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Abstract

The Ebola forecasting challenge organized by the Research and Policy for Infectious Disease 

Dynamics (RAPIDD) program of the Fogarty International Center relies on synthetic disease 

datasets generated by numerical simulations of a highly detailed spatially-structured agent-based 

model. We discuss here the architecture and technical steps of the challenge, leading to data sets 

that mimic as much as possible the data collection, reporting, and communication process 

experienced in the 2014–2015 West African Ebola outbreak. We provide a detailed discussion of 

the model’s definition, the epidemiological scenarios’ construction, synthetic patient database 

generation and the data communication platform used during the challenge. Finally we offer a 

number of considerations and takeaways concerning the extension and scalability of synthetic 

challenges to other infectious diseases.
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1. Introduction

The RAPIDD Ebola forecasting challenge arose from an Ebola Modeling workshop 

organized in March 2015 as part of the Research and Policy for Infectious Disease 

Dynamics (RAPIDD) program of the Fogarty International Center, US National Institutes of 
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Health (NIH). The workshop convened the major academic teams that were involved in 

generating disease forecasts during the 2014–2015 West Africa Ebola outbreak to explore 

the successes and failures of disease forecasting in relation to this particular emergency. At 

the conclusion of the workshop, the participants agreed that a disease forecasting challenge 

relying on well-defined and ground-truth synthetic datasets would provide unique 

assessment of the performance of multiple models in real-time.

Accordingly, we launched an Ebola forecasting challenge in August–December 2015 that 

relied on synthetic epidemic datasets derived from an agent-based “mother model”. We 

considered four scenarios involving different levels of data accuracy, availability, and 

interventions, and were reminiscent of the epidemic in West Africa. These synthetic datasets 

were used as a basis to assess forecasting performance of 8 competing teams during the 

course of the Ebola challenge. In this paper, we describe the technical architecture of the 

RAPIDD Ebola Forecasting Challenge, including generation of synthetic disease datasets, 

development of a web interface to support data visualization and exchange with the 

challenge participants, and generation of contextual information.

Synthetic datasets for the Ebola forecasting challenge were derived from a highly detailed 

spatially-structured agent-based model (Ajelli et al., 2016; Merler et al., 2015) in order to 

achieve the level of resolution necessary to mimic realistic epidemic scenarios. The model 

was previously used in the context of the 2014 West Africa Ebola outbreak to assess the 

effect of control interventions and the probability of elimination (Merler et al., 2015; Ajelli 

et al., 2016). The epidemic model integrated detailed data on local demography, case 

isolation, Ebola treatment units, contact tracing, and safe burial interventions - factors that 

were taken into account in several other modeling studies (Merler et al., 2016; Ajelli et al., 

2015; Lewnard et al., 2014; Meltzer et al., 2014; Kucharski et al., 2015; Pandey et al., 2014; 

Rivers et al., 2014; Weitz and Dushoff, 2015; Fang et al., 2016). Individual level 

information, spatial context, and health-care related transmission characteristics derived 

from model runs could be summarized in synthetic patient line lists and aggregated 

epidemiological time series.

Real-world situations are always affected by the so-called “fog of war” that arises from the 

data reporting process. For instance, data are not communicated in real time and a variable 

degree of under-reporting is always present. Moreover, patient records may contain errors 

and missing data (WHO Ebola Response Team, 2014). For this reason, the challenge 

accounted for the “noise” introduced during collection and reporting of epidemiological 

data. Further more each synthetic scenario was accompanied by contextual information (in 

the form of situation reports), which was not necessarily precise and was often qualitative in 

nature, but was nevertheless relevant for challenge participants to define modeling 

assumptions.

The performance of the different models participating in the RAPIDD Ebola challenge are 

described in an accompanying article (Viboud et al., 2017); here we aim to provide a 

detailed account of the process used for generating the synthetic data and displaying 

information in the challenge. First, we describe the mother model and the assumptions 

underlying the generation of the synthetic datasets associated with each of the four challenge 
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scenarios. Second, we describe the “fog of war” rules applied to data generated by the agent-

based model to introduce different levels of data precision. Finally, we provide a detailed 

description of the databases and the contextual information provided to participating teams 

during the course of the Ebola challenge.

