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Abstract

Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics 

identified to date, but there is currently no way to systematically search the structural space 

spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles 

lack regular secondary structures and hydrophobic cores, and can contain local structures not 

accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by 

macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling 

followed by sequence design and energy landscape calculations. We identify more than 200 

designs predicted to fold into single stable structures, many times more than the number of 

currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures 

of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are 

close to the computational models. Our results provide a nearly complete coverage of the rich 

space of structures possible for short peptide macrocycles and vastly increase the available starting 

scaffolds for both rational drug design and library selection methods.
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The high stability, diverse functionality, and favorable pharmacokinetic properties of 

macrocyclic peptides make them promising starting points for targeted therapeutics (1–4). 

However, there are few well-characterized natural macrocycles, and they are difficult to 

repurpose for new functions. Thus, most current approaches focus on random library 

selection methods, which, although powerful (5–7), only cover a small fraction of the vast 

sequence space that can be accessed by even short sequences of L- and D-amino acids (8,9) 

and often yield peptides that are not structured in the absence of target. Methods are needed 

for designing ordered macrocycles with shapes precisely crafted to bind their targets and 

with functionalities common in medicinal chemistry, but absent in the natural 20 amino 

acids, positioned at critical interaction sites. Despite the progress in computational design of 

proteins (10–14) and constrained peptides as small as 18 residues (15), designing shorter 

peptide macrocycles had remained an unsolved challenge. The driving force for the folding 

of larger peptides and proteins is the sequestration of hydrophobic residues in a nonpolar 

core, enabled by regular secondary structures in which buried backbone polar groups can 

make hydrogen bonds. This principle has been the basis of almost all previous peptide and 

protein design work. However, the balance of forces is considerably different for 7- to 10-

residue peptides: They are too small to have either a solvent-excluded hydrophobic core or 

α-helical and β-sheet (other than β-hairpin) secondary structures. Beyond these differences 

in the physics of folding, protein design methods often use the PDB (Protein Data Bank) as a 

source of local structural information, but native structures provide a poor guide for local 

structures that include noncanonical D-amino acids. On the other hand, short cyclic peptides 

are an attractive target for computational design because unlike larger systems, there is the 

possibility of obtaining a completeness of conformational sampling rare in any molecular 

design endeavor.

The local structure space relevant for cyclic peptides is quite different from that of proteins, 

so they cannot be systematically generated by assembling protein fragments. Instead, we 

used generalized kinematic closure (genKIC) (15–17) drawing from achiral flat-bottom 

backbone torsional distributions (fig. S1, A and B) to generate closed backbone structures 

starting from a polyglycine chain. For each structure, we used Monte Carlo simulated 

annealing to search for the lowest-energy amino acid sequence, restricting positions with 

negative values of the backbone torsion angle phi to L-amino acids (and rotamers) and those 

with positive values to D-amino acids, and disallowing glycine to maximize local sequence 

encoding of the structure. In preliminary calculations, we found that energy gaps greater 

than ~10 kBT (~6 kcal/mol), where kB is the Bolzmann constant and T is temperature, could 

only be obtained for N-residue macrocycles if they contained at least N/3 backbone 

hydrogen bonds; hence, in subsequent calculations, back-bones with fewer hydrogen bonds 

were discarded. We carried out large-scale backbone generation and sequence design 

calculations for 7- to 10-residue backbone cyclized peptides, obtaining 50, 596,12,374, and 

49,571 distinct backbones for lengths 7, 8, 9, and 10, respectively, after clustering based on 

backbone torsion angle bins (ABXY, where torsion bin A is the helical region of 

Ramachandran space, B is the extended strand region, X is mirror of A, and Y is mirror of 

B) (Fig. 1A) and backbone hydrogen bond patterns (fig. S1, C to E). Because the sampling 

method is stochastic, there is no guarantee of completeness, but the symmetry of the system 

enables a convergence test: For each distinct peptide backbone conformation identified, the 
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mirror image should also be observed (figs. S2 and S3). As the amount of sampling 

increases, the number of clusters identified for which the mirror image is observed initially 

increases, as does the number of clusters with no mirror. The former then plateaus, whereas 

the latter decreases to near zero (Fig. 1B). Such convergence suggests near-complete 

coverage of the combined D- and L-space compatible with peptide closure with backbone 

hydrogen bonds and no steric clashes. We also sampled and designed structures for 11- to 

14-residue macrocycles, but did not seek completeness owing to combinatorial explosion in 

the number of states.

