
Nanoparticle-Based Local Antimicrobial Drug Delivery

Weiwei Gao, Yijie Chen, Yue Zhang, Qiangzhe Zhang, and Liangfang Zhang*

Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, 
La Jolla, CA 92093, USA

Abstract

Despite the wide success of antibiotics in modern medicine, the treatment of bacterial infections 

still faces critical challenges, especially due to the rapid emergence of antibiotic resistance. As a 

result, local antimicrobial treatment aimed at enhancing drug concentration at the site of infection 

while avoiding systemic exposure is becoming increasingly attractive, as it may alleviate 

resistance development. Meanwhile, therapeutic nanoparticles, especially liposomes, polymeric 

nanoparticles, dendrimers, and inorganic nanoparticles, are gaining traction to improve the 

therapeutic efficacy with many applications specifically focused on local antimicrobial treatment. 

This review highlights topics where nanoparticle-based strategies hold significant potential to 

advance treatment against local bacterial infections, including (1) promoting antibiotic localization 

to the pathogen, (2) modulating drug-pathogen interaction against antibiotic resistance, and (3) 

enabling novel anti-virulence approaches for ‘drug-free’ antimicrobial activity. In each area, we 

highlight the innovative antimicrobial strategies tailored for local applications and review the 

progress made for the treatment of bacterial infections.
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1. Introduction

During the past decades, the use of antibiotics has achieved profound successes in 

combating numerous bacterial infections [1, 2]. Traditionally, antibiotics are widely 

administered through systemic routes for the advantage of reaching broadly distributed 

pathogenic bacteria. Alternatively, they have also been administered locally, especially for 

achieving a high drug concentration at the infection site is critical [3]. Local antimicrobial 

treatment has recently gained increasing attention, owing largely to its benefit of minimizing 

drug systemic exposure and potentially reducing resistance development [4, 5]. Accordingly, 

numerous biomaterials and medical devices have been tailored-made to facilitate the 

administration and management of antibiotics locally, making local treatment favorable for 

various infections [6–8]. Despite the progress that has been made, local antimicrobial 

delivery approach still faces various obstacles, including various drug clearance mechanisms 

upon administration that make local application impractical or ineffective, diffusion barriers 

within the local environment that prevent drug molecules from reaching bacteria, and drug 

resistance acquired by target bacteria that diminishes the therapeutic efficacy of antibiotics 

[9–11]. Collectively, these obstacles highlight the desire to continuously search for 

alternative and effective local antimicrobial strategies.

Recently, advances in nanotechnology, particularly the development of nanoparticles for 

drug delivery, have generated significant impact in medicine and healthcare [12, 13]. 

Nanoparticle delivery systems enhance drug solubility, offer stealth for immune evasion, 

modulate drug release characteristics, target drug molecules to desired sites, and deliver 

multiple drugs simultaneously. Due to these unique advantages, they are able to improve the 

pharmacokinetic profile and therapeutic index of drug payloads when compared with free 

drug counterparts. A number of nanoparticle-based drug delivery systems have been 

approved for clinical use including the treatment for infections. Meanwhile, antimicrobial 

nanoparticle formulations are increasingly investigated and many are under various stages of 

pre-clinical and clinical tests [14, 15].

As nanomedicine continually advances, innovative approaches focused on improving local 

antimicrobial drug delivery are emerging. In this review article, we highlight three aspects 

where nanoparticle-based delivery strategies have made significant contribution to improve 

local antimicrobial treatment, namely: (1) promoting antibiotic localization to the pathogen, 

(2) modulating drug-pathogen interaction to overcome antibiotic resistance, and (3) enabling 

‘drug-free’ anti-virulence therapy (Figure 1). Progresses achieved in these aspects not only 

facilitate the use of existing antibiotics, but also produce entirely new bactericidal 

mechanisms toward more effective local antimicrobial techniques. Collectively, they address 

the aforementioned obstacles facing local antibiotic delivery. Herein, we review each aspect 

with highlights of the current and forthcoming nanoparticle platforms for local antimicrobial 

drug delivery.

2. Promoting antibiotic localization to the pathogen

Local administration of antibiotics faces varying transport barriers unique to different 

organs, tissues, and subcellular compartments, as well as their pathophysiological states, 
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which often prevent effective antibiotic localization to bacteria for activity. For example, at 

the organ level, flow conditions within the airway of the lung or the lumen of the 

gastrointestinal tract cause fast drug clearance [16, 17]. The flow also induces high shear 

forces at sites including the endocardial surface of the heart [18], the lumen of urinary tract 

[19], and the corneal of the eye [20], further reducing the effective drug retention. At the 

tissue level, the indiscriminate and uncontrolled diffusion of antibiotics within the local 

tissue causes off-target drug loss, limiting the effective dosage that can reach bacteria [21, 

22]. At the intracellular level, various bacteria survive and multiply within cells, giving rise 

to a series of chronic infections [23, 24]. Additionally, most antibiotics are hydrophilic and 

unable to spontaneously cross the plasma membrane of the infected cells [25]. As a result, 

the standard treatment of intracellular infections remains ineffective. These challenges 

together have motivated various nanoparticle designs aiming to directly localize 

antimicrobial drugs onto bacteria.