2. Methods

The data provided for the Challenge were derived from the output of a mother agent-based 

model, which is a variant of the ones presented in (Merler et al., 2015; Ajelli et al., 2016) for 

Liberia and Guinea. The original models were specifically calibrated for the 2014 Ebola 

epidemic in West Africa and were able to reproduce the spreading patterns and trends 

observed in the actual epidemic. In order to generate the synthetic data used in the challenge, 

key parameters defining the natural history of the disease in the model were varied. 

Furthermore, interventions and containment policies were implemented with plausible 

timelines but differently from the historical case of 2014 epidemic. Moreover, differently 

from (Merler et al., 2015) but according to (Ajelli et al., 2016), the model took into account 

two important features observed in the 2014–15 Ebola epidemic: the heterogeneity in 

transmission potential among individuals (with the presence of superspreaders), and the 

different susceptibility to infection in children and adults. The model differed from (Merler 

et al., 2015; Ajelli et al., 2016) also in terms of the distributions of key time periods and of 

the implemented interventions. Simulations were computationally intensive; thus the model 

was coded in C language. In this section we detail the model’s definition, the intervention 

strategies and the selection of the stochastic runs used to generate the challenge data. How 

the model’s output has has been filtered and communicated to the teams participating to the 

challenge is reported in Sec. 3. All the data and materials generated for the challenge are 

publicly available at the web page: http://www.ebola-challenge.org/.

2.1. Model definition

As in (Merler et al., 2015; Ajelli et al., 2016), the population was grouped in households and 

hospitals, and health care workers were explicitly represented. Infection transmission was 

stochastic and specific interventions were simulated. The model accounted for three routes 

of transmission: transmission in households and to the extended family, transmission in 

hospitals, and transmission during funerals (to household and extended family members). 

The population of Liberia was subdivided into 15 administrative counties; for each county 

we placed the corresponding capital in the exact location given by GPS coordinates and with 

the exact number of inhabitants as obtained from census data. Simulated individuals were 

grouped into households and assigned to villages and capital city by preserving the 

population density at the level of county, and in order to match demographic information 

derived from the 2007 Demographic Health Surveys (Program, 2007) on household size and 

demographics for Liberia (see the Supplementary information for details). Hospitals were 

located on the territory according to their actual location as reported in the Humanitarian 

Data Exchange database (United Nations Office for the Coordination of Humanitarian 

Affairs, 2015). Each hospital was characterized by number of beds and number of health 

care workers (HCW), which were determined in order to match statistics available from the 
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WHO Regional Office for Africa (WHO Regional Office for Africa, 2014). The counties 

considered, the population density, and the location of hospitals is shown in Fig. 1A.

Each individual in the population was explicitly simulated as an agent of the individual 

based model, with an associated epidemiological status. The natural history of the disease 

followed the one used in (Merler et al., 2015), as outlined in Figure 1 B. Specifically, 

susceptible individuals could acquire infection after contact with an infectious individual and 

become latent (asymptomatic). At the end of the latent period, assumed to be equal to the 

incubation period for Ebola as there is no evidence of Ebola transmission before symptom 

onset, latent individuals became infectious (symptomatic). Infectious individuals could 

transmit the infection, to both household members and members of the extended family. 

Ebola infections would either lead to hospitalization, death or recovery. Hospitalized 

individuals could transmit the infection to HCW and inpatients; afterwards, they would 

either die or recover. However, after recovery, a hospitalized individual remained in the 

hospital (though no longer infectious) for an additional period of time before being 

discharged. Deceased individuals could transmit infection to household and extended family 

members during funerals, and were then removed from the model. As in the West African 

Ebola outbreak, we accounted for contact tracing, an important aspect of disease control. In 

the Ebola forecasting challenge model, individuals belonging to the contact tracing pool 

were constantly checked and admitted to a hospital/ETU at the onset of symptoms.

