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Abstract

The experience in the field of islet transplantation shows that it is possible to replace 

β cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the 

scarcity of organ donors and by the danger associated to the immunosuppressive 

drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. 

In particular, for a disease like T1D, caused by the loss of a single specific cell type that 

does not need to be transplanted back in its originating site to perform its function, 

a stem cell-based cell replacement therapy seems to be the ideal cure. New and infinite 

sources of β cells are strongly required. In this review, we make an overview of the 

most promising and advanced β cell production strategies. Particular hope is placed in 

pluripotent stem cells (PSC), both embryonic (ESC) and induced pluripotent stem cells 

(iPSC). The first phase 1/2 clinical trials with ESC-derived pancreatic progenitor cells 

are ongoing in the United States and Canada, but a successful strategy for the use of 

PSC in patients with diabetes has still to overcome several important hurdles. Another 

promising strategy of generation of new β cells is the transdifferentiation of adult 

cells, both intra-pancreatic, such as alpha, exocrine and ductal cells or extra-pancreatic, 

in particular liver cells. Finally, new advances in gene editing technologies have given 

impetus to research on the production of human organs in chimeric animals and on 

in situ reprogramming of adult cells through in vivo target gene activation.

Introduction

Type 1 diabetes (T1D) is an autoimmune disorder 
characterized by insulin-producing β cell death caused 
by autoreactive T cells (1). T1D contributes to 10% of 
the total 422 million diabetes cases worldwide. Although 
T1D is no more considered to be restricted to children 
and adolescents, it is one of the most common chronic 
diseases of childhood, and its incidence is constantly 
increasing; if incidence rates continue to increase on their 
existing path, global incidence could double over the next 
decade (for review see (2)).

Since 1922, exogenous insulin administration has 
been the most important lifesaving intervention for 
all T1D patients; however, chronic insulin treatment 

is a double-edged sword since it fails to prevent long-
term complications like ketoacidosis, kidney failure, 
cardiovascular diseases, neuropathy and retinopathy (3). 
The only possible definitive cure for this disease consists 
in providing a new β cell source capable of assessing blood 
sugar levels and secrete insulin in a glucose-dependent 
manner.

In the last 20 years, allogenic islets transplantation has 
been considered, in combination with a glucocorticoid-
free immunosuppression, an unbeaten cell therapy 
approach for T1D patients reporting an excellent glucose 
control, improvement of chronic complications and 
quality of life (4). However, despite these promising 
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results, islets transplantation remains a limited therapy 
approach, due to the shortage of cadaveric donors, the 
variability of isolated human islets and the need for 
lifelong immunosuppression. Different approaches using 
stem cells to support islet survival and function are being 
explored in preclinical and clinical settings (5). Now, 
the most advanced strategies to solve these limitations 
are focused on embryonic/induced PSCs differentiation, 
reprogramming of adult somatic cells, and, more recently, 
generation of human organs with a chimera’s approach 
and gene therapy to induce in vivo target gene activation 
(Fig. 1). This review describes the most important β cell 
replacement approaches that have been developed over 
the last decades focusing on their progresses, challenges 
and limits.

Unlimited pancreatic β cell source requirement 
fostered studies on differentiation of pluripotent stem cell 
(PSC) into functional insulin-secreting cells. Embryonic 
stem cells (ESC) and induced PSCs (iPSC) have been 

eligible as new potential candidates to reach this goal 
due to their differentiation potential and their unlimited 
proliferation capacity maintaining an undifferentiated 
state (self-renewal) (6).

