
Reproducibility in Natural Language Processing: A Case Study 
of Two R Libraries for Mining PubMed/MEDLINE

K. Bretonnel Cohen1, Jingbo Xia2, Christophe Roeder, and Lawrence E. Hunter1

1Biomedical Text Mining Group Computational Bioscience Program, University of Colorado 
School of Medicine

2Department of Bio-statistics, College of Informatics, Hubei Key Laboratory of Agricultural 
Bioinformatics, Huazhong Agricultural University

Abstract

There is currently a crisis in science related to highly publicized failures to reproduce large 

numbers of published studies. The current work proposes, by way of case studies, a methodology 

for moving the study of reproducibility in computational work to a full stage beyond that of earlier 

work. Specifically, it presents a case study in attempting to reproduce the reports of two R libraries 

for doing text mining of the PubMed/MEDLINE repository of scientific publications. The main 

findings are that a rational paradigm for reproduction of natural language processing papers can be 

established; the advertised functionality was difficult, but not impossible, to reproduce; and 

reproducibility studies can produce additional insights into the functioning of the published 

system. Additionally, the work on reproducibility lead to the production of novel user-centered 

documentation that has been accessed 260 times since its publication—an average of once a day 

per library.

Keywords

reproducibility; natural language processing; PubMed/MEDLINE

1. Introduction

The general crisis of (non-)reproducibility in science extends into natural language 

processing research (Pedersen, 2008; Branco, 2012; Fokkens et al., 2013). The authors of 

this paper are well aware that we ourselves have made software publicly available that no 

longer runs, or no longer functions completely, or is no longer available, despite having 

published URLs for it. The goal of this paper is to help to establish a methodology for 

exploring issues of reproducibility in the field.

It is not hyperbole to say that there is a crisis in science related to highly publicized failures 

to reproduce large numbers of published studies. The phenomenon has been observed in 

fields as diverse as computer science (Collberg et al., 2014b; Collberg et al., 2014a; 

Proebsting and Warren, 2015), psychology (Collaboration and others, 2012), signal 

processing (Kovacevic, 2007; Vandewalle et al., 2009), cancer biology (Barrows et al., 2010; 

Prinz et al., 2011), medicine (Begley and Ellis, 2012; Mobley et al., 2013), and biomedical 

HHS Public Access
Author manuscript
LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

Published in final edited form as:
LREC Int Conf Lang Resour Eval. 2016 May ; 2016(W23): 6–12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



research in general (Collins and Tabak, 2014), with implications even for fields that bridge 

the social and humanistic sciences, such as classic linguistic field research (Bisang, 2011; 

Berez, 2015).

Does this crisis really extend to natural language processing? There is some reason to think 

that it does not. A number of libraries, executables, and architectures for natural language 

processing have been published on and subsequently used extensively by large numbers of 

other researchers. These artifacts have been subjected to extensive “testing” in the form of 

their uses “in the wild,” and some of them have held up to intensive use. However, these 

encouraging facts might not be representative of the state of the natural language processing 

software ecosystem as a whole. Impressionistically, in addition to this set of highly 

successful natural language processing distributions, there are myriad applications reported 

in the literature that turn out to be uncompilable, unusable, unobtainable, or otherwise not 

reproducible (Pedersen, 2008; Poprat et al., 2008). This paper attempts to move the field 

beyond those impressionistic observations to a rational approach to assessing reproducibility 

in natural language processing. We report on our experiences with the pubmed.mineR (Rani 

et al., 2015) and rentrez libraries for the R programming language. These libraries provide a 

number of affordances for doing text mining of the PubMed/MEDLINE repository of 

biomedical publications. PubMed/MEDLINE is a prominent part of the biomedical research 

milieu, with 23 million entries and new ones being added at a rate of 2,700 per day. Text 

mining, especially of the PubMed/MEDLINE repository, is a booming field in the 

bioscience and bioinformatics communities. Pubmed.mineR and rentrez attempt to facilitate 

that work with the R language. R provides an extensive range of affordances for statistics 

and graphing, and is one of the fastest-growing languages in the world (Ihaka and 

Gentleman, 1996).