The progression of infection is characterized by seven key time periods defining the natural 

history of the disease: the incubation period (which is the time between infection and the 

onset of symptoms); the interval from symptom onset to hospital admission; the interval 

from hospital admission to death; the interval from hospital admission to the end of 

infectivity; the interval from hospital admission to discharge; the interval from symptom 

onset to death; the interval from symptom onset to the end of the infectivity. Each key time 

period in the infection process was randomly sampled for every individual. In particular, 

time from death to burial was assumed to follow a truncated exponential distribution with 

mean 2 days and maximum 3 days, while all other key time periods (such as the incubation 

period, the time from symptom onset to admission, etc.) were assumed to be gamma 

distributed, in agreement with (WHO Ebola Response Team, 2014). Values for these 

parameters were chosen in such a way as to obtain plausible scenarios for an Ebola epidemic 

similar to the one experienced in West Africa (see Supplementary Information for a full list 

of parameters). In the early transmission phase the reproduction number was calibrated to be 

around 1.5–1.6, in agreement with early estimates in West Africa (WHO Ebola Response 

Team, 2014; Chowell and Nishiura, 2014; Nishiura and Chowell, 2014; Fisman et al., 2014; 

Merler et al., 2015; Gomes et al., 2014).

As in (Ajelli et al., 2016), the Ebola Forecasting Challenge model included two important 

features observed in the 2014–15 Ebola epidemic: heterogeneity in transmission rates among 

individuals, and differences in susceptibility to infection between children and adults. This 

choice was supported by modeling studies of the2014–15 Ebola epidemic in West Africa, 

which highlighted that a small fraction of infected individuals were responsible for a large 

majority of secondary cases (presence of superspreaders) (Ajelli et al., 2015; Althaus, 2015; 

Faye et al., 2015; WHO Ebola Response Team, 2016a), recently confirmed in (WHO Ebola 
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Response Team, 2016b; Lau et al., 2017). In the model we assumed that each infectious 

individual had a different infection transmission potential, which was sampled from a 

gamma distribution of mean 1 and a given shape. This is equivalent to using a negative 

binomial distribution for the distribution of secondary cases, with dispersion equal to the 

shape of the gamma distribution. Further, in line with previous studies of the 2014–15 West 

African outbreak (Ajelli et al., 2015; WHO Ebola Response Team, 2015), we assumed an 

age-dependent risk of infection, with children being less susceptible to infection with the 

Ebola virus than adults. Accordingly, we introduced a parameter accounting for the relative 

susceptibility of 0–14 years old, equal to one-fourth of that of adults (Ajelli et al., 2015). 

Lastly, the Challenge model differed from that in (Merler et al., 2015) in terms of the 

distributions of key time periods and implemented interventions. More details on the 

computational implementation of the transmission mechanisms are provided in the 

Supplementary Information.

2.2. Modeling of intervention strategies

The challenge model was used to explore four different epidemic scenarios, each 

characterized by different disease parameters and intensity of interventions aimed at 

controlling the epidemic. In particular the challenge model accounted for the following 

interventions:

• Hospitals and ETUs. ETUs were put in place and opened according to the 

spatio-temporal spread of the epidemic in particular simulations. Each Ebola 

case was assigned a hospitalization probability, based on bed availability in 

hospitals/ETUs. If an ETU with available beds was located in the same county as 

the case, the Ebola patient was directly admitted to that ETU; otherwise, the 

patient first went to the hospital that was closest to his/her place of residence and 

had space. Then, for the three days following hospital admission, if there was an 

available bed in any of the ETUs of the county, the patient was transferred to the 

closest one; otherwise he/she remained in the hospital where he/she was first 

admitted. If all hospitals and ETUs were at maximum capacity, the patient 

remained at home. We assumed that ETUs were exclusively used to treat Ebola 

patients. In contrast, general hospitals could admit individuals presenting 

different pathologies (and thus susceptible to Ebola infection) as well as true 

Ebola patients. Non-Ebola patients were hospitalized for 7 days on average. We 

assumed that when a hospital had availability, Ebola cases were prioritized, and 

then non-Ebola patients were admitted until the hospital reached full capacity. In 

other words, an Ebola case that was hospitalized in an ETU could transmit the 

infection to the HCWs of that ETU only; while an Ebola case hospitalized in a 

general hospital could transmit to HCWs and to non-Ebola patients hospitalized 

in the same facility and at the same time.

