the 

N-terminal transactivation domain but retains the C-terminal tetramerization sequence) in 

human fibroblasts represses specific p53-inducible genes involved in cellular senescence, 

including PAI-1, p21 and IGFBP7 and enhances reprogramming to an induced pluripotent 

stem cell phenotype [84]. Δ133p53 physically interacts with p53 and it appears likely that 

heterodimerization of p53 with Δ133p53 at p53 responsive promoters may constitute a 

dominant-negative mode of expression regulation. Whether such titration of key 

transcriptional effectors has clinical efficacy in the context of fibrotic disease remains to be 

determined.

The PE2 promoter motif in the PAI-1 gene may provide a unique opportunity to probe the 

intricacies of p53 involvement in gene control. Differential residence of upstream 

stimulatory factor (USF) family members (involving a USF1→USF2 switch) at the PE2 

region E box (CACGTG), which is immediately juxtaposed to three 5′ SBEs, characterized 

the G0→G1 transition period and growth state-dependent transcriptional activation of the 

PAI-1 gene [85] (Figure 2A). USF2, moreover, is up-regulated in the obstructed kidney [70] 

and a consensus PE2 E box motif at nucleotides -566 to -561 is required for USF/E box 

interactions and serum-dependent PAI-1 transcription [85]. Site-directed CG→AT 

substitution at the two central nucleotides inhibited formation of USF/probe complexes and 

PAI-1 promoter-driven reporter expression, confirming the importance of this site in 

expression control, while Tet-OFF induction of a dominant-negative USF construct or a 

double-stranded PE2 “decoy” or “trap” [86] attenuated both serum- and TGF-β1-stimulated 

PAI-1 synthesis [87]. Phasing analysis, moreover, revealed that certain MYC family bHLH-

LZ proteins (including USF) redirect DNA minor grove orientation [88] potentially 

promoting interactions between p53, bound to its half-site response motif, with SMAD2/3 

tethered to the PE2 region SBE (Figure 2B). This conformation would facilitate direct 

interactions between the MH1 N-terminal domain of SMAD2/3 and the p53 N-terminus 

transactivation domain [63] consistent with the topographic requirement that p53 

transcriptionally activates TGF-β1 target genes with both SBEs and p53 binding motifs in 

their promoter regions and, perhaps, between the C-terminus of p53 and the MH2 region of 

SMAD3 [89]. Alternatively, since p53 interacts directly with SMAD2 [65,66,72], the PE2 

site (with its 3 SBEs) may also serve as a docking platform for p53/SMAD complexes 

[54,71] (Figure 2B). p300/CREB-binding protein, a histone acetyltransferase, acetylates 

SMAD2/3 in response to TGF-β1 [90] facilitating the creation of a SMADs/p53/USF2 

transcriptional complex necessary for optimal PAI-1 induction [91–93]. The importance of 

such interactions is underscored by the finding that RAP250, a protein devoid of intrinsic 

enzymatic activity yet effectively recruits histone acetyltransferases and methylases to 
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chromatin complexes, also interacts with SMAD2/3 and is essential for maximal TGF-β1-

stimulated PAI-1 expression [94].

While the growing complexity of the PE2-based transcriptional control unit in the PAI-1 

promoter, as well as the ability to target the involved cis-acting and epigenetic factors [86], 

promises to provide new opportunities to manage expression of disease-relevant fibrotic 

genes, p53 may also initiate a profibrotic genomic program indirectly though transcription of 

specific microRNAs. p53 appears to promote fibrosis following unilateral ureteral 

obstruction (UUO) by up-regulation of miR199a-3p that, in turn, suppresses expression of 

SOCS7 stimulating, thereby, STAT3 activation in proximal tubular cells [95]. SOCS1, 

SOCS3 and SOCS7 are potent inhibitors of STAT1, STAT3 and ERK phosphorylation [96] 

suggesting a model [95] whereby TGF-β1 activation of p53 stimulates p53-dependent 

transcription of miR-199a-3p inhibiting SOSC7 expression resulting in STAT3-induced renal 

fibrosis.