In 2006, Novocell (currently ViaCyte, Inc.) developed 
for the first time an efficient in vitro protocol to 
differentiate ESC into insulin-producing cells mimicking 
in vivo pancreatic organogenesis. Novocell’s ESC-derived 
β cells yielded up to 7% insulin content but cells were 
not able to respond to glucose stimulation, essential 
properties of bona fide β cells, due to their functional 
immature state (7). Two years later, they reported a novel 
differentiation approach transplanting ESC-derived 
pancreatic endoderm cells into immunodeficient mice 
obtaining, after a 3-month period of spontaneous in vivo  
differentiation and maturation, glucose-responsive 
endocrine cells. In fact 3 months after implant, the levels 
of human insulin in the sera of mice were sufficient to 
fully protect mice against streptozotocin (STZ)-induced 

Figure 1
Schematic representation of the most promising sources of pancreatic β cells.
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hyperglycemia (8). These findings laid the groundwork 
for the first clinical trial in phase I/II started in 2014 
(ClinicalTrials.gov identifier: NCT02239354) by ViaCyte. 
Shortly, human ESC-derived pancreatic progenitors 
(named PEC-01) were encapsulated into an immune-
protecting medical device (named Encaptra drug delivery 
system) and transplanted in a small cohort of T1D 
patients. This trial aims to evaluate safety, long-term 
tolerability and efficacy of this system and the results are 
expected to be published soon.

Over the last 10 years, multiple variations have been 
made to the ViaCyte initial protocol in order to obtain 
an enrichment of pancreatic endocrine end products 
from differentiation of PSC in vitro. The most promising 
protocols were published in 2014 (9, 10) showing 
improvements in insulin secretion capacity of PSC-derived 
pancreatic cells. Rezania and colleagues described a seven-
stage in vitro differentiation protocol that led to efficient 
ESC conversion into glucose-responsive insulin-producing 
cells. Indeed, in a static in vitro glucose-stimulated insulin 
secretion, these cells showed an insulin secretion pattern 
close to human islets and reversed diabetes in two months 
after transplantation in STZ-induced diabetic mice (9). In 
parallel, Melton’s group developed a different strategy 
using a three-dimensional cell culture system obtaining 
mature, mono-hormonal and functional stem cell-
derived β cells. After only two weeks from transplantation, 
production of human insulin ameliorated hyperglycemia 
in NRG-Akita mice (10).

The main difference between these outstanding 
works consist indeed in the degree of maturation of the 
implanted cells and in the consequent timing of reversion 
of the disease: (i) ESC-derived pancreatic progenitor 
cells from ViaCyte require a 3-month period of in vivo 
maturation in mice to restore normoglycemia, (ii) mature 
pancreatic β cells from Rezania and colleagues are able 
to secrete insulin only after a 40-day period of further 
maturation in vivo, while (iii) functional β cells from 
Melton’s group ameliorated hyperglycemia after only two 
weeks. Whether it is better to transplant mature β cells 
or pancreatic progenitor cells capable of high efficiency  
in vivo differentiation is still under discussion and 
the results of ongoing clinical trials with pancreatic 
progenitor cells will provide an important point on this 
issue. Of course, the choice of cells at different stages 
of maturation has implications also on the safety issue, 
since it is assumed that cells at the stage of progenitors 
have a greater proliferative capacity and a certain degree 
of residual plasticity, which should drastically decrease in 
mature differentiated cells, making these last ones safer.

Despite these encouraging study results, several 
problems remain associated with the use of ESC: mainly 
the moral sensitivity regarding the use of human embryos 
for the production of ESC lines and the immune rejection 
of these cell lines by recipients in case of transplantation. 
To overcome these problems, in 2007, human pluripotent 
cells have been generated from somatic cells thanks to the 
world-renowned Yamanaka’s reprogramming protocol 
(11). From then onward, in parallel with ESC, several 
protocols have been published to differentiate human 
iPSC derived from healthy or diabetic patients into 
pancreatic β cells with encouraging results (10, 12, 13, 
14). This approach could lead to ‘personalized’ therapies 
preventing allogeneic graft rejection. Autologous PSCs 
could be obtained by generation of iPSC from somatic 
cells of subjects with T1D (15) or by transfer of somatic 
cell nuclei into oocytes that give rise to PSCs that are 
consistently equivalent to ESC (16, 17). PSCs obtained 
from both these technologies were shown to be able 
to efficiently differentiate into insulin-producing cells 
(12, 18). However, therapeutic approach using in vitro 
or in vivo-differentiated PSC is still a big question mark 
due to the possibility of tumor formation, secondary to 
residual anarchical undifferentiated cells at the last stage 
of pancreatic β cell differentiation (8, 19) and to the 
auto/alloimmune reaction against engrafted PSC-derived 
β cells.

