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Abstract

Tissue histology utilizing chemical and immunohistochemical labels plays an important role in 

biomedicine and disease diagnosis. Recent research suggests that mid-infrared (IR) spectroscopic 

imaging may augment histology by providing quantitative molecular information. One of the 

major barriers to this approach is long acquisition time using Fourier-transform infrared (FTIR) 

spectroscopy. Recent advances in discrete frequency sources, particularly quantum cascade lasers 

(QCLs), may mitigate this problem by allowing selective sampling of the absorption spectrum. 

However, DFIR imaging only provides a significant advantage when the number of spectral 

samples is minimized, requiring a priori knowledge of important spectral features. In this paper, 

we demonstrate the use of a GPU-based genetic algorithm (GA) using linear discriminant analysis 

(LDA) for DFIR feature selection. Our proposed method relies on pre-acquired broadband FTIR 

images for feature selection. Based on user-selected criteria for classification accuracy, our 

algorithm provides a minimal set of features that can be used with DFIR in a time-frame more 

practical for clinical diagnosis.

Histological studies generally rely on chemical stains for characterization and diagnosis. 

However, chemical staining is destructive to the sample and sensitive to variations in tissue 

preparation and imaging protocols. While methods have been proposed to normalize stained 

images,1 this remains a complex problem in automated histology. Mid-infrared (IR) 

spectroscopic imaging has the potential to address these problems by providing quantitative 

molecular information to augment current practice.2 A significant body of recent work 

focuses on using Fourier transform infrared (FTIR) imagery to perform tissue 

characterization and classification.3,4 FTIR image classification has been successfully 

applied to multiple disease types, such as Barrett’s esophagus5 as well as a variety of 
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cancers including breast,6–8 cervix,9 colon,10 liver,11 lung,12 and prostate.13–15 However, 

FTIR spectroscopic imaging has several limitations that preclude clinical translation, 

including long image acquisition time and the need to manage the large data size. For 

example, collecting an image representing a 1 cm2 surgical resection at a resolution 

comparable to standard histology requires ≈500 GB. Prior knowledge of the necessary 

features would allow for dimension reduction after acquisition but before data storage, 

dramatically reducing the resulting data size. However, FTIR image acquisition time is much 

more difficult to reduce. Most methods to reduce image acquisition time, such as reducing 

spectral resolution or image co-additions, result in degradation of the image and spectral 

quality. However, prior information about the necessary spectral features would allow for 

optimization of these parameters.

Recent attempts to address these issues include the use of discrete frequency infrared (DFIR) 

imaging. DFIR allows the collection of individual wavelengths using either a tunable 

quantum cascade laser (QCL) source16,17 or filter bank.18 However, sparse collection of 

spectral features is only possible if the required bands are known a priori. In this study, we 

address the problem of developing an optimized search for finding bands that are important 

for multiclass histological labeling of biological tissue. TMA cores are imaged using FTIR 

to generate data for our search. Due to the nature of DFIR images, feature selection 

methods, such as principal component analysis (PCA), and independent component analysis 

(ICA),19 and vertex component analysis (VCA)20 are impractical, since they result in 

features that have broad spectral support. Our focus is on feature selection, since the 

resulting features can be translated to DFIR image acquisition, significantly reducing the 

time required for image acquisition and eliminating the need for later dimension reduction. 

We compare the results of the proposed GPU-based genetic algorithm using linear 

discriminant analysis (GA-LDA) with other prominent feature selection methods, 

demonstrating that this technique provides comparable results to feature extraction methods. 

Finally, we show that these features provide excellent accuracy when applied to DFIR 

images acquired using a commercial QCL-based imaging system.