The ancestral p53 family member p73 [97], in particular ΔNp73, also functions in PAI-1 

transcriptional control [98]. ΔNp73 transcripts are generated from the alternate P2 promoter 

site in intron 3 and encode a N-terminal truncated protein lacking the transactivation domain 

[99,100]. While ΔNp73 generally inhibits gene transcription by p53, and other p73 isoforms, 

ΔNp73 actually increased expression of the TGF-β1 target genes PAI-1 and collagen 1α 
[100]. ΔNp73 knockdown attenuated TGF-β1 signaling and reporter anayses confirmed that 

ΔNp73 induction of the PAI-1 gene, unlike p53, was not dependent on p53 binding motifs 

but on association with SMADs at the SBEs in the PAI-1 and collagen 1α promoters. DNA 

pull-down assays indicated, moreover, that ΔNp73 and SMADs form a complex on an SBE 

oligonucleotide platform and that ΔNp73 enhances SMAD3 binding to the SBE target 

construct. p53, however, is essential for PAI-1 transcription at least in response to TGF-β1 

[54]. It remains to be determined, therefore, if ΔNp73 requires p53 to activate TGF-β1-

dependent transcription of the PAI-1 gene. This possibility is supported by the observation 

that p73 is not sufficient to completely compensate for p53 deficiency in renal development 

as p53-null mice have defects in nephron differentiation [102] and that p53-p73 cooperation 

regulates p53 transcriptional activity and genomic impact [100]. p53 family proteins, 

moreover, form multimeric complexes often described as “dimers on dimers”. It appears that 

JNK-induced phosphorylation of p53T81 drives the formation of transcriptionally-active 

p53/p73 complexes [103]; it is also conceivable that p73 may, in the context of chromatin, 

heterodimerize with mutant p53 [104]. The various p53 members, thus, likely foster 

different transcriptional outcomes by competing for DNA binding sites, acting in a 

dominant-negative fashion or inhibiting or enhancing function via heterotetramerization or 

other protein-protein interactions. Addressing these issues will require individual target gene 

assessments.

Mechanism of p53 Activation by TGF-β1

TGF-β1 regulates p53 activity by serine site phosphorylation, in the N-terminal 

transactivation domain, and serine/lysine acetylation/methylation (among other post-

translational modifications) in the tetramerization and regulatory domains in the C-terminus 

[105]. Collectively, these promote interactions with activated SMADs and subsequent 
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binding of p53/SMAD3 to the PAI-1 promoter in human renal proximal tubular epithelial 

cells [54]. Phosphorylation the p53 amino-terminal serines15/20 and threonine18 residues 

increases the association of p53 with members of the p300/CREB binding protein (CBP) co-

activator family while stimulating p53 transactivation function [106]. p300 and CBP protein/

histone acetyltransferases relax chromatin structure facilitating recruitment of accessory 

transcriptional factors to promoter domains of target genes. The creation of a multi-

component p300/p53/SMAD complex preceded optimal TGF-β1-dependent induction of the 

PAI-1 gene [54]. Similarly, interactions between p53 and SMAD2/3, at their respective 

binding sites, recruits CBP to the PAI-1 promoter increasing histone H3 acetylation and 

PAI-1 transcription [89]. Not all p53/SMAD interactions result in gene activation, however. 

Consistent with the potential opposing actions of SMAD3 (pro-fibrotic) vs. SMAD2 (anti-

fibrotic) [107,108], partnering of p53 with SMAD2 in hepatic cells represses expression of 

the developmentally-dependent alpha fetoprotein gene (AFP). p53 DNA binding is required 

to anchor TGF-β1-activated SMADs as well as the transcriptional co-repressor mSin3A to 

the SMAD-binding motifs and the p53 response elements in the AFP promoter [109]. In this 

context, SnoN (an inhibitor of TGF-β1 signaling) is a critical co-factor in AFP suppression 

functioning to up-regulate mSin3A levels. Whether other TGF-β1 down-regulated p53-

sensitive genes [54] utilize a similar mechanism of repression is unknown.

