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Abstract
Automated segmentation of hippocampal (HC) subfields from magnetic resonance imaging (MRI) is

gaining popularity, but automated procedures that afford high speed and reproducibility have yet

to be extensively validated against the standard, manual morphometry. We evaluated the concur-

rent validity of an automated method for hippocampal subfields segmentation (automated

segmentation of hippocampal subfields, ASHS; Yushkevich et al., 2015b) using a customized atlas

of the HC body, with manual morphometry as a standard. We built a series of customized atlases

comprising the entorhinal cortex (ERC) and subfields of the HC body from manually segmented

images, and evaluated the correspondence of automated segmentations with manual morphome-

try. In samples with age ranges of 6–24 and 62–79 years, 20 participants each, we obtained

validity coefficients (intraclass correlations, ICC) and spatial overlap measures (dice similarity coeffi-

cient) that varied substantially across subfields. Anterior and posterior HC body evidenced the

greatest discrepancies between automated and manual segmentations. Adding anterior and poste-

rior slices for atlas creation and truncating automated output to the ranges manually defined by

multiple neuroanatomical landmarks substantially improved the validity of automated segmenta-

tion, yielding ICC above 0.90 for all subfields and alleviating systematic bias. We cross-validated

the developed atlas on an independent sample of 30 healthy adults (age 31–84) and obtained

good to excellent agreement: ICC (2)50.70–0.92. Thus, with described customization steps imple-

mented by experts trained in MRI neuroanatomy, ASHS shows excellent concurrent validity, and

can become a promising method for studying age-related changes in HC subfield volumes.
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1 | INTRODUCTION

The hippocampus (HC) is a common target of investigations into the

neural correlates of cognition in aging (Raz, 2000), child development

(Ofen & Shing, 2013), and neurodegenerative diseases (Small, Schobel,

Buxton, Witter, & Barnes, 2011). Although many studies have exam-

ined the hippocampus in toto, advances in high-resolution magnetic

resonance imaging (MRI) have spurred development of in vivo mor-

phometry of cytoarchitectonically and functionally distinct HC sub-

fields. Early work on HC subfields volumetry by Mueller et al. (2007)

used boundary definitions based on common HC atlases (i.e., Duver-

noy, 2005), and limited analysis to the three most anterior slices of the

HC body. Subsequent work (Daugherty, Yu, Flinn, & Ofen, 2015)

extended the range to include a greater extent in the HC body, which

facilitated comparison with automated computerized segmentation

methods (Yushkevich et al., 2010). However, segmentation protocols
The authors have no conflicts of interest to declare.
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used in manual morphometric approaches vary considerably in the

placement of boundaries, and particularly in separating subiculum and

cornu ammonis area 1 (CA1; Mueller et al., 2007; Bender, Daugherty,

& Raz, 2013; Raz, Daugherty, Bender, Dahle, & Land, 2015; Iglesias

et al., 2015; Yushkevich et al., 2015a). Moreover, automated

approaches vary according to manual segmentation procedures used

for atlas creation.

As in vivo methods of assessing HC subfields volumes gain popu-

larity, and the desire to evaluate datasets with large samples of partici-

pants spurs development of automated segmentation methods, the

question of validity comes to the fore. However, validation of compu-

terized methods is not a simple matter. Psychometric theory distin-

guishes at least four types of validity (Cronbach & Meehl, 1955;

Crocker & Algina, 1986). Unfortunately, these useful distinctions have

not yet been widely acknowledged and applied to method develop-

ment in neuroscience. In the context of estimating HC subfield vol-

umes, the importance of the most basic type of validity, face validity, or

agreement that MRI images indeed appear to show HC anatomy and

allow its evaluation, seems beyond doubt, and provides the basis for all

further inquiry. Validating MRI-based methods, manual or automated,

against histologically defined subfield boundaries would constitute con-

tent validity. Establishing content validity would require evidence indi-

cating that the method in question segments the entities (subfields)

using borders that reflect the true content, that is, subfields as defined

by tissue cytoarchitectonic appearance. As reliability imposes an upper

limit on validity, this attempt would run into a problem: the lack of per-

fect reliability estimated for agreement among expert neuroanatomists.

We are unaware of any formal reliability study of subfield demarcation

on histological slides, and anecdotal evidence leads us to believe that in

many instances the degree of agreement, even among highly trained

experts, is far from perfect. Moreover, histologically defined borders

between HC subfields are not clearly visible on 3T MRI, a staple instru-

ment of in vivo neuroanatomy. Thus, evaluation of content validity of

HC subfield segmentation has not been achieved to date.

Another important type of validation currently attainable in the in

vivo neuroimaging field is criterion validity. This type of validity pertains

to the question whether the measure correlates with an external crite-

rion or diagnostic entity. The relationship between CA1 volume and

vascular risk (Shing et al., 2011), genetic markers of inflammation (Raz

et al., 2015) or Alzheimer’s disease (Mueller & Weiner, 2009)—all in

agreement with animal model and histological studies—exemplify this

type of validity. Notably, these studies validate highly reliable manual

morphometry methods that are currently taken as the gold standard,

although they also evidence some disagreements among research

groups that are working on harmonizing HC subfields segmentation

methods (Wisse et al., 2017).

In this study, we examine yet another type of validity, concurrent

validity, that is, the agreement between a new measurement (auto-

mated segmentation) and the established standard (manual morphome-

try). Concurrent validity of automated procedures is not clearly

established because direct comparisons between automated and reli-

able manual measurements are scarce. Furthermore, attempts to vali-

date segmentation protocols using more specific definitions to

demarcate smaller HC subregions revealed differential reliability across

subfields, with smaller regions yielding lower reliability than the larger

ones or labels aggregated across regions (Marizzoni et al., 2015; Yush-

kevich et al., 2015b).

For example, the correspondence between manual measurements

and automated segmentation of seven hippocampal regions has been

examined by the authors of the ASHS software (Yushkevich et al.,

2015b). The atlas used for automated segmentation was built from

manual segmentation of all seven HC subregions along the longitudinal

axis of the HC (including head, body, and tail), and is now part of the

default atlas packages provided by ASHS for segmentation of new

datasets. Agreement between manual and computer-derived volume

estimates for subfields within the HC body varied considerably across

regions (ICC50.431–0.892), with many values corresponding to over

50% of error variance and falling well below inter- or intra-rater reliabil-

ity obtained with manual HC subfield morphometry (ICC above 0.90,

or less than 10% of error variance; Bender et al., 2013; Daugherty,

Bender, Raz, & Ofen, 2016; Shing et al., 2011). The relatively poorer

correspondence between automated and manual methods reported by

Yushkevich et al. (2015b) seems to reflect the low intra-rater reliability

of manually segmented smaller HC regions, including separate mea-

surement of three CA sectors and the dentate gyrus. Despite an under-

standable desire for increased specificity, unreliably estimated smaller

regional volumes have questionable utility (Marizzoni et al., 2015). Fur-

thermore, related to concurrent validity are the effects of bias in meas-

urements, including fixed bias, or systematic differences between

methods, and proportional bias that reflects the tendency of a mea-

surement to vary proportionally according to its level. Such potential

discrepancies between the methods need to be examined as well, as

they constitute a threat to concurrent validity.