To see the motivation for the approach that we describe here, consider Figure 1. It shows the 

increase in processing time as a popular publicly available language processing API is given 

increasingly large inputs. This is one of the systems mentioned above, and it has been used 

extensively. Note that processing times increase logarithmically (correlation coefficient of fit 

to log model = 0.80) up to about 18,000 words, followed soon by a program crash at 19,000 

tokens. Under what conditions can we say that the many publications on this system’s 

performance are reproducible? At the most, we can assume them to be reproducible only up 

to about 18,000 words of input (assuming memory and other configuration similar to the 

machine that we used at the time). Input size under which the reported performance numbers 

hold is not something that is reported or (as far as the authors can tell) considered in those 

publications, but the data reported in Figure 1 suggests that the reported performance is not, 

in fact, reproducible for all possible inputs, and the logarithmic increase in processing times 

suggests that as the memory on the machine reaches its limits, the application is not robust 

in the face of phenomena like swapping memory to disk.

1.1. Problems of reproducibility in natural language processing

A number of factors conspire to make reproducibility in any traditional sense difficult to 

impossible in the domain of natural language processing.

Cohen et al. Page 2

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• The data is often not available (Branco, 2012). In some cases, the shared task 

model has made great progress towards addressing this issue. In other cases, such 

as natural language processing in the medical, intelligence, and law enforcement 

domains, the problem of unavailability of data will probably never be addressed 

in such a way as to facilitate reproducibility.

• Natural language processing research is primarily published in conference 

proceedings, not journals. Because conference papers routinely have page limits, 

there is typically not enough space to give all information on the methodology 

that would be necessary to replicate the work (see, for example, (Fokkens et al., 

2013)).

• There is little or no tradition in the community of publishing reproduction 

attempts—the bias is strongly in favor of novel methods (Fokkens et al., 2013).

1.1.1. The reproducibility hierarchy of needs—There are a number of conditions that 

must be met in order to reproduce a study in natural language processing. These form a 

hierarchy—if the most basic conditions cannot be met, then the higher ones cannot, either. 

We consider here a typical natural language processing paper reporting a new tool and/or 

method.

1. Availability: the system must be available, or there must be sufficient detail 

available to reconstruct the system, exactly.

2. Builds: the code must build.

3. Runs: The built code must run.

4. Evaluation: it must be possible to run on the same data and measure the output 

using the same implementation of the same scoring metric.

Most of the sociology of natural language processing militates against all steps in the 

hierarchy being met. Limits on conference paper lengths assure that there will rarely be 

enough information available in the methodology section to reconstruct the system. GitHub 

and similar distribution mechanisms have, of course, made it easier to distribute versioned 

code, but many people still report not being able to find code, not being able to remember 

how to build it, etc. Maven has made progress in ensuring that build processes are 

repeatable, but most projects in NLP are not distributed as Maven projects, which in any 

case are not appropriate for every language and architecture used in NLP research. Even 

given a built program, it may not run, e.g. due to undocumented platform dependencies, 

configuration files, input requirements, memory requirements, processor requirements, 

graphics card requirements, etc.

An experiment by (Collberg et al., 2014a) looked at levels 1 and 2 of this hierarchy in a 

study of systems reported at computer science conferences. The results are discussed 

elsewhere in this paper. The work resulted in a principled approach to evaluating the extent 

of buildability in CS research reproduction. That was clearly difficult to do in a reasonably 

methodologically sound way. The work reported here attempts to go to the next level–

evaluating not buildability, but executability–and it is not immediately clear what that 

Cohen et al. Page 3

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methodology should be. This paper is a step towards developing such a methodology, or a 

framework for developing such a methodology. The novelty of the work reported here is that 

it takes the effort to level 3—that is, executability. More specifically, it explores the 

possibilities for working at level 3, and shows some results for work of that nature.

1.1.2. An expanded conception of reproducibility—Collberg et al. (Collberg et al., 

2014a) suggest that in the context of computer science research, the notion of reproducibility

—defined by them as the independent confirmation of a scientific hypothesis through 
reproduction by an independent researcher/lab—can usefully be replaced by the concept of 

repeatability. In particular, they define three types of what they call weak repeatability. The 

highest level is the ability of a system to be acquired, and then built in 30 minutes or fewer. 