Recent findings have shed light on the mechanism of p53 activation in response to TGF-β1. 

One potential regulator of p53 function in the context of tissue injury is the serine/threonine 

kinase tumor suppressor ataxia telangiectasia mutated (ATM). Activated ATM (pATMS1981) 

increased significantly in the tubulointerstitial region of the UUO-injured kidney correlating 

with SMAD3 and p53S15 phosphorylation, elevation of the p22phox subunit of the NADP(H) 

oxidases, and expression of the fibrotic markers PAI-1 and fibronectin [71]. This likely 

reflects elevated levels of TGF-β1 in response to ureteral ligation as ATM is rapidly 

phosphorylated at the same site (S1981) upon TGF-β1 stimulation of cultured proximal 

tubular cells. Stable silencing (by lentiviral delivery of short hairpin RNAs) or 

pharmacological inhibition (with KU-55933) of ATM attenuated TGF-β1-induced p53 

activation and markedly reduced expression of the downstream targets PAI-1, fibronectin, 

CTGF and p21 in human tubular epithelial cells as well as in kidney fibroblasts [71]. The 

participating elements in TGF-β1-induced ATM mobilization are becoming clarified. 

Knockdown of the NADPH oxidase (NOX) subunits, p22phox and p47phox in HK-2 cells 

blocked TGF-β1-stimulated phosphorylation of ATM (pATMS1981) and target gene 

induction via p53- dependent mechanisms. Thus, TGF-β1 promotes NOX-dependent ATM 

activation leading to TGF-β1-initiated p53 phosphorylation and p53-mediated fibrotic gene 

reprogramming (Figure 3). Depletion of ATM or p53, moreover, resulted in a bypass of 

TGF-β1-mediated cytostasis in HK-2 cells [71]. Furthermore, TGF-β1/ATM-stimulated 

secretion of paracrine factors by the dysfunctional renal epithelium promotes interstitial 

fibroblast growth, suggesting a role for tubular ATM in mediating epithelial-mesenchymal 

cross-talk highlighting the translational benefit of targeting the NOX/ATM/p53 axis in renal 

disease.

Relevant is the recent finding that SMG7 (suppressor with morphological defects in genitalia 

7), a regulator of nonsense-mediated mRNA decay, binds to and stabilizes p53 under 

conditions of genotoxic stress [110]. The mechanism appears to involve promotion of ATM-
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dependent phosphorylation and subsequent inhibition of the E3 ubiquitin ligase mouse 

double minute 2 homolog (MDM2). This role for SMG7 may well have an impact on 

expression/function of p53 and recovery from AKI, particularly in patients with lupus 

nephitis who exhibit reduced expression of SMG7 [111]. The participation of MDM2 in 

fibrosis, however, is complex. MDM2 is a major regulator of p53 function, via inhibition of 

transcriptional activity, and stability by virtue of its role as a ligase [112]. While TGF-β1 

induces p53 activation in vitro and in vivo, this growth factor also increases MDM2 

expression in a p53-dependent manner establishing a feedback loop where p53 initiates 

expression of its negative regulator [54,112,113]. Recent findings suggest that MDM2 also 

mediates fibroblast activation and renal interstitial fibrosis through a p53-independent 

pathway perhaps involving Notch I down-regulation [113]. Nevertheless, while underlying 

events require clarification, it is apparent that the p53-MDM2/murine double minute X 

(MDMX) axis is required for normal kidney development. Germline p53 depletion results in 

renal anomalies (with some dependency on genetic background) while MDM2/MDMX 

deficiencies are associated with acute renal injury, epithelial cell death and fatal dysgenesis 

[114,115]. The clinical relevance of these findings is highlighted by a recent systems 

analysis of patients with diabetic nephropathy confirming a marked down-regulation of 

MDM2 expression in the glomerular and tubular compartments [116].