In particular, safety of the final cell product remains 
a major issue to be considered to achieve a PSC-based 
transplantation therapy. Possible solutions include 
generation of safer iPSC lines, purification of the 
differentiated cells or cell encapsulation into medical 
devices. The most promising strategies at the moment are:

1.	 Non-viral and non-integrating gene delivery methods 
(transposons, protein transduction and RNA/miRNA 
transfection) for somatic cells reprogramming into 
PSC that decrease random transgene insertion into 
the host genome compared to previous retrovirus 
and lentivirus transduction (for review see (20)). With 
these strategies, it is possible to obtain iPSC without 
transgene integrations so as to avoid insertional 
mutagenesis, and residual expression and reactivation 
of reprogramming factors.

2.	 Identification of surface markers that allow the 
selection of the desired cell population or the deletion 
of unwanted cells like residual pluripotent cells. The 
first effort came from ViaCyte that identified CD142 
(Tissue Factor) as a novel surface marker for the selection 
of pancreatic progenitor cells obtained through the 
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differentiation of ESC to increase purity; CD142+ 
cells transplanted in vivo give rise to all the pancreatic 
lineages, including functional insulin-producing cells 
(21). Other groups proposed alternative markers in the 
last years (22, 23), but the most recent and promising 
pancreatic progenitor cell surface marker identified 
is the pancreatic secretory granule membrane major 
glycoprotein 2 (GP2). GP2 is expressed in combination 
with NKX6.1 and PTF1α, key transcription factors in 
pancreas development, and it was demonstrated that 
hPSC-derived GP2+ cells, differentiated in pancreatic 
progenitors expressing high levels of NKX6.1, generate 
β-like cells more efficiently compared to the GP2-
negative fraction (24, 25). In addition, depletion of 
pluripotent cells from differentiated PSC cultures using 
genetic, chemical and antibody-based approaches has 
been investigated as promising approach to increase 
safety of PSC differentiated cells. For instance, Lee 
and coworkers discovered that chemical inhibitors of 
survivin (like quercetin or YM155) induced selective 
and complete cell death of undifferentiated hPSC 
(26), while Ben-David and colleagues using an high-
throughput screen of over 52,000 small molecules 
identified an inhibitor of stearoyl-coA desaturase 
(SCD1) able to selectively eliminate hPSC (27). Over 
the latest years, photodynamic approach is getting 
a foothold. Interestingly, it was demonstrated that 
CDy1, a PSC-selective fluorescent probe, led to 
mitochondrial ROS production upon visible light 
irradiation and consequent selective PSC death, 
avoiding teratoma formation (28). An additional 
approach is the introduction of a suicide gene under 
NANOG promoter control leading to selective removal 
of undifferentiated PSCs from differentiated cell 
culture after drug treatment (29). Moreover, also the 
introduction of an innovative inducible caspase-9 
suicide gene in hPSC able to induced 94–99% cell 
death after chemical inducer of dimerization (CID) 
treatment has been tested (30).

3.	 Development of macro-encapsulation devices able 
to protect cells from immune attack and allow 
retrieval in case of undesirable tumor. During 
the past decade, much effort has been directed 
to the clinical application of therapeutic cells 
encapsulation in biocompatible, permselective 
and safe macrodevices (31). Beta-O2 developed an 
alginate scaffold containing allogenic human islets 
supplied with oxygen by daily injection, known as 
βAir device (32). The first T1D patient was implanted 
in 2012 in the absence of immunosuppression and 