Importantly, although histologically informed validity of manual

segmentations in the HC body has been difficult to establish, current

standard manual protocols are widely considered a good approximation

of real subfield organization (Wisse et al., 2017). Nonetheless, primarily

due to the less uniform distributions of subfields in the head and tail

(Wisse et al., 2017) validity of segmentations in these regions is not yet

established. Crucially, without subfield atlases of hippocampal head

and tail, derived from reliable and valid manual morphometry, testing

the concurrent validity of automated segmentation methods in these

regions remains elusive.

Although manual morphometry of HC subfields remains the stand-

ard, automated methods have clear advantages, such as greater speed,

lesser operator training investment, and virtually perfect repeatability.

As manual segmentation protocols continue to evolve, it is paramount

that automated methods utilizing the same segmentation schemes

show the same high standards of correspondence. The development of

valid automated procedures for measuring HC subfield volumes is

therefore highly desirable. A key challenge to manual and automated

methods alike is establishing the neuroanatomical basis for boundaries

and labels defined in the MRI-based segmentation protocols (Wisse

et al., 2017). Meeting this challenge is highly facilitated by a key feature

of ASHS that allows the creation of customized atlases for subsequent

segmentation of new datasets. Thus, concurrent validity of ASHS can

BENDER ET AL. | 917



be evaluated based on atlases of different levels of anatomical

specificity.

A recent survey of 21 distinct protocols for segmentation of HC

subfields (Yushkevich et al., 2015a) emphasized the need for harmoniz-

ing methods across laboratories and facilitating inter-study compari-

sons. One challenging aspect of harmonization is a possible

dependence of the protocol validity on participants’ ages and the atlas

used for automated segmentation. Accordingly, the primary objective

of the present study was to investigate the concurrent validity of auto-

matic segmentations by ASHS based on customized atlases built from

highly reliable manual segmentations. Because validation of ASHS was

previously performed in older adults, including those with amnestic

mild cognitive impairment and normal controls, an additional aim was

to extend this validation across the lifespan by including children as

well as adults covering a wide age range.

The automated protocol selected here, ASHS, employs a multi-

atlas segmentation and voting (MASV; Rohlfing, Brandt, Menzel, &

Maurer, 2004; Klein and Hirsch, 2005) algorithm. Unlike many auto-

mated segmentation procedures that use a single atlas and a ‘one size

fits all’ approach, the MASV algorithm combines the information from

multiple template images (atlases) following diffeomorphic normaliza-

tion of the atlases to each co-registered pair of T1-weighted (T1) and

high-resolution T2-weighted (T2) hippocampal imaging data using a

weighted label fusion method. This atlas combination is then followed

by a corrective learning function, which uses a machine learning

approach to improve manual-automatic segmentation similarity based

on a given number of manually demarcated atlas datasets. In the

absence of histologically validated and reliable methods for segmenting

subfields in the HC head, the present study included manually demar-

cated high-resolution HC subfield data, limited to the HC body. In sub-

fields segmentation in the HC body, we employed a segmentation

protocol developed from a well-established and highly reliable method

(Bender et al., 2013; Daugherty et al., 2016; Mueller et al., 2007; Shing

et al., 2011). A subset of the manually demarcated data was used to

build customized atlases to test the concurrent validity of ASHS against

manual segmentation.

To accomplish these goals, we built multiple customized HC sub-

field atlases that included single subfields or aggregations thereof, i.e.,

subiculum (SUB), combined cornu ammonis fields 1 and 2 (CA1/2), and

cornu ammonis field 3 combined with the dentate gyrus (CA3/DG)—all

within the HC body. We also measured an extra-hippocampal medial-

temporal structure—entorhinal cortex (ERC). The customized atlases

were used to automatically segment independent samples of brain

images drawn from various segments of the lifespan continuum includ-

ing children, adolescents, young adults, and the elderly. After segmen-

tation, we evaluated the correspondence between the automated

segmentations and manually traced data using customary statistical

indices: Intraclass Correlation (ICC, Shrout & Fleiss, 1979) and Dice

Similarity Coefficient (DSC, Dice, 1945), and evaluated measurement

bias using Bland-Altman (BA) plots (Bland & Altman, 1986). After iden-

tifying and evaluating the discrepancies between ASHS and manual

segmentation, we devised a semi-automated optimization procedure

and evaluated it for improvements in correspondence.

2 | METHODS

Data from two independent studies were used in the present analyses

to create an early lifespan (EL) sample composed of children, adoles-

cents and young adults, and a late lifespan sample (LL) composed of

older adults. In accord with the Declaration of Helsinki, all adult partici-

pants provided written informed consent, which was also signed by the

primary caregiver for all children. Participant characteristics and details

of image acquisition are reported separately for each sample.

2.1 | Participants

2.1.1 | Early lifespan sample

Fifty participants, including children and adolescents (n533; age

range56–14 years; mean age510.18, SD52.19 years; 17 female)

and young adults (n517; age range518–26 years; mean age524.14,

SD52.41 years; 9 females; the combined range 6–26 years, mean

age514 SD57.0 years, 50% female) were drawn from ongoing stud-

ies of neural correlates of memory development conducted at the Max

Planck Institute for Human Development, Berlin, Germany.

2.1.2 | Late lifespan sample

Fifty older adults (age range562–79 years; mean age569.91,

SD54.60 years; 50% female) were drawn from the Berlin Aging Study

II (BASE-II; Bertram et al., 2014), an ongoing longitudinal study of

aging.

2.2 | Image acquisition and preprocessing

All MRI data were acquired on a 3T Siemens Magnetom Tim Trio scan-

ner. All EL sample data was acquired using a 12-channel head coil.

Data acquisition for the EL sample included two repetitions of a high-

resolution, proton density (PD)-weighted 2D turbo spin echo (TSE)

sequence, oriented perpendicular to the long axis of the left

hippocampus, with in-plain resolution50.4 mm 3 0.4 mm, slice

thickness52 mm, 30 coronal slices, image matrix 408 3 512, with

TR56500 ms, TE516 ms, flip angle51208, turbo factor 11 applying

hyperechoes, bandwidth 96 Hz/pixel, 1 average per acquisition. A T1-

weighted 3D magnetization-prepared rapid gradient echo (MPRAGE)

sequence was acquired parallel to the genu-splenium axis of the corpus

callosum in the sagittal plane, TR52500 ms, TE53.69 ms, TI51100

ms, flip angle 78, with an isotropic voxel size of 1 3 1 3 1 mm3, using a

3D distortion correction filter and pre-scan normalization, with a matrix

size of 192 3 256 3 256, GRAPPA acceleration factor52, no partial

Fourier acquisition and bandwidth 140 Hz/pixel. Acquisition of the LL

sample data used similar procedures with some modifications. For the

LL sample, we acquired a single high-resolution, T2-weighted 2D TSE

sequence, oriented perpendicular to the long axis of the hippocampus,

with in-plain resolution50.4 mm 3 0.4 mm, slice thickness52 mm,

31 slices, image matrix 384 3384, with TR58150 ms, TE550 ms, flip

angle51208, turbo factor 15 applying hyperechoes, bandwidth 99 Hz/

pixel, 1 average per acquisition. As with the EL sample, we also

acquired a T1-weighted 3D MPRAGE sequence parallel to the genu-
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splenium axis of the corpus callosum in the sagittal plane, TR52500

ms, TE54.77 ms, TI51100 ms, flip angle 78 with an isotropic voxel

size of 1 3 1 3 1 mm, using a 3D distortion correction filter and pre-

scan normalization with a matrix size of 192 3256 3 256, no parallel

imaging, 7/8 partial Fourier acquisition and bandwidth 140 Hz/pixel.