The Monte Carlo simulated annealing sequence design calculations seek a sequence that 

minimizes the energy of the target backbone conformation, but there is no guarantee that the 

sequence found maximizes the energy gap between the target backbone conformation and 

alternative conformations. To assess the energy landscape for low-energy designs (from 21 

designs for length 7 to 673 designs for length 10), 104 to 105 conformations were generated 

for each sequence, and the energy was minimized with respect to the backbone and side-

chain torsion angles. The energy gap and Boltzmann-weighted probability of finding the 

peptide in or close to the designed main-chain conformation (PNear) were estimated from the 

resulting energy landscapes (Fig. 1C). A total of 12, 22, 45, and 145 designs with distinct 

backbone structures had energy landscapes strongly funneled into the design target structure 

for 7-, 8-, 9, and 10-residue macrocycles, respectively (Fig. 1D and figs. S4 and S5). For 

comparison, in the PDB and CSD (Cambridge Structure Database), we only found four 7- to 

10-residue macrocycle structures not bound to a target and composed only of the 20 

canonical amino acids and their mirror images without cross-links or backbone 

modifications such as N-methylation (Fig. 1D and fig. S6).

Because of the constraints imposed by the cyclic backbone, the small size, and the presence 

of D-amino acids, the designs span a local structural space inaccessible or underexplored in 

native proteins. Recurrent features include hydrogen-bonded turnlike structures and proline-

stabilized kinks, some of which are observed rarely or not at all in native proteins (Fig. 2 and 

fig. S7A), that can be viewed as macrocycle-generating building blocks (fig. S7B and table 

S1). Stepwise residue insertion preserves some of the building blocks and alters others, 

resulting in a complex propagation of features from the shorter macrocycles to the longer 

ones (Fig. 2).

It was not feasible to characterize each of the >200 macrocycle designs (database S1) 

experimentally. Instead, we chemically synthesized (fig. S8) a subset of 12 peptides [four 7-

residue peptides (7mers), two 8mers, three 9mers, and three 10mers; tables S2 to S4] and 

experimentally characterized their structures by nuclear magnetic resonance (NMR) 

spectroscopy (table S5 and figs. S9 to S11). Ten of the 12 peptides had well-dispersed one-

dimensional NMR spectra, with the number of backbone HN peaks expected for a single 

conformation (tables S2 to S5). We collected extensive nuclear Overhauser effect (NOE) 

data (fig. S11) for these peptides and solved their structures using XPLOR-NIH (18,19) 

followed by NOE-restrained molecular dynamics (MD) simulations [similar structures were 

obtained with an independent large-scale enumeration approach (fig. S12)]. As shown in 

Figs. 3 and 4 and described below, the experimental NMR structures closely matched the 

design models for nine of these peptides, and in unrestrained MD simulations, eight out of 
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the nine peptides are within 1 Å of the designed structure more than 75% of the time (figs. 

S13 to S15 and table S6). These data suggest that a large fraction of our >200 macrocycles 

are structured as designed.

Unlike proteins, macrocycles cannot be stabilized primarily by the hydrophobic effect as 

they are too small to form a core that can exclude solvent (20). How, then, do the sequences 

of the designs specify their structures? To address this question, we computed the effect on 

folding of every single substitution to a different amino acid with the same chirality, and to 

an alanine with opposite chirality, at each position, for all the designs with NMR-confirmed 

structures. For each of the 20xNres variants, full energy landscape calculations were carried 

out through large-scale backbone enumeration (Figs. 3 and 4; details in fig. S16). These 

computationally intensive calculations were carried out by using cellular phones and tablets 

of volunteers participating in the Rosetta@Home distributed computing project (http://

boinc.bakerlab.org/rosetta). To evaluate the computed sequence-energy landscape 

experimentally, we used SLIM (structures for lossless ion manipulations), an ion-mobility 

mass spectrometry technique that can distinguish different conformations in small molecular 

structures (21). This technique requires only a small amount of unpurified sample and 

enables parallel evaluation of the effects of amino acid substitutions on folding. SLIM 

results from a set of variants with point mutations of design 7.1 at either the dPro4 or Thr5 

position (Fig. 3 and fig. S17) were consistent with the sequence-energy landscape 

calculations: The structure was perturbed more by mutations at the dPro4 position than at the 

Thr5 position, consistent with the computed PNear values.