1 Background

Vibrational spectroscopic imaging provides label-free molecular specificity by measuring 

absorbance in the mid-infrared range (2.5–25 µm). Classification using vibrational spectra 

has been extensively explored in biomedical imaging, with a particular focus on Fourier-

transform infrared (FTIR) spectroscopy.3,21,22 FTIR is particularly promising, due to the 

combination of a large absorbance signal and molecular specificity. In addition, FTIR has 

existing protocols that can potentially fit within the standard pathology pipeline23 and even 

map FTIR spectra to labels familiar to histologists trained in a traditional setting.24

FTIR spectroscopy usually relies on illuminating a sample using a broad-band (globar) 

source that is passed through an interferometer to collect an interferogram. Individual 

wavelengths are separated using a Fourier transform. Data rate is usually limited by the low 

intensity of benchtop broadband IR sources, combined with the limited size of compatible 

mercury cadmium telluride (MCT) focal plane array (FPA) detectors. Data collection is 

often followed up with noise and dimension reduction algorithms to further improve SNR 
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and mitigate the problems associated with a large number of features. This suggests that 

current histological classification relies on a sparse spectrum, containing a limited number of 

important components necessary for classification.25,26 Consequently, DFIR imaging may 

provide an alternative to FTIR imaging by allowing direct imaging of the sparse features 

necessary for classification and thereby mitigating problems with both acquisition and data 

size.27 DFIR instruments coupled with narrow bandwidth quantum cascade lasers can image 

a tissue sample at spectral bands optimal for classification.28 QCL-based instruments 

provide a coherent source, allowing the use of high-resolution bolometer detectors and better 

optics.17 With a priori knowledge of important features, it is possible to limit collection to 

the most informative bands for classification.

Raw hyperspectral imagery has thousands of spectral features, making them difficult to 

classify due to memory constraints and prone to over-fitting. Dimension reduction is 

generally used to provide a more concise spectral representation. The most common 

approaches project the spectra into a new space and sort them based on some standardized 

score. The highest scored features are used in classification. Two broad types of dimension 

reduction are used: projection-based feature extraction and feature selection.29 In projection-

based feature extraction, basis functions are computed from high dimensional data using 

either an unsupervised or supervised approach. Principal component analysis (PCA) and 

Linear discriminant analysis (LDA), with some variations, are widely used feature extraction 

methods.30,31 In the case of PCA, features are sorted based on the amount of variance 

accounted for in each projection,32,33 whereas LDA relies on supervised data to optimize 

linear separability.

Feature selection methods rely on known sparsity within the spectrum, and common 

methods include the least absolute shrinkage and selection operator (LASSO), sequential 

feature selection method minimum Redundancy Maximum Relevance (mRMR)34 and 

evolutionary learning genetic algorithms. As discussed earlier, our goal is to select features 

so that we can take advantage of DFIR imaging for fast tissue characterization.

Hyperspectral images collected using FTIR also undergo preprocessing, such as baseline 

correction and normalization, in order to mitigate spectral features correlated with sample 

structure and scattering.23 The proposed feature selection is performed on preprocessed 

FTIR images of tissue microarrays from multiple patient biopsies. A GA is designed to 

perform supervised feature selection, relying on mRMR as an initialization step and LDA as 

an optimization metric. This method is ideal for optimizing features across multiple classes 

and classifiers. We then validate the selected features, demonstrating that the GA-LDA 

approach provides results are of comparable quality to feature extraction while also being 

compatible with DFIR imaging. Finally, we validate this approach for QCL-based images of 

tissue biopsies collected using a commercial DFIR imaging system (Fig. 1).

2 Materials and methods

All samples were from formalin fixed paraffin embedded (FFPE) tissue microarrays (TMAs) 

purchased from US Biomax and AMSBio. TMAs included normal and tumor biopsies from 

breast, kidney, bone, and liver. Patient and sample variety aids in addressing variance due to 
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biodiversity and demonstrates applicability across a broad range of tissue types.35 FFPE 

TMA blocks were cut into 5 µm thick sections, with adjacent sections placed on alternate 

glass and BaF2 slides. All samples are baked at 45 °C for 1.5 h and undergo three xylene 

washes (3 min each) for deparaffinization, followed by three ethanol washes (1 min each) 

with 100%, 90%, and 75% concentration. BaF2 slides were first imaged using an FTIR 

microscope (Cary 620, Agilent) with a 15× 0.65NA objective mapped to a 128 × 128 pixel 

FPA, providing a pixel size of ≈5 µm. Data was collected in the spectral range of 1000–3900 

cm−1 with a spectral resolution of 8 cm−1.