For most participants, a 32-channel head coil was used, although in

two cases a 12-channel coil was used as the 32-channel coil provided

an uncomfortable fit.

The two successive T2-weighted, high resolution TSE acquisitions

in the EL sample were co-registered and averaged with FMRIB’s Linear

Image Registration Tool (FLIRT) in FSL v5.0 (Analysis Group, FMRIB,

Oxford, UK) with six degrees of freedom, nearest neighbor interpola-

tion, and a normalized correlation cost function (Jenkinson, Bannister,

Brady, & Smith, 2002; Jenkinson & Smith, 2001).

2.3 | Manual demarcation

Data from both samples were manually demarcated and traced by two

expert operators (ARB, AK) using a 17-inch digitizing LCD tablet

(Wacom DT-710, Vancouver, WA), with Analyze 11 software (Mayo

Clinic, Rochester, MN) on an Apple Macintosh Pro workstation.

Regions included in the manual tracing protocol were similar to those

reported in prior publications (Bender et al., 2013; Daugherty et al.,

2016; Raz et al. 2015; Mueller, et al., 2007, 2011; Shing et al., 2011),

and included separate regions for ERC, and SUB, and aggregations of

CA1 and 2 (CA1/2), and an aggregation of CA3, CA4, and the DG

(CA3/DG).

2.3.1 | Ranging

The ranges of slices for inclusion in each HC subfield region of interest

(ROI) were determined separately for left and right hemisphere. For

each hemisphere, the anterior limit of the HC subfields was identified

as the first slice following the uncal apex, and on which the uncus or

tissue belonging to the HC head was no longer visible and did not

exhibit partial volume artifacts. The posterior limit was identified as the

final slice on which the lamina quadrigemina (LQ) was visible, allowing

for hemispheric differences in range if only left or right LQ was visible,

even if a partial volume effect was noted. Thus, in cases where only

one of the four colliculi was visible, the posterior range of HC body

would include that slice in the corresponding hemisphere.

2.3.2 | Manual demarcation protocol

A modification was introduced into the demarcation and tracing rules

described in Bender et al. (2013; modified from Shing et al., 2011,

which were in turn modified from Mueller et al., 2007). In the current

protocol placement of boundaries separating CA1/2 from SUB and

CA3/DG were altered. Briefly, during initial training efforts, instead of

drawing a free-hand curve around the hippocampal area, the operators

drew a rigid ellipse extending from the most medial aspect of CA3/DG

to the most lateral part of CA1, with the upper extent covering the

superior aspect of visible HC body and the inferior edge of the ellipse

bisecting the visible stratum radiatum lacunosum moleculare (SRLM;

Figure 1). This ellipse was then perpendicularly bisected along the short

and long axes and the short bisector served as the boundary separating

the inferior aspect of CA1/2 from SUB, and the superior aspect of

CA1/2 from CA3/DG. The modified protocol includes a more lateral

placement of the SUB-CA1/2 boundary than in the protocols on which

the present method was based, and was intended as a compromise

between the more disparate placement of that boundary in other

reports (Iglesias et al., 2015; Yushkevich et al., 2015a). After initial

training, raters visualized the ellipse and bisectors without drawing

them, and used the visualized criteria to establish the boundaries for

manual demarcation of data. The same procedure was used both for

establishing inter-rater reliability and subsequent demarcation of study

data. Other aspects of manual demarcation procedures were consistent

with previously published methods (Bender et al., 2013; Daugherty

et al. 2016; Raz et al., 2015; Shing et al., 2011).

Following training, two separate operators manually traced the

same sample of 12 cases (independent from the EL and LL samples but

pooled from data acquired with identical acquisition properties) to

assess inter-rater agreement by computing intraclass correlation coeffi-

cients (ICC[2], for random raters; Shrout & Fleiss, 1979). For all regions,

ICC(2) values of at least 0.85 for left and right hemispheres, separately,

and at least 0.90 bilaterally were set as a benchmark for desired inter-

rater agreement. The same raters ranged slices, although one (AK)

determined the ranges for the EL sample, whereas the other (ARB)

determined the ranges for LL sample. The same two expert operators

manually demarcated all images using these procedures, with random-

ized assignment of each slice to a given rater. Following a previously

described procedure (Raz et al., 2004), the goal of slice assignment ran-

domization between raters was to reduce the error of measurement.

2.4 | Automated hippocampal segmentations

2.4.1 | Atlas-building

ASHS software (Yushkevich et al., 2015b) was used for atlas building

following published procedures (https://sites.google.com/site/hippo-

subfields/building-an-atlas), without slice heuristics or cross-validation

procedures, as preliminary attempts to include slice heuristics produced

multiple errors that diminished correspondence with manually demar-

cated data. These errors included partial or inaccurate segmentation of

anterior and posterior regions, exclusion of multiple anterior and poste-

rior slices, or spurious inclusion of regions on slices. Atlas building

specified inclusion of four ROIs, consistent with the segmentation pro-

tocol. ROIs were exported from Analyze software to NIfTI format, and

associated required MPRAGE data were converted to NIfTI from

DICOM format. We initially created two separate, sample-specific

atlases for the EL and LL samples, respectively, as well as a lifespan

atlas including manually demarcated data from both groups. Procedures

published on the ASHS website (https://sites.google.com/site/hippo-

subfields/building-an-atlas; accessed December 16, 2016) recommend

20–30 cases for atlas building, and suggest that variations on this num-

ber still require additional validation to test any benefit of including

additional data. Atlas building in ASHS was performed on a cluster-

computing environment running on Intel Xeon CPU ES-2670 CPU
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cores running on Dell M620 blade servers, using the portable batch

system for job scheduling.

2.4.2 | Atlas building samples

ERC and HC subfields were ranged and manually demarcated on 100

participants, including 50 EL, and 50 LL. From each group, segmenta-

tions from 30 participants were assigned for atlas building, and the

remaining 20 cases were used for ASHS segmentation and comparison

with automated output. Assignment for atlas vs. segmentations was

pseudorandomized to include similar age distributions in both atlas

building and segmentation. No cases were used for both atlas building

and procedure comparison.

The EL sample-specific atlas included 30 children and adolescents

(n520; age range56–14 years; mean age59.93, SD52.53 years;

50% female), and young adults (n510; age range518–24 years; mean

age522.20, SD52.35 years; 50% female). The sample-specific atlas

for the LL sample included 28 older participants (age range562–79

years; mean age569.82, SD54.40 years; n female513), following

exclusion of two cases (1 female, 68 years old; 1 female 71 years old)

stemming from errors during atlas building due to these cases having

an additional slice included during acquisition. We also used data from

the EL and LL samples to build a third atlas spanning the entire age-

range of our sample. We designed the lifespan atlas to be composed of

equal numbers of cases from the EL and LL samples. Because HC sub-

field volumes in young adults are more similar in size to older adults

than to children (Daugherty et al., 2016), we weighted the EL cases

more heavily for children and adolescents than for young adults. Thus,

the lifespan atlas included data from 10 children and adolescents (age

range57–13 years; mean age510.08, SD52.64 years; 50% female),

four young adults (age range522–24 years; mean age523.00,

SD50.82 years; 50% female), and 14 older adults (age range562–78

years; mean age569.64, SD54.63 years; 50% female).