The next level is the ability of a system to be acquired, and then built, regardless of the time 

required to do so. The lowest level is the ability of a system to be acquired, and then either 

built, regardless of the time required to do so, or the original author’s insistence that the code 

would build, if only enough of an effort were made.

This notion of weak reproducibility is demonstrably useful; Table 1.1.2. shows how effective 

it was in quantifiying reproducibility issues in computer science. However, as the authors 

point out, it leaves out crucial elements of reproducibility. For one thing, it does not take 

versioning into consideration: assuming that code is available and builds, can we necessarily 

assume that it is the same version as the code that was used in the paper? For another, the 

definition does not take into consideration what (Collberg et al., 2014a) call executability: 
will the code not just build, but run? For example, even examples from papers don’t always 

work as advertised. We suggest here other work that can be useful in evaluating the claims of 

a paper. The work reported here tries to tackle the executaility issue specifically. We suggest 

here some more things to think about:

Processing time: it can be revealing to measure processing times as increasingly 

large data sets are treated. For example, we found one widely used system that 

showed a linear increase in processing time with input text size until at some 

(repeatable) input size the processing time began increasing rapidly, and then (with 

more increases in input size) the system crashed.

Validating through debugging output: we found one library that produced 

debugging output that could clearly be demonstrated to be wrong with simple UNIX 

commands.

Metamorphic testing: natural language processing applications are obvious 

candidates for metamorphic testing (defined below, in the Methods section).

1.2. Related literature

(Collberg et al., 2014a) reviews two previous studies of code-sharing in computer science 

research. (Kovacevic, 2007) began with 15 IEEE papers and evaluated the presence of 

proofs, availability of code, and availability of data. They found that all papers presented 

proofs, none of the papers made code available, and 33% of papers were based on data that 

was available (probably due to the wide use of publicly available data sets in that field). In 

our hierarchy of needs, this would be level 1. (Vandewalle et al., 2009) looked at 134 IEEE 

Cohen et al. Page 4

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



papers in terms of availability of code and of data, and found that code was available in 9% 

of cases and data was available in 33% of cases (same field). Again, this corresponds to level 

1 of the hierarchy of needs. (Collberg et al., 2014a), discussed elsewhere in this paper, took 

the work to level 2; this paper advances to level 3, or executability.

2. Materials and methods

Two R libraries for text mining from PubMed/MEDLINE, the primary repository for 

biomedical publications, were selected for the case study. They are interesting case studies 

in that they allow the examination of what we are calling level 3 of the hierarchy. Since we 

know in advance, due to their availability on CRAN, that they are available and they build, 

they allow us to take the next step of studying their run-time behaviors. They were also 

selected due to their intended domain of application. While many systems that are reported 

in the general natural language processing literature are avowedly research systems, and it 

could be argued that their run-time characteristics were not a focus of the research, the 

situation is different in biomedical natural language processing. In this specialized domain, 

the stated purpose of the work is often not research per se, but the goal of providing a 

working tool to biologists or physicians (Hirschman et al., 2007). Thus, investigations of 

reproducibility at the level of run-time behavior are clearly relevant in biomedical natural 

language processing.

2.1. Pubmed.mineR

Pubmed.mineR is a library for doing text mining from the PubMed/MEDLINE collection of 

documents. PubMed/MEDLINE contains references to about 23 million articles in the 

domain of biomedical science, broadly construed. Pubmed.mineR provides a clean interface 

to named entity recognition and normalization web services provided by the National Center 

for Biotechnology Information via the PubTator application (Wei et al., 2013). 

Pubmed.mineR was released with documentation for the various and sundry methods that it 

provides, but no manual.

Two tests are designed to evaluate the performance of pubmed.mineR package. In Test 1, we 

built four document collections of different sizes and tested the speed of named entity 

recognition and normalization by using the package. In Test 2, we examined the stability of 

performance by running 10 iterations of the largest document set.

All of the experiments were carried out on a Mac desktop with installation of Mac OS X 

(version 10.7.5). The processor was a 2.93 Ghz Intel Core 2 DUO. The memory was 4 GB 

1067 MHz DDR3. All results regarding performance should be interpreted as valid only for 

this (typical) machine configuration.