Several general principles emerge from the comprehensive landscape calculations and from 

folding calculations on permuted sequences (fig. S18). First, L- and D-proline residues play 

a key role in structure specification: 52% of the positions in which substitutions disrupt the 

structure are proline residues in the design, and in almost all of the cases, the most 

destabilizing mutant of a nonproline residue is a substitution to proline (fig. S19). Proline is 

the most torsionally constrained amino acid, and placement of L- and D-proline residues 

favors specific turn and kink structures. Second, side-chain–to–backbone hydrogen bonds 

that either stabilize a local structural motif, such as Asp2 in design 8.1, or connect two sides 

of the structure, such as Glu2 in design 10.1 or Asp3 in design 10.2, are important for 

structural specification as removal of these interactions substantially reduces the energy 

gaps. Third, chirality in many cases plays a greater role in structure specification than side-

chain identity: Replacing an amino acid residue with its mirror-image isomer is usually more 

disruptive than changing to a different amino acid with the same chirality. Fourth, for each 

design, usually fewer than three residues (often proline) are critical to defining the fold, 

leaving the remainder largely free for future functionalization (figs. S16 and S19). Even after 

mutation of the remaining residues to Ala (retaining chirality), a number of the sequences 

still encode the designed structure (fig. S20). Overall, this global analysis of the effect of 

substitutions on energy landscape topography defines the sequence determinants of the 

folding-energy landscape in exceptional detail.

It is instructive to consider these data in the context of the structures and sequences of the 

individual designs. The seven-residue macrocycles exhibit several recurrent backbone 

hydrogen-bonding patterns, often featuring a proline-nucleated i, i + 3/i, i + 4 motif (Fig. 2, 

Hosseinzadeh et al. Page 4

Science. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://boinc.bakerlab.org/rosetta
http://boinc.bakerlab.org/rosetta


second row, and fig. S21). Of the four seven-residue designs experimentally tested, three had 

structures nearly identical to the design models (Fig. 3 and table S7), and MD and Rosetta 

calculations on the fourth (design 7.4) suggest that it also is close to the design model 

despite overlap of backbone NH-group NOEs (figs. S12 and S15). The energy landscape 

calculations show that the proline nucleating the i, i + 3/i, i + 4 turn is essential (Fig. 3, A 

and E). The remainder of the structure is largely specified by the designed amino acid 

chirality with the exception of dPro5 in design 7.2, which packs on the turn-nucleating 

dPro7. The eight-residue macrocycles (fig. S22) are dominated by two major classes, one 

featuring two i, i + 3/i, i + 4 motifs (Fig. 2, second row) and the other, two criss-cross i, i 
+ 3/i + 1, i + 4 motifs (Fig. 2, third row). The two eight-residue macrocycles that were 

experimentally characterized both had NMR structures within 1 Å of the design model. 

Design 8.1 has multiple slow-exchanging (fig. S23) side-chain–side–chain and side-chain–

backbone hydrogen bonds, with a structurally critical (Fig. 3, panels IV. A and E) hydrogen 

bond from Asp2 to the backbone of Thr4, which along with Pro3 stabilizes a sharp kink in 

the chain. Adjacent to the kink is a BXX (i, i + 3/i + 1, i + 4) motif rare in proteins, anchored 

by the structurally critical dPro5. Design 8.2 has near-perfect sequence inversion symmetry; 

the sequence-symmetric version of this design with sequence Pro-Gln-dArg-Glu-dPro-dGln-

Arg-dGlu and torsion string AAYBXXBY has half the number of NMR resonances (three 

backbone HN instead of six), consistent with structural S2 symmetry (fig. S24). In contrast 

to the other seven- to eight-residue designs characterized, all residues in design 8.2 are 

important for structure specification (fig. S16 and Fig. 3, panel V. E), with residues involved 

in multiple side-chain–side-chain hydrogen bonds more essential than the two prolines.