showed persistent graft function with preservation 
of islets morphology although only moderate 
improvements on clinical disease were observed 
(33). Two years later, Beta-O2 Technologies started 
a clinical trial (NCT02064309) to evaluate safety 
and efficacy of human islet encapsulation into βAir 
device in T1D patients. Moreover, also the ability of 
βAir technology to sustain hESC differentiation into 
mature endocrine cells in rodent was demonstrated 
(34). Recently, Beta-O2 bioartificial pancreas device 
was used as preclinical model for xenogenic islet 
transplantation. Authors reported enduring graft 
function, resulting in regulated insulin secretion, 
without generation of immune system attack (35). The 
main limitations of this device consist in the partial 
function of encapsulated islets and in the procedure 
of daily exogenous oxygen refilling, which requires 
a knowledgeable and compliant patient.

As previously mentioned, in 2014, ViaCyte launched the 
first phase I/II human clinical trial evaluating efficiency 
of Encaptra Device combined with PEC-01 cells in T1D 
patients. Additionally, in 2017, U.S. Food and Drug 
Administration (FDA) has allowed clinical testing for 
ViaCyte’s PEC-Direct product, a new open Encaptra 
Device allowing direct vascularization of PEC-01 cells. At 
the 5th Annual European Advanced Therapies Investor 
day (http://eu.arminvestorday.com), ViaCyte presented 
some data of the ongoing clinical trial reporting good 
tissue integration and vascularization of the system in two 
patients. Another device received approval from the FDA 
for phase I/II clinical study in T1D patients in US: the Cell 
Pouch System is a medical biocompatible macrodevice 
designed to be implanted in the subcutaneous site, 
forming highly vascularized tissue chambers few weeks 
prior to transplantation of islets (36). Ongoing clinical 
trials from ViaCyte are summarized in Table 1.

β cells from direct differentiation

As discussed, clinical application of PSCs is not without 
roadblocks due to shortage of genetic understanding 
of pancreatic embryogenesis leading to partial β cell 
differentiation efficiency, risk of tumor formation caused 
by residual undifferentiated cells and the eventuality of cell 
death after transplantation. Thus, several research groups 
focused on direct reprogramming (transdifferentiation) 
of non-β adult cells, such as pancreatic exocrine cells, 
liver cells and stomach cells, into insulin-producing cells, 
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skipping the pluripotent stage (37, 38, 39). Common 
endodermic origin of these cell types suggests that they 
could be converted into insulin-producing β cells.

Alpha-to-β

Under different diabetic stress conditions, glucagon-
producing α cells are important to maintain β cell health 
and function through GLP-1 secretion (40, 41) suggesting 
an α-cell-mediated adaptive response to β-cell stress and 
injury. Collombat and colleagues demonstrated that 
overexpression of ectopic Paired Box 4 (PAX4) (42) or 
selective inhibition of Aristaless-Related Homeobox 
(ARX) (43) are able to determine an α cells conversion 
into functional β cells and restore normoglycemia in STZ-
induced diabetic mice. Moreover, Herrera’s group showed 
that a diphtheria toxin-mediated β-cell removal (>99%) 

in mice led to an α cells expansion and a spontaneous 
reprogramming in β cells (44). Thus, over the latest 
years, the possibility to induce direct differentiation 
of glucagon-producing α cells into insulin-producing 
β cells have captured attention of diabetes researchers 
as interesting therapeutic approach for restoring β cell 
function in T1D patients. Recently, Collombat’s group 
provided in vitro and ex vivo experimental evidences that 
long-term γ-aminobutyric acid (GABA) administration, 
a food supplement, can induce human α-cell-mediated 
β-like cell neogenesis opening the way for clinical 
trials with GABA compounds (45). Additionally, Li 
and colleagues corroborated GABA data identifying 
a small antimalarial molecule, named Artemisinins, 
involved in ARX repression and consequent increased 
GABA signaling. This mechanism resulted in decreased 
glucagon secretion by α cells and their differentiation 
into insulin-producing cells (46). However, in the same 

Table 1  Clinical studies of ViaCyte testing safety, tolerability and efficacy of ESC-derived pancreatic progenitor cells (PEC-01 

cells) encapsulated into a macrodevice (Encaptra cell delivery system).