FIGURE 1 Illustration of the anatomic-geometric heuristic for manual morphometry. (a) A representative slice of anterior hippocampal
body following the visualization of the uncal sulcus. To facilitate tracing, the T2-weighted contrast has been inverted to mimic a T1-weighted
image. (b) Placement of the ellipse and bisecting lines (the major and minor axes of the ellipse). (c) The minor axis bisecting the ellipse marks
the point from which a vertical line is dropped to create a boundary separating the subiculum from CA1/2, and CA 1/2 from CA3–4/DG, as
shown in (d). Bottom: 3-D illustrations of sagittal (e) and oblique coronal (f) views of manual subfield labeling in the HC body from one EL
participant [Color figure can be viewed at wileyonlinelibrary.com]
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2.4.3 | ASHS segmentation using customized atlases

ASHS segmentation was applied to each sample using the age-

appropriate customized atlases as well as the combined lifespan atlas.

The remaining 20 cases for each sample, whose ROIs were manually

traced, but not used in atlas building, were used as validation cases.

These were segmented using ASHS on the cluster-computing environ-

ment described above.

2.5 | Optimization by extending range of tracing

Following initial segmentation in ASHS, we examined the results, quan-

titatively and visually. Discrepancies between automated and manually

demarcated image maps appeared most prominent at the first and final

slices of all regions. In multiple cases, ASHS excluded segmentations

for one or more ROIs on the first or final slices, or included additional

slices that were not part of the manually ranged data. These issues

could have plausibly arisen from imperfect registration of the T1 and

T2-weighted data, differences in angle of acquisition plane between the

two, or a combination of these factors. Alternatively, it is possible that

such differences arise because ASHS functions under an essentially dif-

ferent set of assumptions than manual raters (i.e., spatial and intensity

values vs anatomical landmarks) when determining the longitudinal

extent of segmentation.

To address these discrepancies, we modified the ranging rules,

extending the ranges beyond manually designated anatomical land-

marks for segmentation procedures used for images included for atlas

building (Supporting Information, Figure SI1). This step was intended to

reduce the likelihood of excluding anterior or posterior slices output

during ASHS segmentation by producing an atlas that extended beyond

anatomical ranges for manual inclusion. In this modified procedure, we

traced additional slices: one to two anterior and one to two posterior

slices were added to the manually defined ranges, depending on visibil-

ity of subfields. In anterior slices, any visible tissue from the uncus or

the HC head was not included and demarcation was limited to clearly

apparent HC “body-like” regions on slices anterior to the uncal apex.

On additional posterior slices, tracing was not performed in two cases,

which showed no visible separation between the subfields. The

extended ROIs were used for atlas building in ASHS following the

same published guidelines, producing two extended sample-specific

atlases and one extended lifespan atlas. We then used the resultant

extended, customized atlases in ASHS to segment the same 20 valida-

tion cases.

Initially, the extended demarcation was limited to the subfields in

the HC body. However, this did not ameliorate problems in ERC meas-

urements, with several cases showing pronounced ERC segmentation

errors in more posterior slices of that structure. Therefore, an addi-

tional extended atlas that included expanded demarcation of that struc-

ture on additional posterior slices was generated. The final customized

atlases in ASHS, with extended demarcation of both ERC and body

subfields was again applied for segmentation of the 20 validation cases

(see Figure 2 for a list of all atlases generated). Following ASHS seg-

mentation, the extended validation data were truncated using an auto-

mated Bourne shell script and utilities from FSL v5.0 (Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012) to limit ROIs to only

those slices included in the manually defined ranges employed in the

manual demarcation. Thus, operator-determined ranges were pre-

served and ASHS propensity for segmentation problems at the anterior

and posterior limits of the hippocampal body was kept in check. An

additional inspection following the optimization determined whether

the procedure successfully addressed the discrepancies. Following opti-

mization, we observed three cases with minor segmentation errors on

the most posterior HC body slice. However, following consultation

between the operators responsible for ranging, demarcation, and opti-

mization (ARB and AK), the additional error from those cases was

deemed minimal and required no further correction. The raters noted,

nonetheless, that in some cases it might have been preferable to use a

more conservative criterion for the posterior HC body boundary, and

adjust it to one slice anterior to the final slice on which LQ is visible.

2.6 | Postoptimization correction

Following optimization procedures, we roughly estimated automated

segmentation accuracy by comparing the total number of voxels and

visually inspecting the manual and automated segmentation output.

For ERC in the LL sample, we noted systematic differences: manual

morphometry produced smaller volumes than ASHS did; however, no

such systematic differences were apparent for ERC in the EL sample.

Visual comparison of automated and manual masks revealed inconsis-

tencies between the methods in 13 out of 20 cases for left-only

(n54), right-only (n54), or bilateral ERC (n55). Consultation between

the expert operators suggested that the smaller manually segmented

ERC resulted from tendencies toward exceedingly conservative

FIGURE 2 List of atlases generated and applied at different stages
of validation work. Red Xs indicate atlases used at intermediate
stages of the validation efforts, and green check marks indicate
atlases used in reported analyses. The original atlases generated
with the “slice heuristics” function in ASHS was only performed on
the EL and LL samples, with no lifespan atlas generated. The
optimization procedure included demarcation of subfields on one
to two slices anterior and posterior, and was originally limited only
to subfields and not ERC. Following inspection of the output from
that atlas, additional demarcation was performed to similarly
extend the labeling of ERC as well [Color figure can be viewed at
wileyonlinelibrary.com]
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estimation of ERC in morphologically ambiguous circumstances, in

which inferior termination points of demarcation were prescribed

based on the appearance of false sulci, rather than at true collateral

sulci. Based on this comparison, one rater (AK) manually corrected ERC

for these 13 cases, blinded to automated output during correction pro-

cedures. Thus, corrections were only performed as indicated by appa-

rent anatomical boundaries, and were not influenced by direct

comparison with automated segmentations.

2.7 | Data analysis

2.7.1 | Inter-rater agreement

Two complimentary indices of inter-rater agreement and spatial overlap

were used to evaluate the correspondence of manual and automated

segmentations. The ICC(2) statistic (Shrout & Fleiss, 1979) is an

analysis-of-variance-based statistic that separates true variability of

raters and volume differences from error, and thereby provides an esti-

mate of bias in ratings. ICC(2) is geared towards assessing reliability of

the volumes, the target measure in all studies cited above. It is not

meant, however, to assess spatial overlap between geometric objects.

When such overlap is of interest, the Dice similarity coefficient (DSC;

Dice, 1945) is a statistic of choice. Although it gauges the spatial simi-

larity or overlap of regions, DSC does not account for error variance in

agreement, as it relies on set theory to evaluate overlap and common-

ality. Because the range truncation frequently resulted in differential

number of slices between left and right hemispheres, mean DSC values

following optimization were computed separately for each hemisphere,

and bilateral DSC values after optimization were calculated as a mean

across the hemispheres.

2.7.2 | Bias estimation

ICC(2) is affected by the range of measured values, and a method less

dependent on range is desirable. Therefore, we generated BA plots of

agreement (Bland & Altman, 1986), which compare the differences

between methods against their combined mean values. BA plots pro-

vide two useful indices: constant bias, which represents the departure

of the differences between methods from zero, and proportional bias

that indicates the association between bias and regional size, and are

considered a standard in method comparison studies.