At the organ level, to overcome poor drug retention under various flow conditions, an 

emerging approach is to integrate nanoparticles into other biomaterial platforms for delivery. 

Such hybrid design becomes attractive, as it preserves the engineering flexibility and 

controllability of nanoparticles on drug encapsulation and release, while allowing for 

retention mechanisms under flow to be independently tuned and optimized. For example, 

porous microparticles have the features of small mass density and large size, which make 

them capable of effective deposition to deep lung and escape from the lung’s natural 

clearance mechanisms [26, 27]. To enhance antimicrobial delivery to lung infection, 

incorporation of drug-loaded nanoparticles into swellable and respirable microparticles is a 

promising approach to embracing the virtues of both nano- and micron-scale particles. Upon 

deposition in the lungs and exposure to the humid environment and the lung lining fluid, the 

matrix of the microparticles dissolves and readily releases the nanoparticles containing 

antimicrobial agents such as rifampicin and thymopentin for subsequent therapeutic activity, 

making the micro-nanoparticle hybrid attractive to treat deep lung infections such as 

tuberculosis (Figure 2A–E) [28, 29]. Similarly, the hybrid design has also been applied to 

combine self-propelled and autonomously controlled micromotors with therapeutic 

nanoparticles for active delivery [30]. In particular, their potential to enhance drug delivery 

in stomach was recently reported [31]. Zn- and Mg-based micromotors harnessing water or 

acid in the stomach fluid as fuel were demonstrated as motile carriers with versatile cargo-

loading capabilities. In addition, they possessed convective fluid transport that enhanced 

their mobility and contact probability with targets compared to conventional carriers driven 

by passive diffusion. Intriguingly, the propulsion of micromotors was demonstrated to 

provide a driving force strong enough to penetrate the mucus layer and subsequently 

enhance the payload retention in the stomach. Recently, an enteric micromotor system 

capable of precise positioning and controllable retention of nanoparticle payloads in desired 

segments of the gastrointestinal tract was developed, which expanded the potential of 

nanoparticle-motor hybrid system from stomach to entire gastrointestinal tract for site-

specific antibiotic delivery [32]. Meanwhile, to overcome the high shear force under flow 

conditions, recently, antimicrobial nanoparticles were embedded into hydrogels with a 

strong bioadhesive property for local drug delivery (Figure 2F–H) [33]. The adhesion was 

achieved by using cross-linkers functionalized with dopamine methacrylamide, a catechol 

Gao et al. Page 3

Adv Drug Deliv Rev. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



moiety responsible for marine mussel attachment to a variety of surfaces [34, 35]. With this 

design, adhesion properties of the hydrogel can be tailored independently to fit the local 

environment without altering controlled antibiotic release from the nanoparticles. The 

resulting nanoparticle-hydrogel hybrid material (NP-gel) was able to withstand 

physiologically relevant shear stresses without detaching from biological surfaces. When 

ciprofloxacin was encapsulated into the nanoparticles, the NP-gel showed superior inhibition 

of Escherichia coli (E. coli) bacterial film formation under flow conditions compared to free 

ciprofloxacin in the same hydrogel. The catechol-based hydrogel has been explored for 

adhesion inside blood vessels and on atherosclerotic plaques [36]. The success suggests that 

NP-gel approach is promising to treat infections such as infective endocarditis [37, 38] and 

urinary tract infections [39], where high shear forces under flow challenge effective 

antibiotic retention.

At the tissue level, efficient drug-pathogen localization hinges on a rapid permeation and 

minimal loss of drug molecules during their transmigration across various types of tissues 

[21, 22]. Upon reaching the proximity of bacteria, they need to overcome clearance by 

bacterial metabolism or excretion as well as physical barriers of the infected tissues [40, 41]. 

The cell wall of pathogenic bacteria has an overall negative charge under physiological 

conditions; therefore, cationic nanoparticles have been studied to target bacteria through 

electrostatic interactions [42, 43]. For example, biopolymers including poly(lactic-glycolic 

acid) (PLGA), poly histidine, and poly(ethylene glycol) (PEG) were conjugated into a tri-

block copolymer and used for ‘charge-switching’ nanoparticles. They maintained a negative 

charge at physiological pH (7.4); however, when exposed to acidic pH levels of some 

infections, the imidazole groups became the protonated and switched the surface charge to 

positive, resulting in bacterium-nanoparticle localization and enhanced antibacterial efficacy 

(Figure 3) [44]. Charge-based nanoparticle-bacterium localization offers the capability of 

targeting polymicrobial infections, multivalent binding to the pathogen, and increased local 

densities of the bactericidal components, which together enhance the antimicrobial efficacy 

[45–47]. Furthermore, cationic peptides can spontaneously insert into and damage 

negatively charged bacterial cell surfaces.[48, 49] Nanoparticles self-assembled from 

cationic peptides were shown to cross the blood–brain barrier, hence attractive for brain 

inflammatory diseases such as meningitis and encephalitis primarily caused by bacteria 

including Bacillus anthrax, Bacillus subtilis or Staphylococcus aureus (S. aureus) [50, 51]. 