ClinicalTrials.gov 
identifier

 
Name

 
Cell product

Study 
type

 
Study location

 
Conditions

 
Status

NCT02239354 A safety, tolerability 
and efficacy study 
of VC-01 
combination 
product in subjects 
with type 1 diabetes 
mellitus

VC-01 
combination 
product 
(PEC-Encap)

Phase 1/2 University of 
California at San 
Diego, United 
States

University of 
Alberta Hospital, 
Canada

Type 1 diabetes mellitus, 
no immunosuppression

Active, not 
recruiting

NCT03162926 A safety and 
tolerability study of 
VC-02 combination 
product in subjects 
with type 1 diabetes 
mellitus

VC-02 
combination 
product 
(PEC-Direct)

Phase 1 University of 
Alberta, 
Edmonton, 
Canada

Type 1 diabetes mellitus, 
with 
immunosuppression

Active, not 
recruiting

NCT03163511 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A safety, tolerability 
and efficacy study 
of VC-02 combina-
tion product in 
subjects with type 1 
diabetes mellitus 
and hypoglycemia 
unawareness 
 
 
 
 
 
 
 
 
 
 
 

VC-02 combina-
tion product 
(PEC-Direct) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phase 1/2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

University of 
California, San 
Diego, United 
States

University of 
Minnesota, 
Minneapolis, 
United States

Ohio State 
University, 
Columbus, 
United States

University of 
Alberta, 
Edmonton, 
Canada

University of 
British Columbia, 
Vancouver, 
Canada

Type 1 diabetes mellitus 
with hypoglycemia, 
with immunosuppres-
sion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Active, 
recruiting 
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year, another group confirmed the inhibition of ARX after 
Artemether treatment (an Artemisinins derivative) but 
no α to β conversion in mouse primary islets (47). These 
controversial findings generated a state of uncertainty 
regarding GABA transdifferentiation effects. Very recently, 
the transcription factors PDX1 and MAF-A were delivered 
in vivo with adeno-associated virus to the mouse pancreas 
through the pancreatic duct to reprogram α cells into 
functional β cells. Blood glucose levels normalized in both 
chemically induced diabetic mice and autoimmune non-
obese diabetic (NOD) mice. This gene therapy strategy 
also induced α to β cell conversion in toxin-treated human 
islets, which restored blood glucose levels in NOD/SCID 
mice upon transplantation (48).

Exocrine-to-β

Exocrine pancreas, consisting of acinar and ductal cells, 
makes up approximately 98 percent of the adult organ 
(49), therefore, much attention was focused on the 
possibility to generate new β cells from these cell types.

Acinar cells

Melton’s group provided evidence about acinar-to-β 
transdifferentiation inducing in vivo overexpression of 
three key β-cell transcription factors PDX1, NGN3 and 
MAFA in combination with GFP in mice. By 72 h after 
viral infection in Rag1−/− non-diabetic animals, new 
GFP-insulin-positive cells were detected. After 10  days, 
GFP-positive cells presented key features of bona fide 
β cells. Furthermore, overexpression of transcription 
factors in STZ-induced diabetic mice led to a significant 
decrease of hyperglycemia, although did not reverse 
diabetes (50). Lately, they confirmed the survival and 
function of lineage-reprogrammed cells in vivo up to 
1  year (51). Similarly, Docherty’s group described a new 
acinar-to-β reprogramming protocol, starting from  
in vitro cultured primary human exocrine cells. Epithelial-
to-mesenchymal transition (EMT) inhibition maintained 
acinar exocrine phenotype in culture and overexpression 
of the four pancreatic transcription factors PDX1, NGN3, 
PAX4 and MAFA, with a combination of several growth 
factors, generated functional glucose-responding insulin-
producing cells, that were able to normalize glycemia in 
STZ-induced diabetic immunodeficient mice (52). In 2016, 
the same group confirmed the possibility to generate 
functional clinically relevant β cells from human exocrine 
pancreas, adding ARX knockdown to the strategy (53).  