• Contact tracing. Once an individual was admitted to the hospital/ETU, a 

number of his/her contacts, chosen among members of his/her extended family 

(including his/her own household), were monitored starting at time t after 

admission; this parameter varied over time and by scenario. Traced contacts 

could then either remain in their original status (e.g., susceptible, recovered) or 
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become infected. If a traced contact became infected, the contact was admitted to 

the hospital/ETU (if there were available beds) on the first day that he/she 

experienced symptoms. In contrast, for Ebola cases arising outside of the contact 

tracing process, we assumed a time delay between symptom onset and admission 

to the hospital/ETU (i.e., the time interval from symptom onset to 

hospitalization).

• Safe burials. Once an Ebola patient died, he/she could be buried either safely 

(i.e., no onward transmission could occur) or unsafely (i.e., there was a non-zero 

probability of transmission). Specifically, three possibilities were considered: 1) 

the individual died in the community (i.e., he was not previously admitted to 

hospital/ETU) and was safely or unsafely buried depending on a daily scenario-

dependent probability; 2) the individual died in an ETU, in which case, he was 

buried safely; 3) the individual died in a hospital. In this case, in the first three 

months of the epidemic (that is, up to 89 days the first Ebola case report) the 

body was released to the family and buried in the community (as described in 

point 1). Later in the course of the outbreak, all patients dying in the hospital 

were buried safely.

• Behavioral changes. We accounted for reactive behavioral changes in the 

population such as avoiding or limiting contacts with bodily fluids of Ebola cases 

(e.g., in the family setting or when visiting patients in hospitals), mirroring 

increased awareness in the general population during the course of the epidemic. 

We modeled this phenomenon by scaling the three baseline Ebola transmission 

rates (family, hospital/ETU, funeral) by the same factor, for each day of the 

simulation. These time-dependent scaling factors were specific to each scenario.

We considered four different epidemiological scenarios, each one defined by a different set 

of interventions. In Supplementary Information, we report graphically a summary of the 

interventions used in each scenario by visualizing the evolution in the cumulative number of 

ETUs beds, the daily number of traced contacts, the rate of safe burial, and the reduction in 

transmission due to behavioral changes. The timeline of interventions dictated the course of 

the epidemic and thus controlled peak timing and the magnitude of the outbreak. 

Interventions could fluctuate in time, mirroring changes in intervention efficacy due to 

resource constraints, as observed in the 2014–2015 West Africa Ebola outbreak.

In addition to differences in the timing and intensity of control interventions, we used 

different natural history parameters for each scenario, which contributed to generate 

different epidemic trajectories. A table summarizing scenario-specific disease parameters is 

provided in the Supplementary Information. Overall, there was less variability in the choice 

of disease parameters than in the definition of interventions because we aimed to reproduce 

a natural disease history compatible with the Ebola patterns observed in the West African 

and historical outbreaks.

2.3. Stochastic variability and selected realizations

As we used a stochastic model, repeat runs of the model with the same set of initial 

conditions, disease parameters, and interventions, could result in different epidemic 
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realizations that are all plausible. While some runs may substantially deviate from the 

ensemble of stochastic realizations (e.g., some runs led to early epidemic extinction), we 

selected epidemic realizations that fell within the 50% interquartile range of the ensemble. 

That is, for each scenario we selected a single realization lying asymptotically close to the 

median of curves of cumulative cases, for realizations that did not go extinct (see Figure 2). 

Therefore, each synthetic dataset shared with challenge participants corresponded to a 

unique stochastic realization of the epidemic and included all fluctuations and stochastic 

variability associated with a single realization under a given epidemiological scenario, as 

would a real outbreak. The resulting synthetic epidemic curves representing the number of 

cases or deaths over time exhibited substantial fluctuations; in contrast, averaging over the 

ensemble of stochastic realizations would have resulted in unrealistically smooth curves.