PAI-1 Involvement in Renal Disease: p53-Dependent/Independent Pathways

Transcriptome profiling highlights the complexity of gene expression patterns in kidney 

disorders [37,117–124] as well as in TGF-β1-stimulated epithelial cells [54,125,126]. 

Certain TGF-β1 target genes directly influence the development of the myofibroblastic 

phenotype and renal fibrogenesis. PAI-1, in particular, is a prominent TGF-β1 response gene 

in proximal tubular epithelial cells as well as interstitial fibroblasts and is involved in the 

TGF-β1-induced conversion of fibroblasts to myofibroblasts [71,127–129]. Among its 

varied functions, PAI-1 negatively regulates the plasmin-dependent pericellular proteolytic 

cascade effectively limiting ECM degradation and fibrinolytic activity, thereby, contributing 

to the initiation and/or progression of interstitial fibrosis and vascular thrombosis [62,130]. 

PAI-1 is a member of both the growth arrest/fibrosis genomic cluster in the diabetic rat 

kidney [131] and the 11-gene urine mRNA discovery set signature predictive of human renal 

allograft fibrosis [132]. PAI-1 null mice are, in fact, protected from excessive ECM 

accumulation as well as lung, liver, kidney and vascular fibrosis and PAI-1 urokinase/tissue-

type plasminogen activator domain decoys reduced both UUO-initiated and established 

interstitial fibrosis [133].

Recent data suggest a rather novel role for PAI-1 in fibrotic disorders apart from its impact 

on ECM turnover. While it is well established that p53 limits cellular proliferation by 

inducing a state of replicative senescence, little is known about the mechanisms involved in 

this growth-limiting response. Suppression of the p53 target gene PAI-1 by RNA 

interference leads to senescence escape by sustained activation of the PI(3)K-AKT-GSK3β 
pathway and nuclear retention of cyclin D1 [73]. Genetically-deficient PAI-1 knockout 

(PAI-1−/−) mouse embryonic fibroblasts (MEFs), in fact, proliferate well beyond the 

senescence checkpoint, albeit at a slower rate than p53−/− MEFs. Moreover, ectopic 

expression of PAI-1 in p53-null fibroblasts induces a phenotype displaying all the hallmarks 
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of replicative senescence-induced growth arrest [73]. These data were the first to 

conclusively indicate that PAI-1 is not merely a marker of senescence, but is both necessary 

and sufficient for the induction of senescence downstream of p53. Similarly, TGF-β has a 

significant cytostatic effect on various cell types. p53 knockdown results in escape from 

TGF-β1-induced growth arrest in various cell types [24,89,134] which exhibit a strong 

growth inhibitory response to TGF-β1 including those derived from the renal proximal 

tubular epithelium [71]. Collectively, it appears that p53 plays an important role in TGF-β-

induced cytostasis via induction of PAI-1 transcription and that loss of p53 or its target gene 

PAI-1 confers resistance to TGF-β1-mediated growth inhibition. These findings suggest the 

utility of p53 pathway disruption in renal disease, perhaps as a strategy to promote 

compensatory regeneration, and are underscored by very recent findings that loss of 

phosphatase and tensin homolog (PTEN) expression correlated with increased PAI-1 levels 

in the obstructed kidney [135]. PTEN knockdown in HK-2 cells, moreover, promoted 

fibrotic factor expression (PAI-1, fibronectin, CTGF) and G1 cell cycle arrest [135]. PTEN 

loss also results in p53, SMAD3, AKT activation and formation of p53/SMAD3 complexes 

associated with epithelial dysfunction. As is the case for TGF-β1-treated cells, growth 

restriction was PAI-1-dependent since silencing of PAI-1 expression in PTEN-knockdown 

HK-2 proximal tubular cells rescued the proliferative response. The increased population 

density evident in dual-deficient PTEN/PAI-1 cultures was comparable to that of cells with 

stable silencing of both p53 and PTEN expression. Moreover, the elevated PAI-1 levels 

evident in PTEN-deficient cultures significantly decreased upon p53 shRNA lentiviral 

transduction additionally reinforcing a role for p53 in fibrotic gene induction [135]. 