3. Results

3.1. Level of the reproducibility hierarchy reached

The system was available, as advertised. It installed without problems. The code did not run 

as advertised in the documentation, but the authors responded quickly to requests for help, 

Cohen et al. Page 5

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and it was possible to get it working relatively quickly. Thus, level 3—executability—was 

reached.

3.2. Performance of pubmed.mineR package

The tester was unable to load any documents by following the documentation provided with 

the library. The authors responded quickly to requests for help, and the tester was successful 

in using one of the methods for loading data. Thus, level 3—executability—was reached for 

this library, as well.

3.2.1. Test 1. Performance of pubmed.mineR package on diverse document 
collections—In order to get a broad picture of pubmed.mineR performance, we evaluated 

it on four sets of data from PubMed. We varied the size of the data sets from quite small 

(about 2200 abstracts) to reasonably large (about 640,000 abstracts). It is not possible to 

keep the contents constant while varying size, so we tried instead to maximize variability of 

content by using four different queries to retrieve the abstracts. We then evaluated the mean 

processing time per document for each of the data sets.

Table 2 shows the queries for the four data sets.

The results are not problematic at all, but they are certainly unexpected. Processing time per 

document decreases quite a bit as document set size goes up. To evaluate the likely 

explanation that this was due to the length of the connection time to PubTator being 

amortized over a successively larger number of documents, we revisited the R code to ensure 

that we were only measuring the document processing time per se. Indeed, we found that the 

probable explanation was not the case at all, and that the unusual result does, in fact, 

represent the actual document processing times. We have no explanation for the behavior.

3.2.2. Test 2. Performance of pubmed.mineR package concerning its own 
stability—The second test evaluated the pattern of increase in processing time for the entire 

document collection, as well as variability in that processing time. The largest data set was 

used as input to pubmed.mineR, and the processing time was measured for every 10,000 

abstracts. To evaluate variability, the process was repeated 10 times.

Figure 2 shows the cumulative processing time for the document collection and the mean 

processing time per document. The cumulative processing time for the document collection 

increases linearly. Figure 3 shows the variability in cumulative processing time over the 

course of the 10 repetitions. There are a few outliers, but the variation is generally small.

3.3. Metamorphic testing and exploring the parameter space with rentrez

The functionality for pubmed.mineR and for rentrez are quite different. Rentrez’s 

functionality is oriented less towards processing documents than towards retrieving them–

more specifically, towards retrieving document identifiers. For an information retrieval 

library, different kinds of validation are applicable. In the case of rentrez, we tried 

metamorphic testing, and exploration of the parameter space. Metamorphic testing (Murphy 

et al., 2008; Chen et al., 2009; Xie et al., 2009; Xie et al., 2011) is applied in situations 

where we have no “oracle”—situations where we cannot know in advance what the exact 

Cohen et al. Page 6

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



output of a function or of a program should be. The general approach of metamorphic 

testing is to change some aspect of the input for which we can predict in a general way 

whether or not there should be a change in the output, and what the overall trend in the 

change should be. For example, if we calculate the mean and the standard deviation for some 

data set, and then add 100 to every value in the data set, the mean should change, and it 

should increase. In contrast, the standard deviation should not change at all.

The metamorphic test that we applied to rentrez was to give it two different queries, where 

we had a priori reason to think that the two queries should give us result sets of different 

sizes, and that the size of the second result set should be considerably smaller. For the first 

(and presumably larger) result set, we used the query apoptosis. (Apoptosis is a cellular 

process that is very important in embryological development and in the maintenance of 

proper cell states in the adult. Failure of apoptosis is a common cause of cancer, and due to 

the importance of apoptosis in development and in disease, it has been studied extensively 

(Hunter, 2012).) For the second (and presumably smaller) result set, we used the query judo. 

(Judo is a sport of Japanese origin that is not widely practiced in the United States, the 

source of most PubMed/MEDLINE publications, and it has not been widely studied in the 

English-language scientific literature.)

3.4. Rentrez methods: Exploring the parameter space

A search of PubMed/MEDLINE can return millions of article identifiers, but by default, the 

rentrez interface only returns 20 of them. This number can be changed by setting the 

appropriate variable when the search function is called. We varied the value of the variable 

systematically through a segment of the parameter space for that variable, which has no 

explicitly stated range, from 100000 to 1. We used the apoptosis query described in the 

methods for metamorphic testing.