Our selected set of stochastic realizations also allowed for unequivocal spatio-temporal 

assignation of individual cases and a complete line-list of patients comprising detailed 

individual-level information, similar in spirit to the one obtained during the 2014–15 Ebola 

epidemic in West Africa (WHO Ebola Response Team, 2014). In addition, the spatial 

structure of the model reproduced heterogeneity in the timing and impact of the epidemic 

across different counties of Liberia. Each selected stochastic realization of the model had a 

particular spatial and temporal evolution captured by county-level incidence data. In Fig. 3 

we report the cumulative number of infections as a function of time for each county in the 

four selected realizations before the application of the additional noise use to simulate the 

“fog of war” (see Sec.3.3). The figure shows that the most affected counties and the timing 

of the epidemic in each county depend on the initial conditions and the level of intervention 

strategies in each scenario.

3. Results

The performances of the various models used by the 8 participating teams in the RAPIDD 

Ebola Forecasting challenge, and ensemble predictions, are described elsewhere (Viboud et 

al., 2017). Here, the results of this particular article concentrate on the preparation of the 

synthetic epidemiological data and the contextual information shared with challenge 

participants during the course of the competition. In particular synthetic data generated for 

each epidemiological scenario with the methodology described above were organized in a 

database format and shared with the teams through a dedicated password-protected website. 

Synthetic epidemiological time series and patient line lists were supplemented with 

additional information contextualizing the data in the form of situation reports. Data access 

and communication with the challenge participants was processed through the web interface 

(see Fig. 4). The teams were presented with outbreak data corresponding to five different 

times of the 4 synthetic scenarios. Typically for each scenario, we chose two time points in 

the ascending phase of the epidemic, a time point near the peak, and two time points in the 

descending phase (with the exception of Scenario 4, characterized by a prolonged ascending 

phase). At each of the five data release time points, challenge participants were given access 

to an incrementally larger database containing information up to that point of the epidemic. 

All files are accessible upon request. For each of the 5 prediction time points, the teams were 

asked to provide forecasts for a number of target estimates, including 1 to 4-week ahead 
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weekly incidences, peak timing, peak magnitude, case fatality rate estimate and reproduction 

number estimates. Separate forecasts were requested for each of the 4 scenarios.

3.1. Scenarios’ overview

The Ebola Challenge database included the four scenarios described in the previous sections. 

A different level of data quantity/quality applied to each scenario. In addition, the 

“difficulty” level offered by each scenario was also determined by the choice of the 

intervention strategies and/or selected realization of the epidemic.

• Scenario 1. With this scenario, the participating teams were offered a “Data 

Rich” situation in which from Day 1 of reporting the modelers had access to the 

full patient database, with a staggered ramp up of interventions that ultimately 

controlled the outbreak. Although affected by the “fog of war”, all timelines and 

individual-level patient databases were available along with fairly detailed 

situation reports. Age statistics were provided for each data release as well. Data 

were available at the national and county level. In addition, a large branch of the 

transmission tree was provided for the teams.

• Scenario 2. This was a “data poor” scenario in which individual-level patient 

data was unavailable to participating teams throughout the challenge. Only 

timelines and national age statistics were released, along with situation reports 

providing contextual information. Two small branches of transmission trees were 

provided; this was a controlled outbreak as well.

• Scenario 3. Like Scenario 2, this was a “data poor” situation, with additional 

complications. The scenario was based on a far from typical stochastic 

realization for the first two months of the outbreak. In addition the 

implementation of intervention strategies was characterized by an abrupt change 

within the time span of a single week. The situation reports were not detailed nor 

reliable. National ETU occupancy rate was provided after the 3rd data release, 

while individual-level patient data were provided for the 5th and final data 

release. Two small branches of transmission trees were provided; the outbreak 

was ultimately controlled.

• Scenario 4. This scenario was complicated by the fact that the outbreak is 

uncontrolled; i.e. does not present a clear inflection point, with no true declining 

phase, during the entire challenge. This scenario was also “data poor” as 

timelines and age statistics only were available throughout the challenge. 

Additionally, two small partial transmission trees were also provided to the teams 

in the same fashion as Scenario 3.

In summary, each scenario represented a different level of difficulty for the modeling teams. 