The FTIR images were annotated by an experienced pathologist based on adjacent 

histological staining. Histological stains included hematoxylin & eosin (H&E) and Masson’s 

trichrome for all samples. This allowed us to examine general tissue structure and annotate 

collagen and smooth muscle. Since the breast images were the most histologically complex, 

additional immunohistochemical labels were used to confirm tissue phenotype. These 

include cytokeratin 19 for differentiating between epithelium and necrosis, as well as alpha 

smooth muscle actin (αSMA) and vimentin for identifying myofibroblasts.

Labels focused on cancer-relevant phenotypes ranging from 4–7 classes types, depending on 

tissue type. Feature selection was performed using the proposed GPU-based GA-LDA 

optimization method (section 1). Our goal was to select features from FTIR data that provide 

high-quality classification with finite support optimal for DFIR imaging. Since current 

commercial QCLs are limited to the 920–1800 cm−1 range, analysis was limited to this 

window for feature selection. After the desired number of features were selected, the 

annotated data was then used to train a Random Forest36 classifier. For random forest 

classifier 100 number of trees are selected and at each decision split of a tree default number 

of features are selected which is square root of total number of features used for 

classification. Ensemble treebagger is executed with parallel mode option using 6 threads on 

CPU. Classifier performance was validated on independent TMA images. When training and 

validating classifiers, it is crucial to ensure that individual cores are not shared by the 

training and validation sets. In such a case, any deviation in focus will cause chemical 

information to smear across pixels resulting in inflated performance measurements.

Finally, we validated the performance of our features in practice using DFIR images. TMA’s 

were re-imaged using a QCL-based DFIR imaging system (SPERO, Daylight Solutions) 

with a 12.5× 0.7NA refractive objective. Data was collected at discrete frequencies specified 

by the proposed optimization algorithm. Note that all features require corresponding 

baseline points and a normalization band. Since the FTIR data were normalized to Amide I 

(1650 cm−1), each spectral feature would require at most two adjacent baseline bands. 

However, note that optimized features often share similar peaks and can share baseline 

points (Fig. 2). Rubber band baseline correction was used,23 combined with normalization to 

Amide I peak. No other noise reduction or pre-processing was applied. No other noise 

reduction or pre-processing was applied.

2.1 Feature selection

Feature extraction methods such as PCA, ICA, and VCA are routinely used in FTIR image 

analysis for dimension reduction and chemometrics. While these methods can capture 
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molecular information in a relatively small number of features, the resulting basis functions 

have broad support. Therefore, use of traditional feature extraction requires collection of the 

entire spectrum. Our goal is to instead rely on feature selection by limiting features that can 

be discretely measured with a tunable DFIR imaging system. Since we know a priori that 

most of these features contain redundant information, we instead use sampling-based 

approaches to minimize the number of evaluation. Our approach utilizes two optimization 

methods for feature selection: minimum redundancy maximum relevance (mRMR) and a 

genetic algorithm (GA). This approach is further optimized to create an optimal supervised 

feature selection algorithm designed for DFIR image classification (Fig. 3).

2.1.1 Minimum redundancy maximum relevance (mRMR)—mRMR is a supervised 

incremental feature selection algorithm that searches for features based on maximum 

relevance and minimum redundancy criteria.37 This technique has been successfully used 

with FTIR data to reduce the number of bands considered in histopathological classification.
34 We are given a sample matrix F ∈ ℝS×B, where S is the number of samples (pixels) and B 
is the number of features (bands) along with a set of C class indices c ∈ ℤS ∈ [1,C] 

corresponding to each sample and a desired number of features N. We wish to calculate a set 

of indices n ∈ ℤN corresponding to the best features in the training set F.

The mRMR algorithm extracts these features iteratively by optimizing the following 

condition for each j ∈ [1,…, N]:

(1)

where B = [1,…, B] is the set of all feature indices and ni is the set of i previously computed 

features. The mutual information function I(·) is given by:

(2)

The mRMR algorithm performs an iterative search for optimal features, which are added to 

the final set n until the desired N features are identified (Algorithm 1). A feature index j 
corresponding to feature xj in F is added to the final feature set if it exhibits: (i) maximum 

mutual information with the distribution of class indices in the training set, and (ii) 

minimum mutual information with previously selected features in n.

