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Abstract

Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain
injury (TBI) have devastating effects on TBI survivors. A contributing component to memory
impairments caused by TBI are alterations in the neural circuits associated with memory function.
In this review, we aim to bring together experimental findings that characterize behavioral memory
deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is
little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which
memory phase i.e., encoding, maintenance or retrieval is specifically altered by TBI. This is most
likely due to variation in behavioral protocols and experimental models. Additionally we review a
selection of experimental treatments that hold translational potential to mitigate memory
dysfunction following injury.
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Introduction

Traumatic brain injury (TBI) is defined as any force to the head that causes alteration in

neurological function. TBI presents a significant health issue in the United States, with more
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than 2.5 million cases resulting in emergency department visits, hospitalizations or fatality
[1]. Furthermore, memory impairment is one of the most common neurological
manifestations of TBI [2-4]. Indeed, memory and TBI appear to be intrinsically linked, as
the hippocampus and cortex, significant brain regions involved in the physiological circuits
of memory, are often damaged after TBI [5,6]. In order to manage and mitigate memory
dysfunction ascribed by TBI patients [7] it is imperative to determine the physiological
mechanisms linking TBI and these neural substrates of memory.

In this review, we aim to present the current state of research linking memory and TBI by
systematically describing the type of memory tested and the different animal models
implemented. Additionally, we review studies addressing the underlying neural physiology
of memory-associated circuits, predominately within the hippocampus and cortex, and how
experimental models of TBI contribute to understanding amnesic pathophysiology. Lastly,
we provide a brief overview of promising therapeutic strategies that have potential to target
these physiological vulnerabilities within neuronal circuits of memory.

Experimental animal models of TBI

In order to study TBI pre-clinically, scientists have developed several animal models to
mimic human pathophysiology. TBI animal models can be divided into closed and open
head injury models. The closed head injury (CHI) models, such as Marmarou’s and
Feeney’s weight-drop models, are characterized by the fact that the skull remains intact
before the injury [8-10]. CHI causes blood brain barrier disruptions, edema permeability
and transient alterations in neurological status [11]. Apart from the weight-drop models,
another CHI model type is blast injury, which consists of projecting blast pressure waves
from a compressed-gas driven shock tube onto the head of an anesthetized animal [12]. The
blast model of TBI was developed to mimic the pressure waves from improvised explosive
devices (IEDs) during combat warfare, and has also been shown to replicate human TBI
cognitive symptoms and pathology [13].

In contrast to CHI models, open head injury models administer the injury through a
craniectomy, directly onto the surface of the dura. The most common forms of these types of
models are lateral fluid percussion injury (LFPI) and controlled cortical impact (CCI)
[14,15]. LFPI induces injury by delivering a fluid pressure wave onto the exposed dura, and
as a result, inducing a focal cortical contusion at the desired level of severity, as well as
diffuse subcortical neuronal injury in the side ipsilateral to the injury [16,17]. CCI on the
other hand, utilizes a pneumatically-driven impactor on the exposed dura to produce a
precise injury, characterized by a focal cortical contusion. Both models replicate aspects of
human TBI pathology as well as injury-induced cognitive deficits.

A hallmark of all the aforementioned injury models is that they can be adjusted to produce
various levels of injury severity. While each of these models has certain strengths in
replicating aspects of TBI, they each have limitations in that they cannot recapitulate all
features of human TBI. Therefore, attention must be paid to the model selected in
experimental studies in order to understand which aspect of injury the authors are best trying
to replicate. Even with the individual limitations of animal models, they remain essential for
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studying the functional, biomechanical, cellular and molecular aspects of human TBI that
are difficult to address in the clinical realm. Though we have highlighted a few common
models here, please refer to additional reviews that further detail the diversity of animal
models [18-20¢].

Types of memory and TBI

Memory is a dynamic neural and cognitive progression characterized by three separate
processes: encoding, maintenance and retrieval [21]. Encoding is the transformation of an
experience into a discrete neural representation, known as the memory engram. Maintenance
refers to the endurance of the engram across time, and retrieval is the ability to voluntarily
reinstate the engram into the forefront of consciousness. It is widely accepted that the
hippocampus plays a major role in all three of these memory processes [22,23]. However, it
is unknown how, and whether, TBI disproportionately alters one of these processes as
compared to the others.