In the latest years, a Belgian group demonstrated 
that forcing expression of mitogen-activated protein 
kinase (MAPK) and signal transducer and activator of 
transcription 3 (STAT3) in human exocrine cells cultured 
in 3D structures induces NGN3 expression, leading to an 
acinoinsular functional reprogramming (54). Obviously, 
these approaches present clinical limitation due to the use 
of viral vectors. For this reason, several researchers focused 
on pharmacological induction of transdifferentiation. For 
instance, epidermal growth factor (EGF), nicotinamide, 
leukemia inhibitory factor (LIF) or ciliary neurotrophic 
factor (CNTF) combination reprogrammed rat acinar 
cells into insulin-producing β cells in vitro able to restore 
normoglycemia in diabetic mice. Molecular study reported 
the involvement of CNTF in STAT3 signaling pathway 
activation leading to reactivation of NGN3 expression in 
adult acinar cells forcing differentiation into β cells (55, 56). 
Recently, a Japanese group showed that inducing ectopic 
expression of glucagon-like peptide-1 receptor (GLP1R) 
combined with gastrin and exendin-4 also, synergistically 
promoted β cell reprogramming of acinar cells (57).

Duct cells

Reprogramming of ductal cells into β cells is one of the 
most controversial issue in the field. In the last two 
decades, several papers showed budding of β cells from 
duct cells speculating that pancreatic duct could be a 
potential stem cell niche for insulin-producing cells (58). 
In 2008, Heimberg’s group reported that after pancreatic 
duct ligation (PDL) in mice, β cell progenitors located in 
the duct could re-express NGN3 and differentiate into 
glucose-responsive β cells (59). In the same year, another 
group corroborated these findings showing, through the 
forced expression of ductal marker carbonic anhydrase 
II (CAII), that duct cells acted as β cell progenitors after 
birth or PDL, leading to the formation of new islets 
(60). Intriguingly, Corritore, in collaboration with our 
group, forced purified human ductal cells to undergo 
an EMT and proliferate. After expansion, it was possible 
to differentiate, with a protocol mimicking pancreatic 
development, duct-derived cells into β-cells. These cells 
expressed β cell markers and were able to secrete insulin, 
but not in a glucose-dependent manner (61). More recently, 
Zhang and colleagues provided evidence that long-term 
administration of gastrin and EGFs in vivo in diabetic mice, 
resulted in ductal cell transdifferentiation into new β cells 
and consequent diabetes reversion (62). However, these 
findings are still subject of dispute since several studies 
suggested a non-ductal contribution to endocrine cell 
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regeneration (63, 64, 65, 66). These conflicting findings 
generate doubts regarding the importance of ductal cells 
in β cell regeneration.

Liver-to-β

Pancreas, gastrointestinal tract and liver have the same 
embryonic origin deriving from primitive foregut 
endoderm; thus, a transdifferentiation between them is 
conceivable.

Liver is the largest organ in the body and, unlike 
β cells, is able to regenerate and proliferate efficiently. 
In addition, liver shares with pancreas the glucose 
responsiveness. Thus, hepatic cells represent a good 
therapeutic potential candidate for β cell generation 
(67, 68). Ferber and colleagues were the first researchers 
demonstrating that in vivo adenoviral-mediated ectopic 
expression of PDX1 in liver generated increase of silent 
endogenous INS gene expression. Moreover, insulin 
levels derived from hepatic-PDX1 overexpression 
ameliorated STZ-induced diabetes (69, 70, 71). From 
2000 onwards, several authors have provided evidence 
of liver-to-β transdifferentiation through hepatic 
ectopic expression of pancreatic transcription factors, 
such as PDX1, NGN3, MAFA and NKX6.1, leading to a 
partial β cell phenotype and reversion of hyperglycemia 
in chemical-induced diabetic mice, indicating this 
approach as a promising cell-based replacement therapy 
for diabetes (72, 73, 74, 75).