Algorithm 1

Algorithm for calculating the maximum relevance minimum redundancy (mRMR) feature 

set

Input: F ∈ ℝS×B c ∈ ℤS N
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  Output: n ∈ ℤN

  1: n = ∅

  2: while |n| ≤ N do //while features <N

  3:   j = 1

  4:   while j ≤ B do

  5:     find j such that eqn (1) is maximized

  6:   append j to n

  7:   end while

  8: end while

While mRMR algorithm runs in O(n2) (quadratic) time and is deterministic, this efficiency 

comes in the form of a greedy algorithm that limits sampling to an extremely small 

subspace. Optimization is constrained by previously selected features, which are likely sub-

optimal. Adding additional features increases redundancy rather than improving 

classification accuracy – particularly for complex data.

2.1.2 GA-LDA—In order to select discrete wavelengths for classification, we use a genetic 

algorithm (GA)38 to optimize feature selection based on a linear discriminant analysis 

(LDA) cost function.39,40 A GA is an evolutionary optimization method inspired by natural 

selection. Since our goal is to maximize classification accuracy while minimizing DFIR 

image acquisition time, we use a GA to select optimal feature sets for a range of feature 

numbers. This allows a user to select the optimal balance between classification accuracy 

and DFIR image acquisition time.

Given a number of desired features N ∈ ℤ, a single GA attempts to select an optimal set of 

wavelengths that maximize classification accuracy (Fig. 1). Our GA is first initialized with a 

set of probable solutions, referred to as the initial population, one of the probable solution is 

initialized using mRMR feature selection algorithm (section 1).

Input to the genetic algorithm is a two dimension feature matrix loaded from the original 

three dimension hyperspectral image. In this feature matrix, rows are pixels (samples) and 

columns are spectral features (bands). Over the course of G generations, our GA attempts to 

select an optimal feature set given a specified number of target features N. Each genome is a 

vector of size N, and each element of a genome is a spectral feature index from the input 

feature matrix F. The population matrix P is a matrix P ∈ ℝP×N, where N number of 

features to be selected using GA-LDA algorithm and P is the population size, which 

determines how densely the feature subspace is sampled. Increasing P and G provide 

additional optimization at the cost of processing time, where P is user-specified and G is 

determined by a stopping condition described later.

At each generation g ∈ [0, G), all genomes from the current population are evaluated using 

an optimization function and ranked into R according to their fitness values Vg. Based on 

these rankings, three population evolution operations are performed on current population 

reproduction, crossover, and mutation to generate next generation population. This 

evolutionary search for optimal spectral features continues until a stopping criteria is met. In 
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our algorithm stopping criteria is until execution it reaches to maximum number of 

generations Gmax or improvement in fitness value of best highest ranked genome is stalled 

over Gs number of generations, here Gmax and Gs are user defined numbers and Gs ≪ Gmax.

Algorithm 2

Algorithm for selecting optimal feature subset using evolutionary search

Input: F ∈ ℝS×B c ∈ ℤS N P

  Output: n ∈ ℤN

  1: G = 0

  2: initialize population matrix P0 ∈ ℤP×N

  3: while G < Gmax do

  4:   for each genome p ∈ [0, P) do

  5:       evaluate genome fitness T̂[p]

  6:   end for

  7:   generate a sorted list of genomes α ∈ [0, P) based on T̂

  8:       ex. α[0] = argmaxjT̂ [j] and α[P − 1] = argminjT̂ [j]

  9:   if genome α[0] meets stopping criteria then

  10:         return genome α[0]

  11:     end if

  12:     Generate new population PG+1:

  13:         reproduce genomes α[0] to α[nr − 1]

  14:           generate new genomes for α[nr] to α[N − 1] by crossover

  15:     randomly mutate nm genomes in α[nr] to α[N − 1]

  16:   G = G + 1

  17: end while

  18: return genome α[0]

Evolutionary learning is based on natural selection, such that the highest ranked nr < P 
genomes are preserved (reproduction) in next generation population G + 1. The remaining nc 

= P − nr genomes are updated by performing the crossover operation on current generation 

genomes. Crossover is performed on parent genomes using a tournament selection method. 