3.5. Rentrez results: exploring the parameter space

We tried a realistic value for the variable that controls the maximum number of identifiers 

returned in a result set, as described above in the Methods section. We immediately found a 

bug. When the variable is set to 100,000 declaratively, the search function returns no 

identifiers. On the other hand, if it is set programmatically (e.g. in a for-loop from 100,000 

down to 1), then the search function works well. After communication with the library 

author, a bug report has been filed.

3.6. New documentation

As one product of the study, new documentation was written for the two R libraries. It is 

available at https://zipfslaw.org/2015/10/19/pubmed-miner/ and at https://zipfslaw.org/

2015/12/24/rentrez/, and has been accessed an average of once or more per day for the past 

several months. It is hoped that the documentation itself will add to the reproducibility of the 

work, by providing clear guidelines for running the code that were absent in the original 

publications—that is, by making it easier for future users to reach level 3 of the 

reproducibility hierarchy of needs.

Cohen et al. Page 7

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zipfslaw.org/2015/10/19/pubmed-miner/
https://zipfslaw.org/2015/12/24/rentrez/
https://zipfslaw.org/2015/12/24/rentrez/


4. Discussion and conclusions

4.1. Summary of the results of the two case studies

4.1.1. Pubmed.mineR

• The library is available and installs without problems. Problems with running the 

code were quickly resolved by communication with the authors, and new 

documentation addresses those issues. Level 3, or executability, was reached.

• Processing time for the document collection increases linearly with the size of 

the input data set.

• Processing time per individual document decreases with the size of the input data 

set.

• Processing time is relatively stable across multiple repetitions of the same input.

• New documentation responding to the problems with running the code may 

increase the chances for reproducibility in the future.

4.1.2. Rentrez

• The library is available and installs without problems. There were no problems 

with getting the code to run. Again, Level 3, or executability, was reached.

• The author was very responsive to requests for help with the library.

• Metamorphic testing did not reveal any issues.

• Exploring the parameter space quickly revealed an issue.

4.2. Conclusions

We have laid out some of the issues that pose problems for the notion of reproducibility in 

natural language processing. We showed how previous work on reproducibility in computer 

science can be used to establish a hierarchy of desiderata regarding reproducibility even in 

the face of these restrictions. We then showed how how those desiderata could be extended 

with conceptually straightforward, easily implementable tests of program performance.

The work reported here examined two R libraries for natural language processing in the 

biomedical domain. Both of those libraries presented the same problems for reproducibility 

testing: unavailability of data, and inadequate space for documentation of the experimental 

methodology in the original publications. We explored a number of possibilities for an 

expanded notion of reproducibility that we suggest might be appropriate for natural 

language processing research. In so doing, we found that all of those exploratory methods 

made a contribution to understanding the extent to which the research was or was not 

reproducible, whether by finding issues with the library (varying input sizes until a library 

crashed; exploring the parameter space) or by providing reassuring sanity checks 

(metamorphic testing, stability). There is a possible counterargument to the entire 

methodology of this paper. This counter-argument would be that papers in natural language 

processing describe research, not engineering efforts, and that therefore it is not relevant to 

study systems with respect to performance characteristics like processing times, the ability 

Cohen et al. Page 8

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the code to build, and the like. This counterargument does not hold, because unlike the 

case in general natural language processing, the stated motivation in paper after paper in the 

biomedical natural language processing field is to provide a tool that meets some need of 

either physicians or biologists. The selection of biomedical natural language processing 

libraries for the work reported here was quite deliberate, as issues of run-time repeatability 

are quite relevant in this domain.

In principle, reproducibility in computational systems can be achieved easily without really 

addressing the right underlying issue. It should be possible to package arbitrary 

environments in a self-contained virtual machine that will execute for a long time to come. 

However, it may still not be possible to change anything about it or to use it for any actual 

task, and the fact that it produces the same output every time one pushes “run” is of little 

reassurance with respect to correctness, or even with respect to doing what is described in 

the paper. What one wants of a scientific result is to be able to (1) rely on it, and (2) put it to 

new uses (Fokkens et al., 2013). So, although the methodology described here improves on 

the lesser alternatives of not running, not building, or not even being available, evaluating 

the extent to which a program meets the goals of reliability and applicability to new uses 

remains for future work.