Gastrointestinal-to-β

Gastrointestinal tissues, composed by stomach and 
intestine, harbor NGN3-expressing progenitor cells 
able to become hormone-producing cells (76). Over 
the last decade, several evidences have demonstrated 
that gastrointestinal cells can be reprogrammed into 
insulin-producing cells through expression or deletion 
of some transcription factors. Recent studies showed 
that intestinal cells gave rise to functional β-like cells by 
endocrine-specific ablation of Forkhead box protein O1 
(FOXO1) transcription factor (77, 78). In 2014, Chen and 
coworkers reported a rapid conversion of intestinal crypt 
cells into endocrine cells through ectopic expression of 
PDX1, MAFA and NGN3 factors. They observed formation 
of ‘neoislets’ below the crypt base that were able to secrete 
insulin in a glucose-dependent manner and ameliorate 
hyperglycemia in diabetic mice (79). Recently, Zhou’s 

group showed that antral enteroendocrine cells also were 
able to generate functional insulin-positive cells through 
adenoviral expression of the same transcription factors. 
This approach resulted in higher transdifferentiation 
efficiency compared to the previously mentioned intestinal 
enteroendocrine cell reprogramming. Intriguingly, 
authors assembled in vitro reprogrammed antral stomach 
cells into bio-organoids and observed hyperglycemia 
reversion in diabetic mice. This novel approach shed light 
to engineered stomach tissue as renewable functional 
β cell source (37).

Last advances in the field: genome editing

Finally, advances in genome editing technologies have 
revolutionized the field. In particular, discovery of the 
bacterial immune system CRISPR/Cas9 has led to the 
development of tools for rapid and efficient RNA-based, 
sequence-specific genome editing (80). Furthermore, 
novel modifications to the CRISPR/Cas9 system have 
provided opportunities for regulating gene expression 
and for creating epigenetic alterations, without creating 
DNA breaks (81). Very recently, a new system for in vivo 
activation of endogenous target genes through trans-
epigenetic remodeling was reported: this system relies 
on recruitment of Cas9 and transcriptional activation 
complexes to target loci by modified single guide RNAs, 
and it was used to transdifferentiate liver cells into 
insulin-positive cells, acting on PDX1 levels in mice. 
Besides, when mice, rendered diabetic with streptozotocin 
(STZ) treatment, were treated with the system for 
endogenous insulin gene activation, they partially rescued 
hyperglycemia (82).

Last advances in the field: chimeric organs

The availability of PSCs boosted the possibility of 
producing human organs in animals. The main strategy 
to obtain chimeric animals was based on blastocyst 
complementation: mouse ESC injected into a blastocyst 
were shown able to contribute to embryo development 
(83). When blastocyst and ESC had a different genetic 
background, the outcome was a chimeric mouse 
with cells of both origins in its organs. Genetically 
modified PSCs injected in blastocyst are the basis of the 
production of transgenic mice. More recently, blastocyst 
complementation was used to generate interspecies 
chimeric animals. The hypothesis was that if PSC were 
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injected into blastocysts obtained from mutant mice in 
which the development of a certain organ was precluded 
by genetic manipulation, thereby leaving a niche 
for organ development, the PSC-derived cells would 
developmentally compensate for the defect and form 
the missing organ. At first, rat pancreas was generated 
by injection of PSC into pancreas-deficient PDX1−/− 
mouse blastocysts (84), then kidney was generated using 
SALL1−/− mouse blastocysts (85). The demonstration that 
a rat organ can be produced in a mouse suggested that it 
could be possible to produce xenogeneic organs in various 
animal species, including production of human organs. 
This could have a tremendous impact in the field of 
regenerative medicine, since the shortage of donor organs 
is a major obstacle to the expansion of whole organ 
replacement therapies. For production of human organs, 
human iPSC would be injected into blastocysts obtained 
from carrier animals genetically modified in order to block 
the development of a given organ. Thus, only human 
cells would contribute to the development of that organ 
(86). Importantly, also in this case, the use of autologous 
iPSC could allow the production of autologous human 
organs and therefore ideally reduce the long-term need 
for immunosuppressive drugs after transplantation. These 
chimeric animals would be raised until the human organ 
reached the required size and then they would be killed 
for transplantation. Pigs are the most attractive animals to 
bear human organs for various reasons: (i) the size of their 
organs is similar, (ii) their metabolism (for instance, diet 
and temperature) is close to the human one, (iii) there is 
a significant experience regarding pig cell transplantation 
in humans within the context of xenotransplantation 
trials, which facilitates the identification of hazards and 
barriers, such as infectious and immunological risks, to be 
overcome for transplantation in humans of human cells 
or organs that have been grown in a pig (87).