In particular, scenario 1 was an idealized case, with timely availability of data, but without 

neglecting the presence of a fog of war that would be unreasonable to rule out in any real 

world situation.
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3.2. Data format

In order to provide consistent data query capabilities to all teams, we set up a dedicated 

challenge database offering a number of query masks according to the type of data available 

under each scenario. The most granular data were available for scenario 1, while data 

availability and noise gradually increased with scenarios 2–4. The data explorer interface ran 

as a Python Flask application with a MySQL database, served through the Apache web 

service. For each scenario, the interface provided daily/weekly and national/county-level 

timelines for the following outcomes:

• New confirmed and probable EVD cases.

• New EVD cases among Health Care Workers.

• New EVD deaths in the population.

• New EVD deaths among Health Care Workers.

• Number of new contacts traced.

• ETU occupancy – number of beds occupied, counting each bed each day.

• New suspected EVD cases.

For most scenarios, the above data were not available at all times nor at the county level. For 

some scenarios, a number of timelines were not available at all as discussed in Sec. 3.1. 

Further, the timelines made available to the participating teams were post-processed with the 

addition of noise in order to simulate problems in data reporting as detailed in Sec. 3.3.

A second type of data file generated from the model contained individual-level records for 

all hospitalized patients with a complete medical record (patients who were discharged, dead 

or buried). A full list of the information provided in the patient record database is provided 

in the supplementary information file. Similarly to the timelines, the patient databases were 

released after the addition of noise simulating missing or incomplete records as detailed in 

Sec. 3.3. Dates were expressed in number of days. The outbreak day (week) noted as Day=1 

(Week=1) was not necessarily the first day (week) of the epidemic. On Day (Week) 1 several 

cases could be reported at once and in some cases from different locations. Hence Day 1 

should be considered as the first day of reporting. From the patient databases, it was in 

principle possible to reconstruct infection trees and generate statistics for key natural history 

parameters such as the length of the incubation period, the time from symptom onset to 

admission, the time from admission to death, etc. The patient records however were 

restricted to a subset of the epidemic and were limited to EVD cases admitted to the ETU/

hospital and discharged with a final outcome, and traced contacts. Thus the patient database 

missed EVD cases that were not admitted to the health care system. In addition, patient 

records could contain missing information and errors. Similarly, the epidemic timelines 

could include cases for whom the full patient record was not yet released. In summary, 

disease timelines and patient records were handled as separate datasets.
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3.3. Fog of war

In real world situations, data are not communicated in real time, and a variable degree of 

under-reporting is always present. Furthermore, patient records contain errors and, even 

more often, missing data, which all contribute to the “fog of war”. Therefore, it would have 

been highly unrealistic to provide participating teams the direct output of the Ebola model 

without addition of noise. The synthetic epidemic curves and patient-level data shared with 

the challenge participants thus included stochastic noise added by post-processing the model 

outputs according to filters that mirrored real-world problems in data collection, including 

underreporting and reporting delays. As a result, the postprocessed synthetic data became 

the actual ground truth for the assessment of the teams’ performances. Although 

measurement errors and data collection issues are widely known to the community of 

epidemiologists and disease modelers, the data collected through epidemiological 

surveillance is always used as the benchmark for modeling predictions.

In defining the “fog of war” we introduced the following sources of noise. We assumed that 

all cases arising from the pool of contact traced patients were reported. For patients admitted 

to the hospital or ETU outside of contact-tracing efforts, we assumed a 90% probability of 

reporting. For the remaining cases who had neither been admitted to medical units nor 

contact-traced, we assumed a 30% reporting probability. The level of noise applied to the 

data is informed by the literature on underreporting and missing data during the West Africa 

outbreak (WHO Ebola Response Team, 2014; Scarpino et al., 2014; Atkins et al., 2015). The 

latter simulates a large amount of under-reporting typically occurring when the health care 

system breaks down and cases are not admitted to the health care system. All timelines 

provided to the Challenge’s teams were based on reported cases and thus had an intrinsic 

under-reporting factor. The level of under-reporting fluctuated in time, reflecting both the 

changing situation on the ground during the epidemic (variable number of ETUs, contact 

tracing capacity, etc.) and the intrinsic binomial noise associated with the reporting 

probability. The latter was more pronounced when the number of cases was small. Finally, 

suspected cases were drawn from the subset of EVD cases without medical treatment. To 

further mimic the issue of missing or inaccurate data arising in real-world situations, we also 

added noise to the patient-level records, as detailed in the supplementary information file.