A subset of ts parent genomes are selected from the current generation population PG from 

the subset of nc genomes that are not reproduced. Each pair of selected parents go through 

crossover to generate a new genome. Once nc new genomes are generated in Pnext then with 

random sampling nm genomes from nc crossovered genomes go through mutation.

For example, assume a population of P = 20 genomes with nr = 2 and nm = 10. The next 

generation will consist of the nr = 2 optimal genomes from the previous generation, while 

the remaining nc = 18 genomes will consist of permutations of the previous sub-optimal 

genomes. This crossover is performed by selecting parents from the sub-optimal nc = 18 

genomes from the previous generation. Out of these nc = 18 crossover genomes, nm = 10 

undergo random mutations. This random selection is done by using mutation probability, 

genomes for which randomly generated probability is greater than user defined mutation 

probability will go through mutation. In mutation operation, one or more genome entries are 
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altered based on randomly generated probability to any feature index from the entire spectral 

range of input data. Mutation is important for GA as it avoids getting trapped in a local 

minimum.

Once a new population is obtained, the next generation is evaluated (Algorithm 2) until one 

of two conditions are met: (i) a maximum number of generations Gmax is exceeded or (ii) 

there is less than ε improvement in the fitness score of the best genome.

The fitness function is a key component of the GA. Since statistical classifiers are frequently 

used in chemometrics, we focus on the linear separability of target classes using linear 

discriminant analysis (LDA). This is a supervised method for finding a linear transformation 

which will maximize inter class separability and minimize intra class variability. We 

implement Fisher’s criterion as a generalized eigenvalue decomposition problem.41 The 

proposed GA finds a feature subset using LDA such that the projected data will have 

maximum between class scatter Sb and minimum within class scatter Sw. At each 

generation, the optimal transformation matrix T̂ for the current feature subset is computed 

by maximizing Fisher’s ratio:

(3)

where the between class scatter Sb is the covariance of class means, and the within class 

scatter Sw is sum of variance for all classes:

(4)

(5)

2.2 GPU implementation

The major limitation of GA optimization is computational complexity, requiring ≈27 hours 

to select 50 features from 200k samples (1626 bands each) to separate 7 classes. mRMR 

uses a greedy approach, which significantly increases speed at the cost of getting trapped in 

local minima. Most feature extraction algorithms achieve optimal performance, however 

require access to the entire feature set for classification. Neither approach is viable for 

clinical application of DFIR, where image acquisition time and accuracy must be optimized. 

These two competing requirements necessitate the use of a computationally complex 

optimization. We elected to use the GA optimization approach because it is highly data 

parallel. The fitness of each genome can be tested independently using the same set of 
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instructions. This makes it highly amenable to acceleration on GPUs, which are inexpensive 

and readily available in most research labs.

We first load the hyperspectral image as a feature matrix F ∈ ℝS×B (Fig. 5a), where S is the 

number of samples (pixels) and B is the number of available bands (features). A population 

matrix P ∈ ℝP×N is constructed with P genomes containing N features. The number of 

features N is tested for a user-specified range in order to determine the trade-off between 

accuracy and feature number. The population size P determines the number of permutations 

tested for each generation.

While a CPU-based algorithm requires each genome to be evaluated sequentially, our GPU-

based approach compiles the entire population into a phenotype tensor H ∈ ℝS×N×P, where 

each value in H is a feature value corresponding to the appropriate sample and genome 

index from the current population matrix P. This phenome matrix H is then used to calculate 

the class mean tensor Φ ∈ ℝC×N×P and the global mean matrix M ∈ ℝN×P (Fig. 5a). These 

tensors are stored in GPU memory and used to calculate the between class scatter Ψβ (Fig. 

5b) and within class scatter Ψω (Fig. 5b) based on the following discrete formulations of eqn 

(4) and (5) given in section 2:

(6)

(7)

For each genome, the scatter matrices are in an ℝN×N Hilbert space. Across the entire 

population, the corresponding tensors Ψβ and Ψω are N × N × P and can be calculated in 

parallel using eqn (6) and (7). Each element of Ψβ and Ψω are assigned a thread and 

computed independently. The results are stored in the corresponding tensors Ψβ and Ψω. 