Some preliminary experiments have already been 
performed, such as injection of human ESC into a mouse 
blastocyst (88), but the results obtained suggest that this 
process is rather inefficient (89). At the beginning of 
2017, two seminal papers were published regarding the 
creation of chimeras using pluripotent human stem cells 
obtained from iPSC and blastocysts of pigs and bovine 
(90, 91). In Belmonte’s paper PDX1 gene, fundamental 
for pancreas development, was initially suppressed by 
CRISPR-Cas9-mediated gene editing in the mouse zygote 
creating a blastocyst not able to give life to adult mice 
with pancreas, then rat stem cells were inserted into the 
blastocyst and the resulting embryo gave rise to adult mice 
with pancreas composed exclusively of rat cells. The same 

type of approach was also successfully applied with other 
targets such as NKX2.5 (relevant for cardiac development) 
and PAX6 (relevant for eye development) demonstrating 
that the approach can be extended in a systematic way. 
Finally, the authors applied the same strategy using 
human stem cells in pig or bovine blastocysts. Although 
with less efficiency than the rat-mouse model, the 
possibility of obtaining chimeric human embryos was 
demonstrated (91). In Nakauchi’s paper, mouse PSCs 
were injected into PDX1-deficient rat blastocysts, and rat-
sized pancreas composed of mouse-PSC-derived cells were 
generated. Islets isolated from the mouse-rat chimeric 
pancreas were transplanted into diabetic mice and were 
able to normalize and maintain host blood glucose levels 
for over 1  year in the absence of immunosuppression 
(90). Finally, a new study reported the possibility 
to disable pancreas development in sheep through  
CRISPR/Cas9 microinjection in oocytes, widening the 
possibility to create human–animal chimeras for human 
pancreas generation (92).

These works constitute a turning point in the field 
of regenerative medicine, opening up unimaginable 
horizons, but also impose big challenges. From the 
biotechnological point of view, the proof of principle has 
been developed but efficiency of human–pig chimeras is 
low and the insertion of human cells into the pig embryo 
has shown important limitations. The field of human 
chimeras also raises strong ethical issues. The main 
ethical dilemmas are whether the chimera can be killed in 
order to obtain organs and if a man–animal chimera has 
a different ethical identity than the animal one. Finally, 
there is obviously an enormous ethical concern in the 
case of any human germ cell contribution. Overall, this is 
an exciting but extremely delicate field of research.

Future perspectives

In conclusion, β cells derived from PSC currently represent 
the most concrete new source for cell replacement therapy 
in T1D. The results of ongoing clinical trials will provide 
valuable information and will tell us if this is the strategy 
of the future. Looking ahead, the field of cell therapy with 
iPSC is facing a turning point, where new technologies 
and synergies can transform a type of approach limited 
to few patients into a therapeutic option for large groups 
of patients. This evolution is closely linked to the scale 
up of cell reprogramming, differentiation and banking, 
which is necessarily connected to the industrialization of 
processes. In the meantime, the huge progresses made by 
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technologies of ex vivo and in vivo gene editing allowed 
increasingly efficient transformation of somatic cells into 
β cells and the creation of new chimeric organs. These 
approaches have the potential to innovate the field, but 
issues of safety and ethics will need to be considered.
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