In Fig. 5 we report the difference between the challenge model’s timeline before and after 

the addition of the noise filter. Fluctuations in the epidemic curves tended to emphasize or 

attenuate natural fluctuations inherent to the stochastic model depending on the phase of the 

outbreak and the specific scenario. While we used plausible arguments in defining the level 

of under-reporting and noise in the Ebola challenge data, we did not want to mimic specific 

and well-known data issues associated with the 2014–2015 West Africa Ebola outbreak. The 

aim was to build in uncertainties that the participating teams could not easily extrapolate 

from the literature, as was initially the case for the 2014–2015 Ebola epidemic.

3.4. Situation reports

In real world situations, quantitative epidemiological data are generally integrated in 

situation reports that also provides qualitative descriptions of the situation on the ground. 

Situation reports also contain information about the planning of control interventions and 
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other news that although not quantitative can guide interpretation of the trends observed in 

numerical data. In order to provide context to the teams participating in the challenge, we 

issued a scenario-specific narrative with each data release, akin to a situation report, 

typically providing the following information:

• Approximate geographical distribution of cases and health care workers 

infections (when not provided explicitly in a timeline).

• Opening of new Ebola treatment units.

• Level of contact tracing.

• Compliance to safe burial protocol.

A typical situation report for the Ebola Forecasting Challenge is included in the 

Supplementary Information file. The level and accuracy of the situation report differed 

across scenarios, in the same way that data availability differed. The information contained 

in the situation report was purposely not always accurate, simulating uncertainty and 

misreporting due to the fog of war.

3.5. Infection trees

In real-world situations, the quality and richness of data provided to the research community 

improves with time. This is because with time an increasing number of cases can be 

analyzed, more efficient data collection strategies and databases are put in place, and 

knowledge about the disease and the transmission mechanisms improves. During the 2014–

2015 Ebola epidemic, a turning point for the modeling community was the publication of 

transmission tree data. Those data allowed a detailed understanding of heterogeneity in 

Ebola transmission, and the contribution of different settings to Ebola transmission and 

behavioral practices (Faye et al., 2015; Ajelli et al., 2015; Nyenswah et al., 2015; Fasina et 

al., 2014; Coltart et al., 2015). Accordingly, at the time of the set of forecast for the last set 

of target dates from the participating teams, we provided transmission trees for three 

scenarios of the challenge. For Scenario 1, we provided one large branch of the transmission 

tree, covering a typical transmission period associated with weak intervention (safe burial 

only was carried out), followed by strong control (ETU units in place). For Scenario 3 and 

Scenario 4, we provided two relative small branches representing weak and strong 

interventions. The transmission trees were provided in the same format as the line lists of 

patients as detailed in Sec. 3.2. The patient records used for the transmission trees were 

supposed to be documented with accuracy, and were provided without missing entries. Fig. 6 

displays the visualization of the rich transmission tree branch provided for Scenario 1. It is 

important to stress that these supplementary data could not be used by the team to revise past 

forecasts. The aim of the infection trees release was to simulate what happened during the 

real world West African outbreak when at a later stage of the outbreak more detailed data 

were made available, and to see if the participating teams would use those data to improve 

parameters? estimation in the final part of the challenge.

Ajelli et al. Page 11

Epidemics. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Discussion

The possibility of using synthetic data in defining modeling challenges is a new framework 

that allows to overcome some of the issues encountered in forecast of actual data. First, it is 

possible to conduct synthetic challenges for infectious diseases for which outbreak data are 

scarce. Furthermore synthetic challenges make it possible to control the amount and quality 

of data released to the teams to provide different degree of complications in the modeling 

effort. The synthetic challenge framework thus allows for the practice of modeling 

approaches, forecasting methodologies and integrative schemes on a wide range of diseases 

and contextual situations that would not otherwise be available if constrained to 

retrospective analysis of historical outbreaks.

While the analysis of the forecast and analysis produced by the teams participating in the 

RAPIDD Ebola Forecasting challenge are reported in a separate paper (Viboud et al., 2017), 

here we aimed to provide a detailed description of the model used to generate synthetic 

Ebola epidemic curve and patient-level data, the post-processing steps taken to make the 

data more realistic, and the synthetic situation reports developed to provide contextual 

information to the challenge participants.