For more specific localization, conjugating bacterium-specific ligands onto nanoparticle 

surfaces for active targeting is also a popular strategy. Using this approach, various ligands 

including small molecules [52–54], proteins or antibodies [55–57], and aptamers [58–60] 

have been extensively explored and conjugated onto nanoparticles to target pathogenic 

bacteria. However, the ‘bottom-up’ conjugation method involves ligand identification, 

purification, and conjugation, all labor intensive and likely impractical. Recently, using 

plasma membrane derived from natural cells to coat nanoparticles offers a unique ‘top-

down’ approach to functionalizing nanoparticles for drug targeting, resulting in a biomimetic 

technique that overcomes the disadvantages in conjugation methods [61]. In addition, cell 

membrane provides a natural medium that allows protein anchorage through ligand binding 

or transmembrane insertion while avoiding chemical conjugations that may compromise 

protein structural integrity and bio-functionalities [62]. Meanwhile, cellular membranes and 
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particle cores can be independently processed prior to coating, hence offering additional 

engineering flexibility to assemble multiple-functionalities. Using this strategy, 

nanoparticles coated with the plasma membrane of human platelets (PNPs) inherited 

bacterial adherence properties and showed enhanced binding and targeted antibiotic delivery 

to platelet-adhering pathogens [63]. Although studied with systemic administration, PNPs 

are expected to facilitate antibiotic localization to various opportunistic bacteria in local 

infection settings, including strains of staphylococci and streptococci, which exploit platelets 

through diverse adherence mechanisms for immune evasion and colonization [64].

Meanwhile, at the intracellular level, various pathogens including Listeria monocytogenes 
[65, 66], Anaplasma phagocytophilum [67], Shigella [68, 69], Legionella pneumophila [70, 

71], and methicillin-resistant S. aureus (MRSA) [72, 73] are also known to invade and 

survive inside host cells such as epithelial cells and macrophages. As a result, they evade 

immune clearance and further diminish the efficacy of existing antibiotic treatments [23, 74]. 

Incomplete clearance of intracellular infection further facilitates their dissemination and 

subsequent invasion of different cell types [75]. As a result, intracellular infection is often 

associated with a number of chronic or recurrent infections such as recurrent rhinosinusitis, 

pulmonary infections, osteomyelitis, and endocarditis [76]. To overcome the cellular barrier, 

nanoparticles are designed to target infected host cells and thus gain intracellular access for 

bioactivity [77]. For example, nanoparticles locally administered to the infection sites could 

be spontaneously taken up by macrophages infected with Mycobacterium tuberculosis (M. 
tuberculosis), Salmonella typhimurium, or MRSA due to the phagocytic nature of 

macrophages [78–80]. Enhancement of antibiotic potency with nanoparticles was also 

observed in human lung epithelial cells and mouse fibroblasts infected with Chlamydia 
trachomatis [81]. Synthetic nanoparticles made from cationic polymers such as 

polyethylenimine, chitosan, and polyhexamethylene biguanide, rely on strong charge 

interactions to enhance uptake by the host cells [82–84]. Modifying nanoparticles with 

targeting ligands against infected cells also enhances cell uptake [85, 86]. In this regard, 

various ligands, such as mannose, O-stearoyl amylopectin, maleylated bovine serum 

albumin, were applied to enhance macrophage uptake of nanoparticles for the treatment of 

intracellular infection [87, 88].

3. Modulating drug-pathogen interaction to overcome antibiotic resistance

In response to the selective pressure of antibiotics, bacteria acquire resistance through 

various mechanisms including the prevention of drug entry, the expulsion of drug via active 

efflux, mutation of targets, and enzymatic inactivation of drug function [89, 90]. By 

exploiting these mechanisms, resistant strains continually emerge and evolve, making 

standard antimicrobial treatment increasingly ineffective [91–93]. To counteract antibiotic 

resistance, nanoparticles are designed to modulate drug-pathogen interaction with emphasis 

on structural, combinatorial, and responsive dynamics, resulting in new, effective 

formulations to combat local infections.

Among various nanoparticle platforms, liposomes feature a cell membrane-like bilayer 

structure with a unique capability of fusing directly with bacterial membranes [94, 95]. 