As the macrocycle length increases (9 and 10 residues, Fig. 4), so does the entropic cost of 

folding, and more hydrogen bonds in increasingly diverse patterns (fig. S25) are required to 

stabilize the peptide in the folded state. Three of six experimentally characterized designs 

had structures close to computational models, one was disordered, and two had well-

dispersed spectra, but the NOE data did not uniquely define the structures (table S5). Design 

9.1 contains a YAA i, i + 3/i, i + 4 building block similar to those in the seven-residue 

macrocycles in which dPro5 plays a critical role (as in the L-Pro/D-Pro in design 7.3, the 

second proline plays a less critical role). The structure is expanded by insertion of a kink 

stabilized by Pro9; the remainder of the structure is completed by a tight AAA i, i +3/i, i + 4 

turn. Design 10.1 contains a five-residue distorted helix terminated by the critical dPro7. On 

one face, the structurally critical Glu2 in the middle of the helix makes a long-range side-

chain–backbone hydrogen bond to Arg8, and on the other, Ala3, dVal6, and dLeu9 form a 

nonpolar cluster. Design 10.2 contains BX, YA, and the rare YAX building blocks, each 

beginning with a proline residue; of these, Pro4 in the BX motif is the most critical. As with 

10.1, the building blocks are held together by nonpolar interactions (between dVal2 and 

dAla8) on one face, and a long-range side-chainðbackbone hydrogen bond (from Asp3 to 

Asn8) on the other; both dVal2 and Asp3 are critical for specifying the structure (Fig. 4, 

panel IV.E).

The entropic cost of folding continues to increase with increasing number of residues, and 

for 11- to 14-residue macrocycles, additional crosslinks to form bicyclic structures were 

required to obtain single states amenable to NMR structure determination (table S5). We 

solved the structures of three such designs (Fig. 4, row IV) that feature long-range 
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backbone-backbone hydrogen bonds. Design 11_SS has a i, i + 3/i + 1, i + 4 building block 

(Fig. 2, third row) with a critical proline (fig. S16) in the first position preceded by a cysteine 

that forms a critical disulfide to a cysteine preceding a YA turn. Design 12_SS has a rare 

BXAX i, i + 4/i, i + 5 turn, which exhibits higher flexibility in the NMR structure, and a 

disulfide between non-hydrogen-bonding residues. The more compact and complex 14_SS 

design has a network of interleaved local and nonlocal backbone hydrogen bonds (22), and a 

D-Cys to L-Cys disulfide bond.

The wide variety of shapes spanned by our macrocycle designs, together with their high 

stability (fig. S26) and high predicted tolerance for sequence mutations (figs. S16 and S20), 

makes them attractive starting points for developing new therapeutics. One approach to 

inhibitor design is scaffolding loops at binding interfaces in the PDB; such scaffolding can 

increase binding affinity by preorganizing the loops in the binding-competent conformation, 

enable additional interactions with the target, and improve cell permeability and oral 

bioavailability (23). We found that 907 of the 1017 “hot loops” identified at protein-protein 

interfaces by Kritzer and co-workers (24) (database S2) could be scaffolded by one or more 

of our designs (see fig. S27 for some examples).

The finding that 70% of the experimentally tested 7- to 10-residue macrocycle designs adopt 

single unique structures close to the computationally designed models suggests that most of 

the 200+ new macrocycle designs with high computed Boltzmann weights fold as designed, 

increasing the known repertoire of possible macrocycle structures by more than two orders 

of magnitude. Our results demonstrate that the principles and energy functions developed in 

recent years to design proteins have quite broad applicability, transferring over to much 

smaller systems even though (i) the factors dominating the folding of proteins (for example, 

the hydrophobic effect) differ considerably from those that stabilize conformations of small 

peptide macrocycles (local hydrogen bonding patterns and intrinsic conformational 

preferences of amino acid building blocks), and (ii) all designed proteins to date contain 

regular α-helix or β-sheet structures, whereas small peptide macrocycles lack these and 

instead contain a wide range of local structures, some of which are rarely or never observed 

in proteins.