3 | RESULTS

3.1 | Ranging

The average number of slices used for manual demarcation of HC sub-

fields differed between the samples. In the LL sample, the range con-

tained one additional slice compared to the EL sample: mean (6SD) of

the LL sample58.7760.92 slices; mean (6SD) of the EL

sample57.8260.90 slices; t[98]55.24, p< .001.

3.2 | Initial validation attempt

3.2.1 | ICC(2)

The results of all validation attempts are presented in Table 1, and are

depicted in Figure 3. For the EL sample, both the sample-specific and

Lifespan atlases showed low correspondence with manually demar-

cated data for ERC and SUB, and somewhat closer correspondence for

CA1/2 and CA3/DG. The LL sample evidenced higher correspondence

between manually traced and ASHS-segmented subfield volumes. As

with the EL sample, ERC for the LL sample showed the lowest agree-

ment between manual and automated methods among all ROIs, regard-

less of the atlas used.

3.2.2 | DSC

In contrast to the ICC(2) results, evaluation of DSC overlap between

ASHS and manually demarcated data showed reasonable consistency

between methods for both the EL and LL samples. However, the pat-

tern of overlap loosely mirrored the ICC(2) results for both sample-

specific and Lifespan atlases, with lowest correspondence for ERC

compared to other ROIs.

3.2.3 | Visual inspection

In both the EL and LL samples, we observed consistent problems with

ASHS segmentation, independent of the atlas used. These problems

included a variety of segmentation errors that were primarily apparent

at the most anterior and posterior aspects of ERC and the HC body.

Segmentation errors were primarily defined by inclusion of extra voxels

or mis-segmentation of subfields in anterior or posterior slices by over-

or underinclusion of relevant voxels (Figure 4). We observed one or

more of such errors in almost all cases in both EL and LL samples. For

the EL sample, problems with the initial ASHS segmentation were

observed in ERC and in both the anterior and posterior HC body seg-

mentations. ERC segmentation errors from ASHS output were

observed in all EL cases, with 90% of validation cases showing bilateral

ERC segmentation errors, and 10% only showing problems in the left

or right ERC. Anterior HC body segmentation errors were also

observed in 90% of the EL sample, with 15% of the brains showing uni-

lateral and 75% of bilateral segmentation errors. Problems with poste-

rior HC body segmentation were observed in 80% of cases, including

35% unilaterally, and 45% bilaterally.

In the LL sample, ERC segmentation errors from ASHS output

were manifest in all cases, with 20% restricted to one hemisphere, and

80% showing problems bilaterally. Similarly, anterior HC body ASHS

segmentation errors were ubiquitous, with errors in only one case

restricted to the left hemisphere of the anterior HC body. Posterior HC

body segmentation errors from ASHS were observed in 90% of those

cases, with 25% showing improper segmentation unilaterally.

3.3 | Postoptimization validation

3.3.1 | ICC(2)

For the EL sample, postoptimization ICC(2) values revealed substantially

improved automated-manual correspondence for HC subfields in
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sample-specific and Lifespan atlases. Although correspondence for ERC

also improved, the higher validity coefficient (ICC[2]50.635) was still

below the preestablished standard of inter-rater reliability (i.e., 0.85).

Bilateral ICC(2) values for SUB and CA3/DG approached or were above

0.90, but the ICC(2) for CA1/2, for both sample-specific and Lifespan

atlases was still lower than we hoped. In contrast, for the LL sample, the

ICC(2) values for ERC were not considerably improved by optimization

procedures. Correspondence between manually traced bilateral ERC and

the sample-specific atlas segmentation was only ICC(2)50.207, whereas

the agreement between manual segmentation and the one produced by

the Lifespan atlas reached a moderate value: ICC(2)50.590. Comparison

of volumetric data and visual inspection revealed inconsistencies in sev-

eral cases used in ERC atlas building, suggesting that ASHS segmentation

output was more consistent than manual demarcation in this more

ambiguous anatomical region in which no geometric-anatomical heuristic

was applied. Following correction of these 13 cases of manually demar-

cated ERC from the LL sample, the automated-manual correspondence

improved substantially for the Lifespan atlas, but not the sample-specific

atlas (Table 1). Similarly, concurrent validity for the remaining HC sub-

fields SUB, CA1/2, and CA3/DG all showed marked improvements fol-

lowing optimization, with consistently higher ICC(2) values for the

Lifespan than the sample-specific atlas.

3.3.2 | DSC

Spatial overlap between automated and manually segmented data

increased following optimization procedures for both samples. This change

was independent of atlas type. In addition, the differences between auto-

mated and manually segmented subfield data are most apparent at the

edges of the structures (Figure 5), and some differences in the SUB-CA1/

2 boundary appear to differ in the anterior vs. posterior HC body.

3.3.3 | Bias estimation

To evaluate whether one of the automated methods systematically

under- or overestimates subfield volumes in comparison with manual

FIGURE 3 Results of validation attempts for four comparisons between manual and automated approaches in ASHS, including the sample-specific
atlas without optimization (red), the Lifespan atlas without optimization (orange), the sample-specific atlas following optimization (yellow), and the
Lifespan atlas following optimization (green). Error bars represent 95% confidence intervals. (a) ICC(2) values for the Early Lifespan sample (top) and
the Late Lifespan sample (bottom). (b) DSC values for the Early Lifespan sample (top) and the Late Lifespan sample (bottom) [Color figure can be
viewed at wileyonlinelibrary.com]
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morphometry, we generated BA plots (Figure 6 and Supporting Infor-

mation, Figures 2 and 3). BA plots comparing ASHS automated output

derived from sample-specific and lifespan atlases, without optimization

(Supporting Information, Figure 3) demonstrate a proportional bias in

some regions: larger volumes were associated with greater negative

differences, that is, smaller estimates generated by ASHS. In an

extreme example, the proportional bias stemmed from one case from

the LL sample having a large overall volume. In that case, ASHS did not

FIGURE 4 Illustration of ASHS segmentation errors in the initial,
nonoptimized validation attempt. Left column depicts correct,
manual segmentation, and right column shows faulty
segmentations. (a) Whereas manual segmentation (left) does not
include this slice in the range, ASHS (right) includes multiple,
erroneously included voxels in ERC, as indicated by the yellow
arrow. (b) Manual segmentation of ERC (left) in comparison with
omitted segmentation by ASHS (right). (c) Manual segmentation
includes only ERC (left) as visible presence of uncus (indicated by
the white arrow) indicates no body segmentation on this slice. In
contrast, ASHS (right) includes segmentation of ERC and body
subregions. (d) Overextension of ERC by ASHS in several voxels
(right, as indicated by the yellow arrow), where ERC should no

longer be segmented following the first body slice (left). (e)
Following the disappearance of the lamina quadrigemina, subfields
are no longer segmented by the manual approach (left), but are
both included, and mis-segmented by ASHS (right) [Color figure
can be viewed at wileyonlinelibrary.com]

FIGURE 5 Illustration of labeling by manual demarcation,
optimized ASHS in the lifespan atlas, and the difference between
the two. Numbers in white represent z-axis/slice number. The

leftmost column shows the unlabeled T2-weighted, high-resolution
image on all slices included in manual labeling. Although this reflects
the original contrast, manually demarcation was performed on images
with inverted contrast (T1-weighted appearance). The middle columns
show manual and automated demarcation of ERC and hippocampal
subfields. The rightmost column shows the difference between ASHS
and manual segmentation, and was generated by image subtraction
between the two methods. As illustrated by the difference images
(right column), the discrepancies between the two methods are most
apparent at the edges of the subregional labels [Color figure can be
viewed at wileyonlinelibrary.com]
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adequately segment the first HC body slice on the left or the final HC

body slice on the right, even following optimization procedures. This

proportional bias appeared considerably greater in ERC and SUB than

in CA1/2 and CA3/DG, and was reduced, though not eliminated, by

optimization, particularly for the lifespan atlas (Figure 5).