Through such fusion process, a high dose of antibiotics is burst-released into the bacteria, 
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overwhelming the efflux pumps that otherwise cause drug resistance by preferentially 

pumping antibiotics out of the cells [96, 97]. Notably, the fusion process can also disturb 

membrane structural stability and distribute membrane-bound lipophilic molecules 

exclusively into the bacterial membranes [98]. This feature was recently used to develop 

liposomes incorporating various amphiphilic free fatty acids (FFAs) in their hydrophobic 

membranes for bactericidal activity, resulting in a series of liposomal formulations effective 

against pathogens including Gram-negative Propionibacterium acnes (P. acnes), 

Helicobacter pylori (H. pylori), and Gram-positive MRSA both in vitro [99–102] and in 

mouse models of the infections [103, 104]. Especially, linolenic acid (LLA) was 

incorporated into liposome formulations (LipoLLA) and inhibited H. pylori bacteria 

including various clinically isolated and antibiotic-resistant strains in both active spiral and 

dormant coccoid forms (Figure 4) [102]. Intriguingly, in these applications, the liposome 

formulation was found to act not only as passive vehicles to solubilize FFAs for delivery, but 

also as an active player that hindered the rate of resistance development in comparison to 

traditional antibiotics and free LLA. In-depth mechanism studies showed distinct liposome-

bacterial membrane fusion and exclusive distribution of FFA molecules into the bacterial 

membranes [105]. Following the fusion, LipoLLA caused rapid structural changes in the 

bacterial membranes, compromised membrane integrity, and ultimately led to leakage of 

cytoplasmic contents for bacterial killing. Based on these results, it seemed that LipoLLA 

prevented FFAs from interacting with bacterial intracellular pathways, thus avoiding 

biochemical alterations on the bacteria that were prone to resistance selections. Instead, the 

liposomes promoted physical and non-specific structural disruption of bacterial membranes 

that ultimately led to cell permeation and death, a process less likely to elicit resistance 

development.

Combinatorial antibiotic release against multiple drug targets is a common strategy to 

broaden the antimicrobial spectrum and generate synergy to counteract antibiotic resistance 

[106, 107]. However, drug compounds differ significantly with their physicochemical 

properties. Varying drug profiles following the administration complicate the dosing and 

scheduling of drug combinations and in turn compromise antibiotic synergy in vivo. To 

address this challenge, liposomes and polymeric nanoparticles are well-known platforms to 

co-encapsulate drug molecules with distinct physicochemical properties such as size, charge, 

and hydrophobicity for co-delivery [14]. These resulting combinatorial nanoparticles 

provide drug combination with unified tissue distribution and ratiometric interactions with 

bacterial targets. Using this approach, combinatorial nanoparticles have enhanced the 

antimicrobial efficacy of existing antibiotics against infections caused by bacteria including 

Pseudomonas aeruginosa (P. aeruginosa), S. aureus, M. tuberculosis, Burkholderia cepacia, 

Mycobacterium avium, and H. pylori [15]. Meanwhile, metallic nanoparticles have 

increasingly been exploited to complex with small antibiotics for synergistic antimicrobial 

activity. For example, synergy against resistant strains of E. coli was observed when silver 

nanoparticles chelated with amoxicillin or ampicillin [108, 109]. The mechanism was 

attributed to the disruption of bacterial cell wall by amoxicillin, which subsequently 

enhanced the diffusion of silver nanoparticles into bacteria for the inhibition of DNA 

synthesis. Antimicrobial synergy was also observed with ZnO nanoparticles when 

complexed with ciprofloxacin against S. aureus and E. coli. In this case, ZnO nanoparticles 
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inhibited the pumping activity of NorA protein resided on the membrane of S. aureus 
bacteria, therefore blocking ciprofloxacin efflux from the bacteria [110]. Furthermore, 

vancomycin is ineffective against resistant enterococci due to the mutation of the binding 

sites on the bacteria. However, when complexed with gold nanoparticles, vancomycin 

became effective and showed superb activity [111]. In this case, gold nanoparticles, not the 

vancomycin, were able to bind to the amino acid residues on the bacteria through 

nonspecific and multivalent interactions. Therefore, they acted as anchors for vancomycin 

and restored its ability to inhibit cell wall synthesis.

Nanoparticles can also remain inactive, but release antibiotics for activity in response to 

external cues at the infection sites. By modulating drug-pathogen interaction in a responsive 

fashion, these nanoparticles minimize drug exposure and therefore reduce resistance 

development. For responsive antibiotic release, polymeric nanoparticles have been made 

with cross-linkers prone to enzymatic degradation. For example, a nanogel formulation 

containing polyphosphoester cross-linked cores was stable, but degraded in response to the 

active phosphatase or phospholipase produced by MRSA bacteria, resulting in lesion site-

specific drug release and bacterial growth inhibition (Figure 5A–B) [112]. Nanoparticles 

made with a polyethylene glycol (PEG) backbone were designed to undergo side chain 

cleavage and microstructural transformation in response to enzymes including penicillin G 

amidase and β-lactamase responsible for degrading antibiotic molecules for resistance [113]. 