Below we summarize some of the lessons learned about the preparation of the challenge. A 

first takeaway is that the data format and the database setup have to be clearly documented 

and tested by the participating teams. We released a dummy database a few weeks before of 

the start of the challenge so that the teams could prepare their data mining tools and 

software. We also prepared “Read Me” documents and a FAQ section of the database. We 

realize that this level of preparation is not generally possible in real-world situations.

The procedure used to simulate fog of war in the Ebola Challenge was only one of a 

virtually infinite set of procedures that could be possibly devised to mimic real-world 

scenarios. Furthermore, one has to consider that the fog of war could be of a very different 

kind if the synthetic challenge were to focus on a different disease or a different country. In 

the preparation of a synthetic challenge, the choice of the quality and reliability of the data 

made available to the participants should be carefully gauged against historical experience 

and current practices in data collection and sharing. It is also important that the modeling 

teams are not aware of the changes applied to the model and/or the kind of fog of war 

applied to the model’s output. It would also relevant to systematically investigate what level 

of noise in the data comprises the ability of the modeling teams to recover epidemiological 

information consistent with the underlying outbreak.

It is worth remarking that synthetic challenges depends on a clever choice of epidemic 

scenarios. The aim is to have the modelers group facing situations that can be useful for 

future events and fall into a broad range of plausible situations. At the same time the 

synthetic data should challenge the competing teams with patterns and data that cannot be 

easily matched against past events. If this is not the case, the modeling teams could just 

leverage on the past experience, voiding the learning process aimed at by synthetic 

challenges. In our case the competing teams did not know what kind of fog of war was in the 

data, what kind of interventions were implemented in the different scenarios and where the 
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natural history of the disease was set in the range of plausible parameters. While this 

certainly provides a lot of uncertainty to modeling teams, more severe situations in which 

even the kind of pathogen is unknown can be devised. We believe the this flexibility on the 

prior knowledge of modeling teams, is one more added value to synthetic challenges that 

cannot be replicated by using real world data.

Although the Ebola challenge considered four synthetic scenarios of Ebola-like outbreaks in 

a relatively small country such as Liberia, resulting in a small number of cases (< 10,000 

reported EVD cases), data generation and database preparation required considerable 

computational resources. Extending synthetic challenges to pandemic threat scenarios, such 

as a flu pandemic for instance, would have to consider the potential for quick international 

spread. This would imply running large scale global epidemic simulations and handling 

databases spanning multiple countries, raising the issue of scalability. Synthetic challenges 

could provide useful drills for the disease modeling community and guide preparedness for 

major emerging health threats across the world. However commitment of adequate resources 

is required to allow for a proper level of realism to be built-in, and is key to successfully 

inform disease forecasting in real-world emergencies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A Map of Liberia with county capitals, major hospitals and population. B Ebola 

transmission dynamic scheme. The values and the distribution of the transition times are 

reported in the Supplementary Information.

Ajelli et al. Page 16

Epidemics. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Stochastic simulation output. 95% CI, 50% CI, median simulation and the simulation 

selected as representative for the scenario are depicted. A Scenario 1. B Scenario 2. C 
Scenario 3. D Scenario 4.
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Figure 3. 
Cumulative number of cases as a function of time in each county of Liberia for the four 

scenarios considered in the challenge. Each epidemic is based on the stochastic simulation 

selected in Fig. 2.
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Figure 4. 
Snapshot of the landing web page providing the challenge participants access to the database 

and the Supplementary Information regarding each scenario.
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Figure 5. 
Weely number of cases in the original model output and as provided for the challenge after 

adding noise and underreporting. A Scenario 1. B Scenario 2. C Scenario 3. D Scenario 4. 

Vertical lines indicate the 5 data release dates of each scenario, corresponding to 5 prediction 

times points.
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Figure 6. 
A visualization of a branch of the EVD transmission tree in Scenario 1. Nodes of various 

colors and shapes denote different type of EVD patients. Links denote the transmission 

routes among cases.
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