4 | CROSS-VALIDATION

To validate the optimization approach presented here, we applied it to

an independent sample. The participants in that sample were recruited

from a different population, and scanned on a different MRI installa-

tion, with some differences in acquisition parameters. The images were

manually demarcated by independent raters who were trained on the

manual segmentation protocol, described above. The data were also

segmented in ASHS using the extended lifespan atlas optimized for lim-

iting segmentations to the manually indicated slice ranges.

5 | METHODS

5.1 | Participants

The cross-validation sample was drawn from ongoing, longitudinal

investigations of brain and cognitive aging in Detroit, Michigan. Partici-

pants provided written informed consent in accord with the Declara-

tion of Helsinki. The sample included 30 healthy adults (14 men and 16

women) from 31 to 84 years of age (mean age561.44, SD512.78

years). All participants were right-handed, free of neurological and psy-

chiatric diseases, and cognitively intact (MMSE range 26–30; mean

MMSE529.20; SD51.03).

5.2 | MRI acquisition

All sequences were acquired on a 3T Siemens Verio (Siemens Medical

AG, Erlangen, Germany) MRI scanner with a 12-channel head coil. We

acquired a high-resolution PD-weighted TSE sequence in the coronal

plane, perpendicular to the long axis of the hippocampus: TE517 ms,

TR57150 ms, flip angle51208, pixel bandwidth596 Hz/pixel, turbo

factor 11, in-plain resolution50.4 mm 3 0.4 mm, slice

thickness52.0 mm, 30 slices, image matrix 280 3 512. Acquisition

also included a high-resolution T1-weighted MPRAGE sequence in the

coronal plane, along the AC-PC line, with TR51680 ms, TE53.51 ms,

TI5900 ms, flip angle59.08, bandwidth5180 Hz/pixel, GRAPPA

acceleration factor 2, and voxel size50.67 mm 3 0.67 mm 3

1.34 mm.

5.3 | Manual demarcation procedure

Manual demarcation was performed primarily by two raters (AMD

and QY), using the same manual segmentation protocol as

described above for the initial validation. The raters attained the

same standards of reliability (ICC� .90 for bilateral regions) and

AMD was reliable with one of the raters who traced the original

sample (ARB).

FIGURE 6 Bland-Altman plots of agreement between manual and automated methods for Early Lifespan (EL) and Late Lifespan (LL)
samples, using the ASHS customized lifespan atlas, following optimization procedures, with regression lines fitted to the data. On all plots,
the Y-axis represents the difference between ASHS automated and manual morphometry and the X-axis represents the combined mean of
the two methods. The solid black horizontal lines indicate the mean difference between methods, and the dashed lines represent the 95%
confidence interval or two standard deviations above and below the mean difference. Negative regression slopes indicate proportional bias:
the automatic procedure overestimates smaller volumes and underestimated the larger volumes, relative to manual segmentation
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5.4 | Automated segmentation and optimization

We used the extended-lifespan atlas for segmentation in ASHS, fol-

lowed by our optimization approach using the truncation procedure

described above. Visual and quantitative inspection of the output

showed disagreement in 12 out of 30 cases on the final body slice

included in manual ranging. Thus, a somewhat more conservative range

was applied, with the most posterior body slice excluded from the orig-

inal ranging criteria.

6 | RESULTS

Comparison between automated and manual segmentation showed

high agreement, which was improved by applying a more conservative

ranging criterion (Table 2). In addition, we identified an outlier with a

very large hippocampus that was not segmented by ASHS on the two

most anterior slices (Supporting Information, Figure 1). The influence of

that outlier attenuated the validity coefficient for CA1/2. Overall, how-

ever, correspondence between the optimized ASHS output and manual

segmentations was good, with ICC(2) values for bilateral ROIs ranging

from 0.700 to 0.915.

7 | DISCUSSION

This study yielded four main results. First, we successfully created a

series of customized atlases in ASHS using data from across the life-

span. This work extends prior findings from older adults (Yushkevich

et al., 2015b) to children, adolescents, and younger adults using highly

validated aggregated labels that have shown strong replicability across

laboratories (Bender et al., 2013; Mueller et al., 2007; Mueller &

Weiner, 2009; Shing et al., 2011). Second, we provided independent

estimates of concurrent validity for ASHS segmentation of HC sub-

fields based on novel customized atlases. Third, we showed that the

concurrent validity and proportional bias of automated and manual HC

subfield segmentation could be improved considerably by manually

optimizing automated procedures and by using a lifespan sample for

atlas generation, particularly for the LL sample. The optimization proce-

dure used here is similar to that from the original ASHS work (Yushke-

vich et al., 2010), and relies on extending the boundaries during atlas

building and truncating the data in accord with manual ranging criteria

for slice inclusion. Fourth, we cross-validated our findings. We repli-

cated the concurrent validity findings based on the lifespan atlas and

new optimization method on a sample from a different scanner, with

different acquisition parameters, in a different population, demarcated

by different raters trained on the same manual segmentation protocol.

7.1 | Discrepancies: Sources and solutions

Automated approaches are highly consistent, but their external validity

remains unknown until their output is carefully compared to the results

of reliable manual tracing. The greatest disagreement in segmentation

accuracy during the initial validation attempt arose in the most poste-

rior or anterior aspects of cortex or subfields. An apparent strength of

ASHS is in its excellent correspondence based on within-slice segmen-

tation. It encounters, nonetheless, problems in generalizing the longitu-

dinal spatial extent from the training atlases to the target images. Left

unchecked, ASHS may misclassify or exclude some or all regions in final

slices, or, in some cases, add slices, relative to the range defined and

segmented by the manual segmentation protocol, on which the cus-

tomized atlases were based. Applying the ASHS “slice heuristics” func-

tion in atlas building did not remedy these discrepancies between

manually defined ranges and the range of slices determined by ASHS.

Whereas these discrepancies may produce similar estimations of total

volume, they suggest a greater concern with specificity in coverage of

the HC body. Furthermore, although these discrepancies were still

apparent in applying our extended atlas and optimization procedures to

an independent data set, this was remedied by applying a slightly more

conservative criterion for range of slices included in estimating HC

body volume.