It is not our intention to point fingers or to lay blame at anyone’s feet. As pointed out in the 

introduction to this paper, we are well aware that we ourselves have made software publicly 

available that no longer runs, or no longer functions completely, or is no longer available, 

despite our having published URLs for it. Rather, the hope of this paper is to help to 

establish a methodology for exploring issues of reproducibility in the field of natural 

language processing. It’s clear that such a methodology is needed, and this paper does not 

claim to be the last word on the subject: two hours after we submitted this paper for review, 

one of the libraries stopped working completely—it returned only empty vectors. Perhaps 

the back end to which it connects had changed its interface—we really don’t know, and the 

authors of the library have been silent on the specifics. After some communication with the 

authors, the former functionality was restored—the vectors that are returned are no longer 

empty. However, the behavior has not been the same since—that is, the contents of the 

vectors are different—and so far, we have been unable to reproduce our previous results. The 

research that relied on the library is at a standstill.

Acknowledgments

KBC’s work was supported by grants NIH 2R01 LM008111-09A1 NIH 2R01 to Lawrence E. Hunter, 
LM009254-09 NIH to Lawrence E. Hunter, 1R01MH096906-01A1 to Tal Yarkoni, and NSF IIS-1207592 to 
Lawrence E. Hunter and Barbara Grimpe.

Bibliographical References

Barrows NJ, Le Sommer C, Garcia-Blanco MA, Pearson JL. Factors affecting reproducibility between 
genome-scale sirna-based screens. Journal of biomolecular screening. 2010; 15(7):735–747. 
[PubMed: 20625183] 

Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature. 
2012; 483(7391):531–533. [PubMed: 22460880] 

Cohen et al. Page 9

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Berez AL. On valuing reproducibility in science and linguistics. Research, Records and Responsibility: 
Ten years of PARADISEC. 2015:39.

Bisang W. Variation and reproducibility in linguistics. Linguistic Universals and Language Variation. 
2011; 231:237.

Branco A. Reliability and meta-reliability of language resources: Ready to initiate the integrity debate? 
Proceedings of the twelfth workshop on treebanks and linguistic theories. 2012:27–36.

Chen TY, Ho JW, Liu H, Xie X. An innovative approach for testing bioinformatics programs using 
metamorphic testing. BMC Bioinformatics. 2009; 10(1):24. [PubMed: 19152705] 

Collaboration O.S. et al. An open, large-scale, collaborative effort to estimate the reproducibility of 
psychological science. Perspectives on Psychological Science. 2012; 7(6):657–660. [PubMed: 
26168127] 

Collberg C, Proebsting T, Warren A. Repeatability and benefaction in computer systems research: A 
study and a modest proposal. Department of Computer Science, University of Arizona, Tech Rep 
TR. 2014a:14–04.

Collberg C, Proebsting T, Moraila G, Shankaran A, Shi Z, Warren AM. Measuring reproducibility in 
computer systems research. Department of Computer Science, University of Arizona, Tech Rep. 
2014b

Collins FS, Tabak LA. Nih plans to enhance reproducibility. Nature. 2014; 505(7485):612. [PubMed: 
24482835] 

Fokkens A, Van Erp M, Postma M, Pedersen T, Vossen P, Freire N. Offspring from reproduction 
problems: What replication failure teaches us. Association for Computational Linguistics. 
2013:1691–1701.

Hirschman L, Bourne P, Cohen KB, Yu H. Translating Biology: text mining tools that work. 2007

Hunter, LE. The Processes of Life: An Introduction to Molecular Biology. The MIT Press; 2012. 

Ihaka R, Gentleman R. R: a language for data analysis and graphics. Journal of computational and 
graphical statistics. 1996; 5(3):299–314.

Kovacevic, J. Acoustics, Speech and Signal Processing, 2007 ICASSP 2007 IEEE International 
Conference on. Vol. 4. IEEE; 2007. How to encourage and publish reproducible research; p. 
IV-1273.