The formulation showed strain-selective delivery of antibiotics to MRSA in vitro and 

enhanced wound healing in an in vivo murine model. Additionally, liposomes were designed 

with the attachment of small charged nanoparticles onto liposome surfaces for triggered 

antimicrobial release. In this design, charged nanoparticles were adsorbed nonspecifically 

onto phospholipid bilayer surfaces and subsequently provided steric repulsion and reduced 

surface tension for stabilization. Cationic liposomes adsorbed with negatively charged gold 

nanoparticles only showed fusion activity toward bacteria at an acidic pH. Such acid-

triggered antimicrobial activity made them suitable against various skin pathogens such as P. 
acne and S. aureus that thrive in an acidic environment [114]. In contrary, anionic liposomes 

when stabilized with cationic gold nanoparticles were stable in gastric acid, but 

spontaneously fused with bacteria at physiological pH, making them appealing to treat 

gastric pathogens such as H. pylori [115]. Even when the changes of pH are unavailable to 

trigger nanoparticle detachment, these liposomes still exposed a substantial fraction of their 

surfaces accessible to membrane-active bacterial toxins. This property made the 

nanoparticle-stabilized liposomes responsive to pathogens that secret pore-forming toxins 

(PFTs) to damage lipid membrane and trigger drug release such as hemolytic group A 

streptococci and S. aureus [116]. Similarly, a liposome formulation was made with a lipid 

composition sensitive to bacterium-secreted phospholipase A2 (PLA2) and adsorbed 

chitosan-modified gold nanoparticles onto the liposome surface for stabilization (Figure 5C–

E) [117]. The liposomes were stable, but rapidly released the encapsulated doxycycline in 

response to PLA2 secreted by H. pylori bacteria in culture and effectively inhibited bacterial 

growth.
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4. Enabling ‘drug-free’ anti-virulence therapy

Anti-virulence therapy inhibits the expression or activity of virulence traits critical for 

bacterial colonization in the host [118, 119]. Without engaging direct disruption of bacterial 

cycles for killing, this strategy is considered less likely to develop resistance in comparison 

to traditional antibiotics [120, 121]. Inhibition of virulence factors is also considered as a 

way to facilitate the host immune system to inhibit or clear bacterial infections [122, 123]. 

Additionally, anti-virulence approaches have been used in combination with other 

compounds to generate synergistic antimicrobial activities [124]. Together, these advantages 

have led to the development of various anti-virulence platforms, including anti-sera, 

monoclonal antibodies, small-molecule inhibitors, and molecularly imprinted polymers, with 

success in combating various pathogenic bacteria [125, 126].

Although promising, these platforms target primarily the molecular structure of virulence 

factors for efficacy, therefore requiring customized design for different infections. Given the 

enormous diversity of bacterial virulence factors, such structure-based approaches have been 

challenged by an overwhelming number of distinctive molecular structures and epitopic 

targets [127, 128]. To address this limitation, a biomimetic nanoparticle design has recently 

emerged by coating polymeric nanoparticle cores with plasma membrane derived from 

natural red blood cells [61, 129]. Intriguingly, these cell membrane-coated nanoparticles 

(denoted ‘nanosponges’) harnessed the functional similarity among bacterial virulence 

factors, in particularly PFTs that perforate cell membranes, regardless of their molecular 

structures and epitopic targets. Nanosponges were demonstrated to neutralize various 

bacterial PFTs, including α-toxin, streptolysin-O, and melittin, and effectively protect mice 

from their virulence attacks.

Following their initial development, nanosponges were loaded into a hydrogel to form a 

hybrid material (NP-gel) specifically for local treatment against MRSA infection (Figure 

6A–I) [130]. In this design, nanosponges were able to spontaneously absorb PFTs for 

neutralization and the hydrogel facilitated the process by retaining the nanosponges within 

local infection sites. In this way, the hybrid design brings together the advantages of 

nanosponges and the hydrogel into one system toward better localized toxin neutralization 

and overall therapeutic outcomes [131, 132]. In this study, monomer and cross-linker 

compositions were tailored for effective nanosponge retention without affecting toxin 

transport into polymer matrix and access of nanosponges for neutralization. When the NP-

gel was injected subcutaneously into mice, they effectively retained the nanosponges at the 

injection sites. In a mouse model of MRSA subcutaneous infection, the study demonstrated 

that NP-gel reduced MRSA skin lesion development in mice. Overall, such hybrid strategy 

seeks synergy between distinct materials and offers a new detoxification approach to treat 

local infections.

Meanwhile, the anti-virulence applications of membrane coating technology, especially its 

broad-spectrum and function-based toxin inhibition, has motivated a number of innovative 

designs for potential treatment of local infections. For example, RBC membranes were 

coated onto polymer cores composed of cross-linked gelatin (Figure 6J–L) [133]. The 

membrane shell absorbed the bacterial exotoxin to relieve symptoms caused by bacterial 
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infection, while the cores released antibiotic payloads in response to gelatinase secreted by 

gelatinase-positive bacteria including Proteus vulgaris, S. aureus, P. aeruginosa and Serratia 
marcescens. Cell membrane coating onto nanoparticles was also accomplished by using a 

membrane vesicle-templated in situ gelation strategy [134]. In this approach, hydrogel 

nanoparticles coated with RBC membranes not only effectively neutralized toxins from 

MRSA bacteria, but also enhanced bacterial uptake by immune cells as a direct result of the 

toxin neutralization [135]. With disulfide bonds on the gel backbone, the nanoparticles were 

responsive to the intracellular reducing potential for accelerated drug release, causing more 

effective bacterial inhibition. When added to MRSA-infected macrophages, these 

nanoparticles significantly inhibited bacterial growth compared to free antibiotics and non-

responsive nanoparticle counterparts.