Furthermore, PCNA expression markedly increased in both dual PTEN+PAI-1 shRNA- and 

PTEN+p53 shRNA-expressing HK-2 cells compared to similarly seeded PTEN shRNA 

cultures confirming that depletion of p53 or PAI-1 levels leads to a bypass of cell growth 

inhibition triggered by PTEN loss in proximal tubular epithelial cells. Since PTEN 

deficiency is a common event in diabetic-, UUO-, ischemia/reperfusion- and aristocholic 

acid-induced renal injury and the associated failed regeneration [2,135], approaches 

designed to limit p53 activation and/or PAI-1 expression may promote tubular epithelial 

recovery and attenuate nephron loss.

Current data also confirm an unexpected involvement of PAI-1 in innate immunity. Indeed, 

following kidney injury, PAI-1-null mice develop an attenuated inflammatory/fibrotic 

response while transgenic PAI-1 over-expressing animals exhibit increased renal interstitial 

monocyte/macrophage density suggesting that this serine protease inhibitor may promote 

macrophage and T-cell infiltration and/or immune cell tissue residence time [136,137]. 

Monocyte adhesion to the aortic intima was significantly reduced in streptozotocin-treated 

PAI-1−/− mice and accompanied by decreases in the inflammatory mediators TNF-α and 

monocyte chemotactic protein-1 [138]. Since PAI-1 provides a “don’t eat me” signal, 

effectively inhibiting neutrophil efferocytosis [139,140], these findings [138–140] suggest 

that this serine protease inhibitor may impact cellular influx as well as the intensity and/or 

duration of the injury-initiated inflammatory phase. Indeed, elevated PAI-1 levels closely 

mirrors systemic and localized inflammation while exogenously-delivered PAI-1 stimulates 

expression of proinflammatory cytokines (e.g., TNFα and macrophage inflammatory 

protein-2) in primary bone marrow macrophages [137]. The protease inhibitory-, 
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vitronectin- or LRP1-binding properties of PAI-1, however, are not necessary for 

macrophage activation but TLR4 appears to be required, at least in part, since TLR4 

neutralizing antibodies or the genetic depletion of TLR4 attenuated PAI-1-induced 

inflammation. This response was PAI-1 dose-dependent but LPS-independent and reduced in 

TLR4−/− macrophages [137] suggesting that PAI-1 may function as a matricellular damage-

associated molecular pattern (DAMP) TLR ligand [141,142]. There is also evidence for 

PAI-1 involvement in lipopolysaccharide (LPS) signaling. PAI-1 knockdown attenuated 

LPS-induced increases in macrophage TLR4, MD-2, MyD88, TNFα, IL-1β and NF-κB 

levels while vector-driven PAI-1 over-expression enhanced these responses [143,144]. 

Although the mechanism is unclear, data suggest that PAI-1 is involved in host inflammatory 

responses via TLR4, at least in macrophages [137]. This is likely to have a significant 

impact on fibrogenic outcomes following tissue injury as exogenous PAI-1 treatment 

increased TGF-β1, collagen 1α1, collagen 1α2 and MCP-1 transcripts in renal mesangial 

and proximal tubular epithelial cells [145–147]. The TLR4/RAGE DAMP-type ligand 

HMGB1 also activates a subset of genes in the TGF-β1 profibrotic signature that includes 

PAI-1, CTGF and TGF-β1 [148] suggesting that DAMPs and LPS utilize common and 

unique signaling pathways that may be exploited in the design of interventional strategies. 