Mobley A, Linder SK, Braeuer R, Ellis LM, Zwelling L. A survey on data reproducibility in cancer 
research provides insights into our limited ability to translate findings from the laboratory to the 
clinic. PLoS One. 2013; 8(5):e63221. [PubMed: 23691000] 

Murphy C, Kaiser GE, Hu L. Properties of machine learning applications for use in metamorphic 
testing. 2008

Pedersen T. Empiricism is not a matter of faith. Computational Linguistics. 2008; 34(3):465–470.

Poprat, M., Beisswanger, E., Hahn, U. Software Engineering, Testing, and Quality Assurance for 
Natural Language Processing. Columbus, Ohio: Association for Computational Linguistics; 2008 
Jun. Building a BioWordNet using WordNet data structures and WordNet’s software 
infrastructure–a failure story; p. 31-39.

Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on 
potential drug targets? Nature reviews Drug discovery. 2011; 10(9):712–712.

Proebsting T, Warren AM. Repeatability and benefaction in computer systems research. 2015

Rani J, Shah AR, Ramachandran S. pubmed.mineR: An R package with text-mining algorithms to 
analyse PubMed abstracts. Journal of bio-sciences. 2015; 40(4):671–682.

Vandewalle, P., Kovačević, J., Vetterli, M. Signal Processing Magazine. Vol. 26. IEEE; 2009. 
Reproducible research in signal processing; p. 37-47.

Wei CH, Kao HY, Lu Z. PubTator: a web-based text mining tool for assisting biocuration. Nucleic 
Acids Research. 2013 gkt441. 

Xie, X., Ho, J., Murphy, C., Kaiser, G., Xu, B., Chen, TY. Quality Software, 2009 QSIC’09 9th 
International Conference on. IEEE; 2009. Application of metamorphic testing to supervised 
classifiers; p. 135-144.

Cohen et al. Page 10

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Xie X, Ho JW, Murphy C, Kaiser G, Xu B, Chen TY. Testing and validating machine learning 
classifiers by metamorphic testing. Journal of Systems and Software. 2011; 84(4):544–558. 
[PubMed: 21532969] 

Cohen et al. Page 11

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Processing time with increasing size of input for a popular publicly available natural 

language processing API. Processing time increases logartithmically with input size until 

18,000 tokens, and then the program crashes. The experiment was run twice, resulting in two 

different run times at most input sizes.

Cohen et al. Page 12

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Cumulative processing time for the entire document collection and per-document processing 

time.

Cohen et al. Page 13

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Variability in cumulative processing time.

Cohen et al. Page 14

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cohen et al. Page 15

Table 1

Summary of results on 402 papers whose results were backed by code, from (Collberg et al., 2014a).

Code available and builds within 30 minutes 32.3%

Code available and builds 48.3%

Either code builds, or original authors insist that it would 54.0%

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cohen et al. Page 16

Table 2

Queries and sizes for the four data sets.

Number of abstracts Query

2K (2,283 abstracts) synthetic lethal

60K (59,854 abstracts) human drug disease “blood cell”

172K (171,955 abstracts) human drug disease cell

638K (637,836 abstracts) human drug disease

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cohen et al. Page 17

Table 3

Per-document processing time varies with input size.

Data set 2K 60K 172K 638K

Size of file 4,148Kb 111,595Kb 153.5Mb 322.7Mb

Mean processing time per abstract (seconds) 0.0025 0.00025 0.000022 NA

LREC Int Conf Lang Resour Eval. Author manuscript; available in PMC 2018 March 20.


	Abstract
	1. Introduction
	1.1. Problems of reproducibility in natural language processing
	1.1.1. The reproducibility hierarchy of needs
	1.1.2. An expanded conception of reproducibility

	1.2. Related literature

	2. Materials and methods
	2.1. Pubmed.mineR

	3. Results
	3.1. Level of the reproducibility hierarchy reached
	3.2. Performance of pubmed.mineR package
	3.2.1. Test 1. Performance of pubmed.mineR package on diverse document collections
	3.2.2. Test 2. Performance of pubmed.mineR package concerning its own stability

	3.3. Metamorphic testing and exploring the parameter space with rentrez
	3.4. Rentrez methods: Exploring the parameter space
	3.5. Rentrez results: exploring the parameter space
	3.6. New documentation

	4. Discussion and conclusions
	4.1. Summary of the results of the two case studies
	4.1.1. Pubmed.mineR
	4.1.2. Rentrez

	4.2. Conclusions

	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3