Using BA plots, we found that ASHS produces a significant com-

pression of variance in regional volumes, as the worst agreement with

manual tracing was observed for extreme values. Similar variance com-

pression has been observed when other automated procedures were

compared to manual morphometry (e.g., Kennedy et al. 2009). This

may be due to segmentation algorithms assuming that individuals are

drawn from a homogenous, normally distributed population. The ensu-

ing emphasis on central tendency may yield stronger influence on

extreme cases by pulling those closer to the distribution mean. The

MASV method employed in ASHS (Rohlfing et al., 2004; Klein and

Hirsch, 2005), entails registration and normalization of individual native

space images to a series of manually segmented template images, and

subsequent inverse registration of multiple template-based segmenta-

tions back to each individual image. A voting scheme is then used to

combine the resultant multiple segmentations into a unified

TABLE 2 Validity coefficients for cross-validation

ICC(2)

HC structure Truncated Truncated-11

ERC left 0.746 0.746

ERC right 0.697 0.697

ERC total 0.700 0.700

SUB left 0.885 0.923

SUB right 0.838 0.903

SUB total 0.857 0.915

CA1/2 left 0.707 0.815

CA1/2 righta 0.794 0.874

CA1/2 totala 0.807 0.876

CA3/DG left 0.854 0.905

CA3/DG right 0.824 0.873

CA3/DG total 0.858 0.905

aExcluding 1 outlier; 1Truncated to exclude one additional posterior
body slice.
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segmentation. The benefit of the MASV method in ASHS might have

mitigated the deviations in atlas-based segmentation within slices

included in manually defined ranges.

We found that our optimization procedure that applied identical

anatomical criteria used in manual segmentations to establishing

regional inclusion boundaries improves the validity of automated

approaches. Thus, the discrepancy in selection of multiple anatomical

landmarks for establishing regional boundaries appears to be a crucial

difference between manual and automated methods. However, even

under the optimized procedures, the largest HC in the sample was still

not correctly segmented, with the most anterior and posterior slices

misclassified or not included. This may indicate a need for further

refinement of HC body ranging procedures for both manual and auto-

mated segmentation methods (Wisse et al., 2017).

In addition, manual HC subfield demarcation has most frequently

relied on widely used atlases, in which, unlike most MRI-based segmen-

tations, the slices are not aligned perpendicularly to the long axis of the

hippocampus (Duvernoy, 2005). Manual methods involve the succes-

sive segmentation of structures on 2D slices and rely on multiple ana-

tomical landmarks for determining range of inclusion and placement of

internal boundaries. As such, manual demarcation benefits from exper-

tise and recognition of relevant individual differences in brain morphol-

ogy and standardized decision processes for handling partial volume

effects or motion artifacts in structures of interest (i.e., CSF, GM/WM,

dura, choroid plexus, blood vessels, etc.). In contrast, automated meth-

ods commonly utilize multiple types of spatial transformations to bridge

various imaging modalities with different acquisition planes, different

voxel size and varying degree of voxel anisotropy. Moreover, such

automated approaches may be less sensitive to individual differences

in morphology and relative distance from anatomical landmarks. The

borders of some regions (i.e., ERC) are inherently more ambiguous

because of multiple sources of noise, even when viewed by expert

raters. Nevertheless, manual tracing remains the standard not because

it is infallible, but because it is performed by trained experts who are

guided by knowledge of neuroanatomy, understanding of MRI artifacts,

and flexibility in considering individual differences. The present findings

also suggest that automated, multiatlas voting approaches may help

guide experienced raters in morphologically ambiguous circumstances.

Together these issues underscore the importance of expert review of

segmentation accuracy and consistency.

7.2 | Relation to other findings

It is important to note that ICC and DSC statistics, which are rarely com-

pared directly, reveal different but complimentary results. The ICC(2),

essentially an analysis-of-variance technique, is sensitive to deviations

between cases and procedures (automated vs. manual), and can be inter-

preted as reflecting error variability between methods, relative to the

overall variability within the sample. DSC, a measure of spatial overlap

between two structures, does not account for non-error individual vari-

ability in their size. As expected, compared to DSC, the ICC(2) was con-

siderably more sensitive to variability, as shown by the larger and more

variable confidence intervals for the latter. Also, in both samples, the

CA1/2 and CA3/DG regions appeared less sensitive than SUB and ERC

to differences in automated vs. manual segmentation. These observa-

tions are supported by the BA plots (Figure 6) and by the bias statistics

(Figure 7), which show lower bias for the lifespan atlas and reduction in

bias following optimization procedures. It should be noted that the BA

plots are sensitive to bias that reflects systematic differences between

methods and overall tendencies toward generating differences in seg-

mentations proportional to the size of the structure. In contrast, the

95% confidence intervals around the ICC(2) reflects the uncertainty of

the statistic at the population level, and indicates that 95% of estimated

intervals would include the population parameter. Thus, the three statis-

tics reported here (ICC[2], DSC, BA bias) are complementary, and reflect

different aspects of agreement between methods.

The present findings also highlight the greater difficulty of manual

segmentation for ERC due to inconsistent interpretation of morpho-

metric rules even by experienced raters. Moreover, as is apparent pri-

marily in the LL sample, it is possible that this discrepancy resulted from

differences in image acquisition or morphological differences in devel-

opment. Indeed, in these images, both SUB and ERC were more likely

than CA1/2 and CA3/DG influenced by differences in signal intensity

arising from adjacent vasculature. This discrepancy also may result from

poorer gray–white matter contrast, signal drop-off, or partial voluming

of subcortical white matter in rhinal cortices on 2-mm thick slices used

in our high-resolution T2-weighted sequences, and typically employed

in HC subfield imaging (Yushkevich et al., 2015a). These problems

would be less likely on thinner T1-weighted images with lower in-plain

FIGURE 7 Comparison of bias from Bland–Altman plots across
atlases, optimization methods, and HC subfields for Early lifespan
sample (open bars) and the Late lifespan sample (filled bars). Error
bars represent the 95% CI of the bias statistic
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resolution, on which EC volumes can be reliably estimated (e.g., Gon-

charova, Dickerson, Stoub, & deToledo-Morrell, 2001; Raz et al., 2010).

Together, these issues appear to make definitive manual designation of

collateral sulcus more ambiguous (Insausti et al., 1998; Pruessner et al.,

2002). However, the present findings may also indicate that use of the

automated, MASV method by ASHS made it less vulnerable to imaging

artifacts and partial voluming in comparison to expert manual operators.

Although it can be performed reliably, ERC volume estimation is a chal-

lenging task even on thinner slices with isotropic voxels (e.g., Xu et al.,

2000; Price et al., 2010). It remains unclear, pending comparison to his-

tologically demarcated samples, whether this improvement in reliability

also reflects greater validity of ERC demarcation by ASHS or greater

consistency of the automated procedure.

7.3 | Limitations and future directions

The results of this study should be interpreted in the context of several

limitations. First, our segmentation was limited to the body of the HC

and adjacent ERC and the results cannot be generalized to the hippo-

campal head and tail. Although ASHS may be capable of producing reli-

able segmentations of subfields in HC head and tail, histologically

validated methods for cytoarchitectonically informed segmentation of

subfields within HC head and tail are not yet established; this is primar-

ily due to the less uniform distributions of subfields in the head and tail

(Wisse et al., 2017). In the HC head, a challenge to validity emerges

largely from its complex anatomical structure: the HC head is rotated

in two planes and the number of HC head digitations can vary among

individuals. Moreover, similarity of appearance displayed by tissue in

the hippocampal head and amygdala on MRI can complicate precise,

reliable demarcation of boundaries between adjacent gray matter

regions. This is further complicated in aging samples as the age-

dependent inferior horn of the lateral ventricle frequently serves as a

landmark for this boundary. This produces too many challenges to be

treated without serious concerns about the differential distributions of

subfields in the head (Wisse et al., 2017). In the tail, variability in acqui-

sition angle, HC length, curvature, subfield distribution, and relative dis-

tance from the fornices and thalamus currently limits the validity of any

segmentation protocol (Wisse et al., 2017). These challenges have

been identified in enumerating the discrepancies among the protocols

currently used for HC subfield demarcation (Yushkevich et al., 2015a)

and the strategy towards improvement and harmonization of the rules

are currently the goal of the Hippocampal Subfields Group consortium

(Wisse et al., 2017).