Collectively, it appears that TLR4 may function as a molecular “switch”, activated by 

endogenous DAMPs to initiate repair while stimulating TGF-β1 signaling (by down-

regulating the TGF-β pseudoreceptor BAMBI) promoting the persistent expression of TGF-

β target genes to create and maintain a progressive fibrotic microenvironment [149,150].

Exogenous PAI-1 also activates the JAK/STAT, AKT and focal adhesion kinase (FAK) 

pathways via LRP1-dependent mechanisms [151–153]. PAI-1 may engage several cellular 

receptors (TLR4, LRP1), therefore, with differing phenotypic outcomes. Whether PAI-1 

occupancy of its binding site on the somatomedin B domain of vitronectin or to urokinase 

plasminogen activator/urokinase plasminogen activator receptor complexes on the cell 

surface is required for signaling through TLR4 or LRP1 is not clear. Recombinant PAI-1, 

however, does mobilize the RhoA/ROCK1/MLC-P pathway stimulating amoeboid cell 

migration [142] and apparently modulates TGF-β1 signaling, through direct effects on TGF-

β1 bioavailability, as PAI-1-null mice subjected to obstructive nephropathy have lower TGF-

β1 levels compared to wild-type controls [136,154]. Exogenously-delivered PAI-1 alone, 

moreover, stimulates TGF-β1 synthesis which could be attenuated by pretreatment with 

small molecule PAI-1 functional inhibitors, suggesting the existence of a PAI-1/TGF-β1-

positive feedback mechanism [145,147]; these same compounds reduced up-regulation of 

fibronectin, collagen 1 and PAI-1 transcripts in the kidneys of diabetic mice [146]. It appears 

that PAI-1 may initiate, perhaps maintain, a potential pro-fibrogenic “loop” in the context of 

renal disease [145,147]. It is tempting to speculate, therefore, that targeted down-modulation 

of PAI-1 expression or function may provide multi-level therapeutic opportunities to inhibit 

the onset and progression of tissue fibrosis (Figure 4).

Conclusion

TGF-β1 is the principal driver of tissue scarring leading to interstitial renal fibrosis and 

eventual organ failure. TGF-β1 stimulates p53 phosphorylation promoting interactions with 

activated SMADs and subsequent binding of p53/SMAD3 to target promoters. Recent 
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findings further suggest that PTEN deficiency, perhaps TGF-β1-mediated, is a common 

event in diabetic-, ischemia/reperfusion-, ureteral ligation- and aristocholic acid-induced 

renal injury resulting in p53 and SMAD3 activation and formation of p53/SMAD3 

complexes. The details in this pathophysiologically-relevant interplay of signaling effectors 

are only beginning to emerge however p-p53 is required for expression of PAI-1 and CTGF, 

major TGF-β1 target genes and key causative factors in fibrotic disorders. One regulator of 

p53 function in the context of renal injury is ATM. pATMS1981 levels increase in the injured 

kidney, as well as in TGF-β1-stimulated tubular epithelial cells, correlating with 

SMAD3/p53 phosphorylation and expression of the p22phox subunit of the NADPH 

oxidases. Silencing or pharmacologic inhibition of ATM attenuated TGF-β1-induced p53 

activation and subsequent PAI-1, fibronectin, CTGF and p21 up-regulation in human 

proximal tubular cells and kidney fibroblasts. Engineered reductions in the NOX subunits, 

p22phox and p47phox blocked TGF-β1-induced ATMS1981 phosphorylation and gene 

induction via p53-dependent pathways. TGF-β1, therefore, appears to promote NADPH 

oxidase-dependent ATM activation leading to p53-dependent profibrotic genomic 

reprogramming. Importantly, PAI-1 is a member of the signature gene set predictive of renal 

allograft fibrosis [132] as well as a prominent p53 target [73]. Increased p-p53S15 

immunoreactivity is evident in the epithelial and intertubular compartments in human renal 

transplants with established tubular dysmorphism and interstitial involvement (Figure 1C). 