There are two clear paths forward for engineering new macrocyclic therapeutics by 

exploiting the rigidity and stability of the designs together with the freedom to choose the 

identities of the nonstructure-specifying positions. The first is experimental: Libraries can be 

constructed in which, at each position, all residues compatible with the structure are allowed 

(identified as described above by using large-scale energy landscape calculations) and 

screened for target binding with current library selection methodologies. The second is 

computational: Each macrocycle can be docked against the target (using, for example, rigid 

body docking or “hot loop” superposition), and the interface residues designed to maximize 

binding affinity. Unnatural amino acids can be incorporated in either approach, but the 

second has the advantage that new functionalities—such as known active site binding groups

—can be strategically placed to maximize binding affinity. Beyond binding, the control over 

geometry and chemistry provided by our approach should contribute to understanding the 

structural correlates of membrane permeability and other desirable pharmacological 

properties.
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Fig. 1. Expanding the repertoire of ordered macrocycles by comprehensive sampling
(A) Torsion bin definitions (bin B = blue; A = red; Y = mirror of bin B, cyan; X = mirror of 

bin A, orange) overlaid on the generated nine-residue macrocycle backbone torsion angle 

distributions. The inversion symmetry is evident. (B) Convergence test. The number of 

clusters (torsion bin strings) observed for which the mirror image is not observed (yellow) or 

for which the mirror image is observed (cyan) was determined both for the complete set of 

7,500,000 samples for nine-residue macrocycles and for randomly selected subsets of 

different sizes (x axis). For comparison, the less converged results obtained starting from a 

20,000-sample subset and then down-sampling are shown in the inset: The fraction of 

single-chirality clusters is higher, and the number of both-chirality clusters does not plateau. 

(C) Energy landscape analysis using large-scale genKIC backbone generation followed by 

all-atom energy minimization. Each point is the result of an independent calculation; the 

energy is shown on the y axis and the root mean square deviation (RMSD) from the design 

model on the x axis. The extent of funneling (or convergence) of the energy landscape is 

quantified through the energy gap between conformations generated by stochastic sampling 

around the design model (red points) and high-RMSD structures, and the Boltzmann weight 

of the near–design model population. (D) Number of designed macrocycle clusters with 

distinct torsion bin strings and backbone hydrogen bond patterns with energy gaps less than 

−0.1 and Boltzmann weights greater than 0.85; the number of unbound peptide macrocycles 

in the PDB and CSD, consisting of only 20 canonical amino acids and their D-enantiomers, 

is indicated in pink.
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Fig. 2. Recurrent local structural motifs in designed macrocycles
Top three rows: frequencies in native proteins in the PDB (red) and in the designed 

macrocycles (blue) indicated by vertical bars (including both enantiomers); structures on the 

right are colored by torsion bin as in Fig. 1A. Bottom row: example of structure propagation 

with residue insertion for a 7- to 10-residue macrocycle series.
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Fig. 3. Seven- to eight-residue macrocycle NMR structures are very close to design models
Columns A: Design model. B: Amino acid sequence, torsion bin string, hydrogen bond 

pattern, and building block composition. C: Observed backbone-backbone (green), 

backbone–side-chain (purple), and side-chain–side-chain (orange) NOEs. D: Overlay of 

design model (green) on MD-refined NMR ensemble (gray; the average backbone RMSD to 

the NMR ensemble is indicated). E: Average decrease in the propensity to favor the designed 

state (PNear, see methods) over all mutations at each position. Darker gray indicates larger 

decreases (PNear values for each substitution at each position are in fig. S16); positions 
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particularly sensitive to mutation are boxed and indicated by color in the design model in 

column A. F: Representative energy funnels for mutations at key positions (colored points) 

as compared to the design sequence (gray points). Row I, column G: Experimental SLIM 

data. Distribution of peak width at half height for peptide libraries with all amino 

substitutions at positions 4 and 5; the position 4 library has a broader distribution consistent 

with the computed energy landscape in column F. Rows II, IV, V, column G: Representative 

energy landscapes for double substitutions (red) of critical residues overlaid on the original 

design landscape (gray). Row III, column G: Overlay of design model on alternative 

structure NMR ensemble (turn flip at bottom right).
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Fig. 4. Nine- to 14-residue macrocycle NMR structures are very close to design models
Rows I to III: 9- and 10-residue designs. Columns A to G are as in Fig. 3 rows II, IV, and V. 

Row IV: Comparison of bicyclic design models and NMR structures.
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