The unique capability of cell membrane-coated nanoparticles in sequestering membrane-

active toxins has further intrigued their use as vaccines against bacterial infections [136, 

137]. Many bacterial toxins have been identified as the primary causative factors in various 

infections. Their roles in pathogenesis have in turn prompted the development of toxoid 

vaccines, which are inactivated toxins that can be safely administered for antimicrobial 

immunity. Conventional toxoid preparation techniques involve protein denaturation process 

to reduce toxin virulence for safety purpose. However, protein denaturation is disruptive, 

inevitably altering the antigenic configuration and compromising the toxin’s immune 

potency. As a result, toxoid vaccine development has been challenged by the trade-off 

between vaccine safety and efficacy [138, 139]. Cell membrane coating technology offers a 

new approach to address this challenge: while the toxins become detained and lose their 

toxicity when interacting with the nanoparticles, the sequestration preserves the intact and 

non-denatured configuration of the toxin for mounting a potent immune response.

The ‘nanotoxoid’ vaccine was prepared by simply mixing nanosponges with toxins [136]. 

When α-hemolysin was used as a representative PFT, each nanosponge was shown to detain 

dozens of toxins. The resulting nanotoxoid showed no discernible toxicity when tested in 

mice. In addition, mice vaccinated with nanotoxoid generated higher anti-toxin immune 

responses when compared to those vaccinated with heat-denatured toxins, attributable to the 

preserved toxin structure in the nanotoxoid. Intriguingly, high doses of α-hemolysin that 

would have caused severe tissue damages in non-vaccinated mice did not induce the same 

effect in the vaccinated mice, suggesting mice vaccinated with the nanotoxoid acquired 

effective immunity against the toxin. Recently, the membrane-detaining strategy for 

‘nanotoxoid’ design inspired in situ capture of bacterial toxins for anti-virulence vaccination, 

a facile approach for generating on-demand nanotoxoids from natural bacterial secretions 

(Figure 7) [140]. In this approach, bacteria-secreted virulent proteins were biomimetically 

entrapped using a membrane-coated nanosponge, which further enhanced anti-bacterial 

efficacy by providing multi-antigenicity while simplifying vaccine preparation through 

bypassing the need for identifying individual virulence factors. This new vaccine preparation 

does not require prior knowledge of secreted constituents and thus can be generalized to 

produce various pathogen-specific vaccine formulations that are safe, potentially multi-

antigenic, and epitopically faithful.
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The ‘nanotoxoid’ design further inspired the direct use of bacterial membranes to coat 

nanoparticles as a potential antibacterial vaccine strategy [141]. Bacterial membranes are 

attractive materials for developing novel vaccines owing to their unique advantages 

including diverse immunogenic antigens, native pathogen associated-molecular patterns, and 

intrinsic adjuvant properties [142, 143]. Meanwhile, physicochemical properties of the 

nanoparticles including particle size and geometry can be tailored through the cores to 

further promote antigen presentation to the immune cells [144]. By marrying the virtues of 

natural and synthetic materials, the bacterial membrane-coated nanoparticles were able to 

mount effective antibacterial immunity. Small gold nanoparticles (approximately 30 nm in 

diameter) coated with E. coli membrane derived from bacterial outer membrane vesicles 

(OMVs) induced fast dendritic cell activation and maturation in the lymph nodes of the 

vaccinated mice. Regarding the humoral immunity, these nanoparticles generated higher 

antibody titers with stronger avidity than those elicited by OMVs alone. Regarding the 

cellular immunity, vaccinated mice showed high levels of interferon-gamma and interleukin 

(IL)-17, but not IL-4, suggesting a strong Th1- and Th17-biased cell responses against the 

source bacteria [141].

5. Summary

The field of antimicrobial drug delivery has achieved a significant progress in recent years, 

especially with the rapid advance of nanomedicine in combination with the growing 

understandings of infectious diseases. Major efforts have been devoted to the development 

of nanoparticle-based strategies with a primary goal to increase therapeutic efficacy while 

minimizing drug resistance development. For local antimicrobial treatment, these strategies 

have shown promising outcomes by promoting antibiotic localization to the pathogen, 

modulating drug-pathogen interaction against bacterial drug resistance, and enabling novel 

anti-virulence therapy for ‘drug-free’ antimicrobial activity.