Administration of pifithrin-α to mice with ischemic renal injury reduced both the expression 

of profibrotic genes and the extent of interstitial fibrosis [40]. Pharmacologic inhibition of 

p53 function or the p53 activation network, if appropriately managed, may have significant 

clinical implications. These data collectively highlight the translational potential in targeting 

the TGF- β1/p53 axis in renal disease but which also may be relevant to the global problem 

of tissue fibrosis regardless of the involved site.
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Abbreviations

AKT AKT8 oncogene, alpha serine/threonine-protein kinase or protein kinase B

bHLH-LZ basic helix-loop-helix/leucine zipper

CREB cAMP response element-binding protein

ERK extracellular signal-regulated kinases

JAK Janus kinases

JNK c-Jun N-terminal kinases

IGFBP7 insulin-like growth factor-binding protein 7

MLC-P phospho-myosin light chain

PCNA proliferating cell nuclear antigen
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RhoA Ras homolog gene family, member A

ROCK Rho-associated protein kinase

shRNA short hairpin RNA

SOCS suppressor of cytokine signaling

STAT signal transducer and activator of transcription

TAZ transcriptional coactivator with PDZ-binding motif

YAP Yes-associated protein
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Highlights for Review

• Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are 

associated with significant morbidity and mortality..

• TGF-β1 is the principal driver of renal fibrogenesis,.

• TGF-β1 activates the ALK5 type I receptor (which phosphorylates 

SMAD2/3) as well as non-canonical (e.g., src kinase, EGFR, Jak/Stat, p53) 

pathways that collectively drive the fibrotic genomic program.

• TGF-β1 stimulates the activation and assembly of p53-SMAD3 complexes 

required for transcription of the renal fibrotic genes plasminogen activator 

inhibitor-1 (PAI-1, SERPINE1), connective tissue growth factor (CTGF, 

CCN2) and TGF-β1.

• Focus on TGF-β1-initiated signaling in renal fibrogenesis and the role of p53 

as a regulator of profibrotic gene expression.
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Figure 1. p53 induction and target gene expression in the UUO-injured kidney and in renal 
allografts
Microarray analyses of TGF-β1-stumulated proximal tubular epithelial cells illustrating the 

relative expression levels of target genes within the p53 transcriptome node (A). p53-

dependent up-regulation of ALK5, SMAD3, TGF-β1, TGF-β3, CTGF, α-smooth muscle 

actin (α-SMA) and PAI-1 may constitute a complex feed-forward loop that maintains a 

profibrotic renal microenvironment. Compared to a normal appearing patient allograft (B) in 

which only infrequent p-p53S15 tubular epithelial cells were evident (arrow), a renal 

transplant exhibiting dysmorphic tubules (star) with a flattened and occasionally denuded 

epithelium (thick arrow) and a markedly expanded interstitial region (asterisk) has 

abundant nuclear and cytoplasmic p-p53S15 immunoreactivity (C).
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Figure 2. Topography of transcriptional motifs in the PAI-1 promoter and pathways involved in 
TGF-β1-induced expression
Downstream p53 binding sites (AcACATGCCT, cAGCAAGTCC) map to nucleotides -224 

to -204 relative to the transcription start site and the upstream 4G/5G polymorphic sequence 

(blue triangles) in the PAI-1 promoter. pSMAD2/3/p-p53 interactions, at the PE2 USF2-

binding E Box site located immediately 3′ of three clustered SMAD-binding elements 

(SBEs), are critical for PAI-1 transcription (A). Ligand-dependent TGF-β1 receptor 

activation initiates SMAD2/3 phosphorylation (by the ALK5/TGF-β1 type I receptor) (B). 
Rapid TGF-β1-induced generation of ROS stimulates non-SMAD-mediated signaling (e.g., 

upon p53 phosphorylation/acetylation). The SMAD and non-SMAD pathways collectively 

regulate target gene expression. In one model (B, left panel), p53 interacts directly with 