This also enables selection of a high P, which provides faster convergence. Ψβ and Ψω 
consist of N × N scatter matrices Sb and Sw corresponding to each genome in the current 

population. Once Sb and Sw are calculated for each genome, the LDA projection basis T is 

computed as a generalized eigen decomposition problem using the LAPAKE library with 

CPU threads. Fisher’s ratio is computed from the projected data and provides a score for 

each genome. All genomes in current population are ranked according to their fitness scores 

and used to create the next generation population (section 2).

3 Results and discussion

We compare the performance of three feature selection and extraction algorithms by 

validating on multiple tissue types and pathology-relevant classes (Fig. 6). We then provide 

measurements of the computational performance in order to justify our GPU-based 
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implementation. Finally, we discuss practical implementation issues, including advice on 

parameter selection for various domain-specific goals.

3.1 Feature extraction and classifier performance

Results of feature selection and classification for GA-LDA, mRMR and PCA are shown in 

Fig. 6 for histological data sets including kidney and several breast cancer arrays. 

Comparison is based on the area under the receiver operating characteristic (ROC) curve for 

each class as a function of the number of features n. Note that feature selection is optimized 

for joint classification, which is why there is a visible difference in performance for the same 

class in different classifiers. For example, the necrosis class in our 4-class histology 

classifier exhibits better performance than in the 7-class example due to interference with the 

additional 3 classes (fibroblasts, lymphocytes, and myofibroblasts) (Fig. 6b and c). For small 

numbers of classes, GA-LDA performs comparably to existing methods such as PCA and 

mRMR (Fig. 6b). As additional classes are added, GA-LDA shows significant performance 

gain (Fig. 6a and b) compared to mRMR and PCA. In addition, GA-LDA allows the selected 

features to be utilized for DFIR imaging with comparable performance (Fig. 6d).

Training was performed in two steps: (1) feature selection/extraction using PCA, mRMR, 

and GA-LDA and (2) training of a random forest classifier. In order to test performance for 

varying parameters, different classifiers were created by varying numbers of features. There 

was no overlap between training and validation arrays. For breast histology, training was 

performed on a 101-core breast array (BR-1003, US Biomax) containing samples from 40 

tumor biopsies of various types (hyperplasia, atypical hyperplasia, ductal carcinoma, and 

lobular carcinoma) and 7 normal biopsies. For kidney histology, training was performed on a 

100-core kidney cortex array (AMS701, AMBbio).

The 5-class kidney is validated on independent cores from TMA AMS701 and validation 

results for 5-class kidney classifier shows that GA-LDA can achieve a high level of accuracy 

for even small numbers of features (Fig. 6a). Also, 7-class breast histology model was 

validated using two independent arrays (BRC961 and BR1001, US Biomax) containing a 

total of 196 cores from 100 different patients which were imaged using FTIR microscopy. 

This model shows the clear effectiveness of GA-LDA for selecting features that are 

compatible with a larger number of classes (Fig. 6). Validation on FTIR images of two types 

of tissues 5-class kidney and 7-class breast shows that GA-LDA can achieve a high level of 

accuracy for even small numbers of features for more number of classes as well (Fig. 6a and 

b). This model is generally superior to PCA, likely due to the use of a supervised training 

set. This implies that linear separability measured using Fisher’s ratio provides a better 

overall optimization than feature variance. While there is significant use of the PCA 

approach for classification assuming it is more informative, this example illustrates nicely 

that complex signatures may be more robustly classified by use of discrete features. While 

the use of discrete features for rapid classification is more than a decade old,26 the impetus 

for using discrete features was limited to speeding up post-acquisition processing. With 

faster computers and greater availability of storage, use of discrete features was not critical. 

Combined with the availability of DFIR imaging, however, the opportunity now exists to 

obtain more accurate classifications faster. This is particularly true for unusually complex 
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chemical signatures, such as the differentiation of fibroblasts and myofibroblasts, as well as 

structures such as lymphocytes that are below the diffraction limit for IR. Finally, note that 

GA-LDA provides another advantage over PCA: the ability to translate features for use in 

DFIR imaging.