From a translational perspective, although clinical uses of antimicrobial nanoparticles 

remain scarce, their development is fast. For example, inorganic nanoparticles, such as Ag 

and ZnO, which have a long history of topical use against local infections, are making a 

remarkable comeback as effective antimicrobial agents in the era of antibiotic resistance 

[145, 146]. In addition, novel nanoparticle-enabled antimicrobial strategies are also 

emerging at a rapid pace. For example, liposomes consisting of sphingomyelin and 

cholesterol have been developed for toxin neutralization with the promise of treating patients 

who have severe pneumonia caused by Streptococcus pneumoniae [147]. The formulation 

has entered clinical studies. Meanwhile, a large number of nanoparticle formulations are in 

clinical trials and many are gaining approval for different diseases [148]. The success 

together suggests a promising future of antimicrobial nanoparticles for treating various 

infections. It is expected that nanomedicine will continue to generate innovations tailored for 

local antimicrobial treatment that is efficacious, patient-compliant, and cost effective.
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Figure 1. 
Schematic summary of nanoparticle-based local antimicrobial drug delivery strategies 

including promoting antibiotic location to the pathogen (left), modulating drug-pathogen 

interaction against bacterial drug resistance (middle), and enabling anti-virulence therapy for 

‘drug-free’ antimicrobial activity (right).
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Figure 2. 
(A) Schematic illustration of inhalable microparticles as carriers for delivery of drug-loaded 

nanoparticles to the deep lung. (B) Scanning microscopic images of microparticles made 

from mannitol and leucine using a spray-drying process. The microparticles were loaded 

with nanoparticles made from glyceryl monostearate and soybean phosphatidylcholine with 

a double emulsion process. (C) A zoomed-in image of (B). Fluorescence images of lungs 

from untreated rat (D) and rat after intrapulmonary delivery of microparticles fluorescein-

labeled nanoparticles (E). (Reprinted with permission from Ref. 28) (F) Schematic 

illustration of a nanoparticle–hydrogel hybrid (NP–gel) system with tissue adhesive 

properties for localized antibiotic delivery under flow conditions. In this design, dopamine 

methacrylamide (DMA) containing catechol functional group was conjugated into gel 

matrix for adhesion. (G) NP–gel was tested for adhesion under a flow (shear stress = 3.2 Pa) 

on E. coli bacterial film (green: nanoparticles in the gel; bacteria: red), HEK 293T cell 

monolayer (blue: cell nuclei; green: nanoparticles in the gel), and shaved mouse skin. (H) E. 
coli biofilm formation when the bacteria were treated with PBS, blank gel (gel without 
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nanoparticles or ciprofloxacin), free ciprofloxacin, ciprofloxacin-loaded nanoparticles 

(without hydrogel), and ciprofloxacin-loaded NP–gel (scale bar = 5 mm). (Reprinted with 

permission from Ref. 33).
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Figure 3. 
(A) Schematic illustration of a pH-responsive anti-microbial nanoparticle design for drug 

targeting to bacterial cell walls. Poly(lactic-glycolic acid), poly(L-histidine), and 

poly(ethylene glycol) was conjugated into a triblock copolymer (PLGA-PLH-PEG) for 

nanoparticle formulation. Drugs are loaded with a double emulsion process. At physiologic 

pH (7.4), the nanoparticles maintain a slight negative charge. The surface PEGylation also 

prevents uptake or binding to non-targeted cells or blood components. However, at acidic pH 

level, the nanoparticles become positively charged and subsequently bind to negatively 

charged bacteria for antimicrobial activity. (B) S. aureus bacteria (red) were added with the 

nanoparticles (green). Fluorescence microscopy images show bacterium-nanoparticle co-

localization (yellow) at pH 6.0 but not pH 7.4. (C) Different vancomycin formulations were 

tested against S. aureus. Minimum inhibitory concentrations (MIC) values show the loss of 

vancomycin activity in non-targeted control nanoparticles (denoted ‘PLGA-PEG[Vanco]’, 

nanoparticles made from PLGA-PEG di-block polymers without PLH) and free form, but 
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not in PLGA-PLH-PEG nanoparticles (denoted ‘PLGA-PLH-PEG[Vanco]’). (*indicates 

p<0.05.) (Reprinted with permission from Ref. 44).
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Figure 4. 
(A) Schematic illustration showing oral administration of liposomal linolenic acid 

(LipoLLA) for the treatment of Helicobacter pylori (H. pylori) infection in stomach. (B) 

Schematic illustration of LipoLLA formulation and liposome-membrane fusion for 

antibacterial activity. (C) Fluorescence microscopy images show the fusion interaction 

between LipoLLA (red) and H. pylori (blue) (scale bars = 5 μm). (Reprinted with permission 

from Ref. 102). (D, E) Bacterial morphology observed under a transmission electron 

microscope. H. pylori bacteria show intact morphology in PBS without LipoLLA (D), but 

compromised bacterial membrane structure in PBS containing LipoLLA (E). (Reprinted 

with permission from Ref. 105).
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Figure 5. 
(A) Schematic illustration of a vancomycin-loaded mannosylated nanogels (MNG-V) for 

intracellular targeting and bacteria-responsive drug release. (B) Nanogel formulations were 

tested against Staphylococcus aureus in Raw264.7 macrophages. Infected macrophages were 

cultured with free vancomycin, empty targeted-nanogels, vancomycin-loaded non-targeted 

nanogels, and vancomycin-loaded targeted nanogels, respectively (CFU, colony-forming 

units, *P < 0.05 and ** P < 0.01 based on Student’s t test.) (Reprinted with permission from 