SMAD2; such SMAD2-p53 interactions may occur independently of p53 occupancy of its 

consensus motif. Alternatively, certain bHLH-LZ factors (including USF) bend DNA toward 

the minor groove potentially promoting interactions between p53, bound to its two 

downstream half-site motifs, with SMAD2 tethered to SBE sites immediately upstream of 

the CACGTG E-Box [72] (B, right panel).
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Figure 3. Events downstream of renal injury-induced TGF-β1 expression that contribute to 
fibrotic disease
Activated ATM (pATMS1981) increased significantly in the tubulointerstitial region of the 

UUO-injured kidney, likely in response to elevated TGF-β1 levels and expression of the 

p22phox subunit of the NADP(H) oxidases, correlating with SMAD3 and p53S15 

phosphorylation and induction of the fibrotic markers PAI-1 and fibronectin [71]. Stable 

silencing or pharmacological inhibition of ATM attenuated TGF-β1-induced p53 activation 

and expression of the downstream targets PAI-1, fibronectin, CTGF and p21. Silencing of 

the NADPH oxidase (NOX) subunits, p22phox and p47phox in HK-2 cells blocked TGF-β1-

stimulated phosphorylation of ATM (pATMS1981) and target gene induction via p53- 

dependent mechanisms. Thus, TGF-β1 promotes NOX-dependent ATM activation leading to 

p53-mediated fibrotic gene reprogramming and growth arrest in HK-2 cells. Depletion of 

ATM or p53 in HK-2 cells, moreover, resulted in a bypass of TGF-β1-mediated cytostasis 

[71]. Furthermore, TGF-β1/ATM-initiated paracrine factor secretion by the dysfunctional 

renal epithelium promotes interstitial fibroblast growth, suggesting a role for tubular ATM in 

mediating epithelial-mesenchymal cross-talk highlighting the translational benefit of 

targeting the NOX/ATM/p53 axis in renal disease.
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Figure 4. Multifunctional roles of PAI-1 in renal fibrosis
Development of renal disease upon proximal tubule injury is characterized by major 

functional and morphological changes including epithelial dedifferentiation, ECM 

accumulation, cell cycle arrest and tubular dysmorphism (A left, B = normal kidney, A 
right, C = fibrosis). Thick and thin arrows denote flattened epithelium and denuded regions, 

respectively. Following tissue injury, an inter-dependent plasmin-generating/matrix 

metalloproteinase (MMP) pericellular proteolytic cascade is finely titered, both temporally 

and spatially, by local PAI-1 levels (D). Collectively, these highly integrated systems 

cooperate to regulate ECM degradation and stromal remodeling. Elevated PAI-1 abundance 

in the wounded kidney compromises ECM degradation and fibrin clearance promoting 

increased matrix accumulation that contributes to the initiation of the fibrotic process and 

eventual development of CKD. Increased TGF-β levels or activation in response to trauma 

facilitate the transition of pericytes and resident interstitial fibroblasts (with perhaps minor 

contributions from other cell types) toward a myofibroblastic phenotype (E). An increased 

persistence and/or density of myofibroblasts further accelerates ECM deposition and 

eventual loss of tissue function. In conjunction with high p53 expression and loss of PTEN, 

TGF-β expression in the injury microenvironment mediates epithelial growth arrest with loss 
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of regenerative repair, exacerbating ECM accumulation, likely through elevation of local 

levels of profibrotic factors including PAI-1 (F). Microenvironmental cues in the injured 

epithelial and interstitial compartments initiate TGF-β1-dependent monocyte recruitment/

activation (perhaps via PAI-1 modulation of TLR4 signaling) (E,F). Additional mechanistic 

details are provided in the text. Collectively, these events (D–F) illustrate the clinical 

significance of the collaborative effects of TGF-β1 and TGF-β1 target genes (e.g., PAI-1) on 

the development of renal fibrosis.
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