We test translation of GA-LDA features to DFIR using a 4-class model by validating on a 

100-core (50 patient) array (AMS802, AMSbio). To demonstrate the methodology proposed 

here, instead of a comprehensive histologic analysis, we focused on testing of a 4-class 

model containing the most cancer-relevant cell types (epithelium, collagen, blood, and 

necrosis). The entire available spectrum (900–1800 cm−1) was imaged to create a database 

of bands that would be compatible with any features selected or extracted using mRMR, 

PCA, and GA-LDA. Performance in both the FTIR and DFIR images are shown (Fig. 6c and 

d). Classification of both FTIR and DFIR imaged tissue cores using only 20 features 

selected from FTIR imaged data is shown in (Fig. 3).

We demonstrate convergence of classifier performance for epithelium, which is the most 

important class for initial cancer diagnosis. The ROC curve (Fig. 7a) is shown for several 

feature selection values, and can be readily computed for large numbers of features on a 

desktop system. This allows a researcher or clinician to select the desired number of features 

to optimize for specificity, sensitivity, and image acquisition time.

3.2 Computational performance

Profiling results also demonstrate the improvement in processing time using our GPU-based 

approach (Fig. 7b). This plot is in logarithmic scale of time in seconds, it shows that with 

GPU implementation of GA-LDA algorithm, we have achieved significant speed up in GA-

LDA feature selection algorithm. This makes it faster with total population evaluation time 

required as minimum as evaluation time required for each genome. This speed-up depends 

on various parameters such as feature matrix size (S × B), population size (P) and number of 

features to be selected (N). The use of graphics hardware makes complex optimization 

problems more accessible to laboratories using traditional workstations and no programming 

experience.

3.3 Discussion

The main benefit of our GPU-based implementation is the fast calculation of AUC plots as a 

function of features (Fig. 6). This allows a domain expert to readily evaluate the number of 

features necessary to achieve the desired performance. Alternatively, a user can predict the 

accuracy that can be achieved within a specified time-frame, expressed in terms of the 

number of bands that can be collected.

While the proposed GA-LDA approach performs significantly better for larger numbers of 

classes, it also provides additional benefits when considering clinical translation of infrared 

spectroscopic imaging. Unlike feature extraction algorithms, such as PCA, GA-LDA 

features are compatible with DFIR instruments. GA-LDA algorithm also overcomes 

problem of getting trapped in local spectral region like mRMR as described in Fig. 4. In this 

figure, dotted line of mRMR sampling is a limited features space for second feature 

selection with mRMR after selection of first feature which is point on horizontal axis. This 
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means mRMR algorithm cannot explore feature space beyond constrained region, whereas 

GA-LDA explores other regions in the feature space by introducing mutation in genomes. 

We also address execution time, which is the primary bottlneck for GA optimization, by 

providing a GPU-based implementation that can be run on inexpensive workstations 

available to both clinical and research laboratories.

We note that the proposed framework can be readily extended to manifold learning inspired 

fitness functions that may be more suitable when the class-conditional data are multi-modal 

or non-Gaussian. For instance, Local Fisher’s ratio, which incorporates locality constraints 

in the Fisher’s ratio through an affinity matrix41 ensure that multi-modal distributions 

remain multimodal in the lower dimensional subspace and in the resulting set of selected 

features. In future work, we will consider this to overcome multi-modality in data set 

introduced by variations in tissue preparation and imaging environment.

4. Conclusion

Recent developments in mid-IR spectroscopic imaging are very promising, especially the 

potential of laser-based instrumentation to make it clinically applicable. FTIR imaging 

technology has been widely tested and it proved to demonstrate the concept of label free 

histopathology but has suffered from long acquisition times. The recent emergence of DFIR 

imaging has advantages like short imaging time, smaller pixel size, and hence more clinical 

applicability. Several different groups have achieved good results with DFIR technology42,43 

to demonstrate this potential but the question of choosing optical frequencies to scan 

remains an open question. Our results shows that spectral features selected from FTIR 

imaging data can satisfy several key needs – dimension reduction for FTIR imaging data and 

reducing imaging time and image size. Our study further indicates that with only these bands 

selected by GA-LDA we can achieve classification results equivalent to classification results 

with entire mid-IR spectrum. Fig. 7 shows, further, that the attempt to DFIR translation from 

FTIR data may actually result in improved classification. Thus, for complicated 

classification, a focus on extracting the maximum information content in an optimal manner 

can lead to improved protocols in all critical parameters – time for imaging, classification 

accuracy, ease of data handling and complexity of instruments.