Ref. 112) (C) Schematic illustration of liposomes stabilized with chitosan-modified gold 

nanoparticles (AuChi-liposome) and phospholipase A2 (PLA2)-triggered antibiotic release to 

treat H. pylori (PLA2-positive) infection. Fusion of doxycycline-loaded liposomes is 

prevented for stability with AuChi. When H. pylori bacteria are present, PLA2 cleaves the 

phospholipids and releases doxycycline to kill H. pylori. (D) After incubation with H. pylori 
culture, doxycycline release from AuChi-liposomes were measured. Bacterial culture added 

with quinacrine (a PLA2 inhibitor) served as a control. Data represent mean ± SD (n = 3). 

(E) Bactericidal effect of doxycycline-loaded AuChi-liposome against H. pylori. The effect 

of PLA2 on the observed antimicrobial activity was tested with quinacrine. Empty AuChi-

liposome (no encapsulated doxycycline) and PBS (pH = 6.5) were used as two negative 

controls while free doxycycline served as a positive control. Data represent mean ± SD (n = 

3). (Reprinted with permission from Ref. 117).
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Figure 6. 
(A) Schematic illustration of a hydrogel-nanosponge hybrid (NS-gel) designed for anti-

virulence treatment of local methicillin-resistant Staphylococcus aureus (MRSA) infection. 

The nanosponges are made of a polymeric core wrapped with membranes of natural red 

blood cells (RBCs). The nanoparticles were subsequently embedded into an acrylamide 

hydrogel suitable for in vivo injection. (B) The spherical core–shell structure of the toxin-

absorbing nanosponges was imaged with TEM (scale bar represents 50 nm). (C–E) Mice 

injected with α-toxin followed by the empty gel. The dashed lines indicate the approximate 

tissue–hydrogel boundary. (C) Skin lesions developed at 72 h after the toxin injection. 

Histological sections stained with hematoxylin and eosin staining show (D) edema, 

apoptosis, necrosis, and immune infiltration in the epidermis, and (E) muscular damage 
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implied by interfibril edema, tears on muscle fibers, and neutrophil extravasation from 

surrounding vasculature. (F–H) Mice injected with α-toxin followed by NS-gel. (F) No skin 

lesion or skin abnormality occurred. (G) Normal epidermis and (H) muscle structure were 

observed. (Scale bar = 50 μm, n = 6 for each group). (I) Efficacy of NS-gel used for treating 

MRSA infection (n = 9 per group). Skin lesion sizes were measured. Bars represent median 

values. * P < 0.05, n.s.: not significant. (Reprinted with permission from Ref. 130) (J) 

Schematic illustration of preparing vancomycin encapsulated supramolecular gelatin 

nanoparticles coated with red blood cell (RBC) membranes (denoted RBC-Van-SGNPs). (K) 

Hemolytic activity test of RBC-Van-SGNPs shows the capability of the nanoparticles to 

neutralize SLO. PBS and nanoparticles without membrane coating (SGNPs) were used as 

two control groups. (L) Fluorescence microscopy images show the inhibition and killing of 

bacteria by RBC-Van-SGNPs when added to S. aureus, a gelatinase-positive strain, and 

Staphylococcus epidermidis (S. epidemidis), a gelatinase-negative strain, respectively. 

(Reprinted with permission from Ref. 133).
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Figure 7. 
Schematic illustration of a nanotoxoid platform featuring on-demand loading of pathogen-

specific toxins. (A) Virulence factors secreted from bacteria spontaneously insert themselves 

into the membrane of target cells for bioactivity. (B) Nanotoxoid was prepared by incubating 

culture supernatant containing hemolytic secreted protein (hSP) fraction with nanosponges 

coated with source cell membranes. (C) Nanotoxoid vaccination generates antibodies that 

protect cells against multiple virulence factors. (D-F) Protection with nanotoxoid against live 

bacteria. Mice were vaccinated with a blank solution, heat-treated(hSP), or nanotoxoid(hSP) 

on day 0 with boosts on days 7 and 14, respectively. (D) Lesion size progression after 

subcutaneous challenge with MRSA (USA300) on day 35 (n = 7; mean ± SEM). (E) Total 

bacterial load summed from major organs 3 days after intravenous challenge with MRSA 

USA300 on day 35 (n = 7; geometric mean ± SEM). (F) Individual, weight-normalized 

bacteria burdens in major organs from (E) (n = 7; min to max). *p < 0.05, **p < 0.01, ***p 
< 0.001, one-way ANOVA. (Reprinted with permission from Ref. 140).
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