Furthermore, several automated protocols offer segmentation with

greater anatomical distinctions, yielding separate measures of almost all

CA subregions, subiculum subregions, fimbria, alveus, the vestigial hip-

pocampal fissure and the “dark band” on T2-weighted, stratum radia-

tum lacunosum molecular (SRLM). As a rule, such highly specific labels

show relatively low reliability in manual measures, and consequently

low validity in automated protocols, whereas aggregating small regions

improves both (Iglesias et al., 2015; Marizzoni et al., 2015; Yushkevich

et al., 2015a). In contrast to this rule and to the pattern of results in the

present study, a recent study of small, specific labels in five healthy

adults showed high ICC, but lower DSC for SRLM (Amaral et al., 2017),

although it is unclear which formula was used for ICC calculation,

which limits direct comparison to the present study.

Second, our optimization procedure relies on manual intervention,

as it involves defining HC body ranges based on anatomical landmarks.

Consistent application of such procedures may be challenging for non-

expert human operators. In general, the various sources of potential

discrepancies outlined above underscore the necessity of manually

checking the output of automated segmentation protocols—although

this is always strongly suggested when automated segmentation is per-

formed. The benefit conveyed by removing an additional slice in the

cross-validation suggests that improving correspondence between

manual and automated methods depends on accuracy of segmenting

internal, within-slice features and on consistent ranging. It remains

unclear how representative are the individual slices along HC and

whether including an entire region with a higher noise profile is prefer-

able to more specific measures that sample a more limited, but repre-

sentative anatomical aspect with smaller measurement error.

Nevertheless, the optimization procedures described here and the

manual inspection of automated output require certain expertise in

MR-based neuroanatomy. Thus, to attain the high levels of concurrent

validity reported here, personnel charged with performing these steps

should have adequate training and expertise in neuroanatomy. This is,

of course, true with regards to any computerized procedure that bene-

fits from corrections and adjustments to its automated output.

Third, the present validation was performed only with ASHS, and

evaluation of other software for HC subfield segmentation was beyond

the scope of the present study. Methods based on multi-atlas segmen-

tation, including Multiple Automatically Generated Templates brain

segmentation (MAGeT-Brain; Pipitone et al., 2014), should be eval-

uated. In addition, the Freesurfer software suite has included function-

ality for segmentation of HC subfields based on probabilistic or ex vivo

data (Iglesias et al., 2015; Van Leemput et al., 2009). Although it is

beyond the scope of the present study, additional work is also needed

to reconcile the results of these approaches with the optimized mor-

phometric approaches reported here.

Fourth, we combined the data from two independent studies, orig-

inally designed to investigate questions related to cognitive develop-

ment and aging, respectively. While this, in part, motivated the division

of data into EL and LL samples, it is possible that EL analysis might

have benefitted from further subdivision into samples of children/ado-

lescents versus young adults. Cross-sectional evidence suggests that

volumetric differences between children and early adulthood (Daugh-

erty et al., 2016) vary across hippocampal subfields, and some young

adults may more closely resemble their older counterparts than chil-

dren. Sex differences in HC volume are reported in adolescence, with

greater age-associated decrements in total HC volumes in adolescent

males compared to females (Satterthwaite et al., 2014). Furthermore,

the two samples investigated in the present study were scanned with

non-identical acquisition methods and differed in averaging of multiple

acquisitions and head coil used, which may complicate direct compari-

son of automated-manual concurrent validity between groups. Thus,

future studies should evaluate the differential utility of such
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automated, atlas-based segmentation approaches for children and ado-

lescents, by age and sex, while holding all other aspects of acquisition

constant. Moreover, future studies should evaluate how well the opti-

mization methods reported here extend to other data.

It is unclear why the lifespan atlases outperformed the sample-

specific atlases in their agreement with manually demarcated data.

Considering the MASV approach used by ASHS, it may seem possible

that the more variable set of atlas-template images may have yielded a

more diverse set of features, which ASHS could use to compare with

any target image during segmentation. However, improving the concur-

rent validity of automated and manual segmentations by using the Life-

span rather than narrow-age atlases is at odds with prior findings and

theory (Wang et al., 2013). Although it is possible that agreement

between manual and automated methods could have benefitted from

uniform acquisition parameters, the present analyses suggest that

greater variability in the data used for atlas building may improve corre-

spondence. In the present study, we chose to build atlases based on

age distributions, and not on specific morphological features such as

HC size and shape. It is possible that the lifespan atlas outperformed

the sample specific atlases because it included a greater distribution of

such morphological features. Future validation efforts should compare

the concurrent validity of automated segmentations from atlases built

using age as a criterion with those specifically built to include a diverse

set of morphological features. Similarly, the images for atlas building

were chosen based, in part, on the relative absence of gross motion

artifacts. Further validation is needed to determine the degree to which

motion artifacts in atlas template images may influence segmentation

accuracy. These results, however, highlight the need for further

research to determine the conditions, under which a more variable

training set yields segmentations with better correspondence with

manual segmentations generated by a more uniform set of atlases.

It is also possible that ASHS segmentation errors at the most ante-

rior or posterior aspects of the HC body stemmed from the manual seg-

mentation protocol being limited to the body, at the exclusion of the

head and tail. One might speculate that subfield segmentation along the

full extent of the HC, or use of additional ROIs for total HC in head and

tail may have possibly mitigated such errors. However, it is also possible

that the ability of ASHS to clearly infer the anterior and posterior boun-

daries of HC body for subfield segmentation may not be as precise as

that of manual raters. ASHS apparently does not consistently generalize

internal boundaries along the longitudinal hippocampal axis from atlases

to target data. This is a key concern for researchers attempting to limit

ASHS segmentations to the body, or attempting to use a consistent and

valid scheme for separate estimation of subfield volumes in the body,

head, and tail. Thus, further work is needed to determine the exact

causes and solutions for addressing these issues within the ASHS

framework and to reduce or eliminate the need for manual intervention

and optimization as described in the present study.

7.4 | Conclusions

Within the ASHS automated pipeline, customized atlases can be used

to reliably segment HC subfields in accord with evolving guidelines and

protocols used in manual demarcation. Furthermore, using minimal

manual interventions, automated output can be optimized to attain

high correspondence with standard manual morphometric methods.

These findings have strong implications for structural and functional

studies of HC subfields, particularly in large datasets and for lifespan

comparisons. The optimized segmentation procedure introduced here

and reliance on a lifespan atlas eliminated constant bias of automatic

vs. manual segmentation. Nonetheless, proportional bias in some sub-

fields remained and further refinement of segmentation procedures

and neuroanatomical validation of demarcation rules remains critically

important for advancement of research that relies on HC subfield

morphometry.
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