In addition, feature selection makes DFIR imaging more practical if the desired classes are 

known a priori. This is particularly useful in a clinical environment, where there is a benefit 

to high-throughput screening of known diseases.

Finally, the proposed GPU-based implementation makes genetic algorithms far more 

practical to analytical scientists, since inexpensive hardware can be used to leverage a large 

computational benefit. The highly data-parallel nature of this problem allows full 

characterization of classifier performance across a large range of features, allowing 

biomedical researchers to carefully optimize for classification accuracy and imaging time. 

Together, the methods and results of this study propel analytical methods based on DFIR 

imaging forward to facilitate routine use of IR imaging for histopathology.
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Fig. 1. 
Flowchart for a general genetic algorithm (GA). An initial population is created using 

randomized sampling or some preliminary guess. At every iteration i ≤ Imax, the population 

is evaluated using a fitness function. Features are sorted based on their score, and a new 

population i + 1 is created from the optimal features. Variability is introduced using mutation 

to reduce over-fitting. Our proposed algorithm uses mRMR for initialization and Fisher’s 

ratio for evaluation.
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Fig. 2. 
Mean FTIR spectra of four classes from annotated breast biopsies. Spectra are normalized 

and baseline corrected. Features are selected by the GA-LDA algorithm from the fingerprint 

region only (≈900 cm−1 to 1800 cm−1), in order to ensure compatibility with DFIR imaging 

systems.
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Fig. 3. 
(a) H&E stained tissue cores from TMA AMS802. (b) FTIR and (c) DFIR imaged tissue 

core from breast TMA BR802 adjacent to H&E stained tissue section, classified into four 

classes: blood, collagen, epithelium and necrosis. Classification uses 20 features selected 

with GA-LDA from FTIR imaged data.
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Fig. 4. 
Feature selection using mRMR vs. genetic algorithms. (a) The first iteration of mRMR 

selects an optimal feature testing all possibilities for maximum mutual information. 

Optimization of all features would be impractical. (b) Following iterations of mRMR are 

constrained by the initial feature(s) and therefore miss optimal values that deviate from this 

constrained subspace. Genetic algorithms introduce mutations that allow sampling outside of 

the subspace, reducing over-fitting.
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Fig. 5. 
GPU implementation of GA-LDA. (a) Input tensors are generated for all genomes using the 

CPU. The population, represented as feature indices, is used to generate a phenome tensor 

containing feature values for the population. The mean and class means are then computed. 

(b and c) The between class scatter Ψβ and within class scatter Ψω are calculated on the 

GPU in parallel, significantly reducing the computational complexity. The final results are 

exported to the CPU for eigendecomposition using LAPACK.
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Fig. 6. 
GA-LDA, PCA and mRMR performance is compared using validation results of (a) FTIR 

imaged kidney AMS701, (b) FTIR imaged breast TMA BRC961-BR1001 and (c) FTIR 

imaged breast tissue AMS802 (d) DFIR imaged breast tissue AMS802. Area under ROC 

curve for each class versus number of features selected by GA-LDA, mRMR or extracted by 

PCA are plotted. Our results suggest that GA-LDA significantly improves performance for 

complex data containing large numbers of classes. While GA-LDA exhibits similar 

performance to PCA for DFIR images, GA-LDA can be used for discrete-frequency 

imaging, thereby allowing users to take advantage of the main benefit of DFIR imaging 

systems.
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Fig. 7. 
GA-LDA performance as a function of the number of selected features. (a) ROC curves for 

epithelium classification on DFIR breast images (AMS802) with different numbers of 

features. Area under ROC curve is mentioned in the legend corresponding to number of 

features used for the ROC plot. This plot shows how the ROC curve improves with the 

number of selected features. (b) Timing results are also shown for a traditional CPU and 

GPU implementation, demonstrating a 1–2 order of magnitude speedup on input data 

composed of 156k samples and 1626 bands for four different classes.
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