Previously, memory was categorized into short-term or long-term durations. However, this
distinction is presently laden with misunderstanding and controversy [24]. Current research
conceptualizes the time dependence of memory traces as working, episodic, and semantic
memory. Working memory is defined as the cognitive ability to transiently hold, process,
and manipulate information [25]. In regards to episodic and semantic memory, these types
are actually less dependent on time, but rooted more in the amount of personal experience
associated with the memory [26]. Episodic memory receives and stores information about
temporally-dated episodes or events, and temporal-spatial relations among these events (e.g.,
“l remember that last Tuesday at 3pm | was sitting at my desk, talking to my co-worker, who
was standing by the door”) [27]. Semantic memory, on the other hand, refers more to the
retrieval of memorized facts or events, and their meanings, that one might not necessarily
have had a personal experience with (e.g. reciting state capitals) [28]. Importantly, the
transition from episodic to semantic memory is governed by a hypothetical cognitive process
called consolidation. Studies in cognitive neuroscience have suggested that consolidation
mediates the transition of the engram from the medial temporal lobe to the cerebral cortex
[29]. Memory engrams that have presumably passed the consolidation phase and remain
constant over time are often referred to as “reference memory” in rodent behavioral tasks.

In TBI animal models, it is common to use different type of behavioral tasks to study
memory. The lack of standardized memory tasks in these studies makes it difficult to map
any one result to specific types (working, episodic, and semantic) or processes (encoding,
maintenance, and retrieval) of memory. To help clarify this, we have organized all of the
animal studies linking TBI and memory based on the type of memory tested (Table 1). These
studies are discussed in further detail below.

Working memory

In the TBI animal literature, working memory is tested primarily using three different tasks:
T-maze, radial arm maze, and a specific working memory protocol with the Morris water
maze (MWM) [30-32][32,31,30]. Each task consists of 3 trial phases: sample, delay, and
choice phase. In the sample phase, animals must learn the path to the maze endpoint,
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whether that endpoint be a food reward at the end of a T-maze arm, or escape to the hidden
platform. In the choice phase, depending on the learned rule, animals must choose the
appropriate arm for T-maze and radial maze, or reach the hidden platform location in the
MWM. A short delay with a duration lasting from seconds to minutes, separates the sample
and choice phases to probe memory recall.

Following (moderate, severe or mild) CCI, working memory dysfunction persists for at least
16 weeks post-injury as assessed with all three of the previously described working memory
tasks. [33-35]. After LFPI, working memory dysfunction follows a temporal evolution that
is dependent on injury severity. Acutely, after mild/moderate LFPI, animals demonstrated a
deficit in the first 7 post-injury days (PID) with zero time delay between sample and choice
phases, indicating a working memory deficit [36¢]. When animals were allowed to recover
for 15 to 60 PID, no deficits were seen when the delay time was less than 30 seconds,
however working memory performance was impaired with a delay time above or equal to 30
seconds [37-40]. Taken together, these data support the hypothesis that TBI diminishes the
ability to encode new information in the acute post-injury phase and to maintain information
chronically up to 60 days in rodents.

Spatial navigation memory

Spatial memory, a type of memory that records information about a subject’s environment
and navigation within that environment, has representations in both working and episodic
memory. In animal models, spatial memory is tested using different behavioral tasks. One of
the most common spatial learning and memory tasks in rodents is the MWM [32,41,42]. In
this task, animals are placed in a circular, cloudy water pool with a submerged platform. The
goal of the task is for the animal to learn the fixed location of the submerged platform using
visual cues located on the walls surrounding the pool, thereby developing a spatial map of
the maze. Other widely used spatial tasks include the Barnes and radial arm mazes, in which
animals have to find the escape hole after been placed either on an illuminated, circular
platform or in an 8-arm radial maze [43,44]. In addition, in each of these tasks, reference
memory can also be tested with the use of a probe trial. This trial is added after the testing
period to determine if the animal can remember the spatial path. The reference trial is often
referred to has an assessment of “long-term” memory, however as discussed above, the
probe trial actually is examining the consolidation process.

With respect to spatial episodic memory, which includes information regarding a specific
spatial episode/location, numerous experiments have been undertaken in order to test spatial
memory after TBI. Specifically, two types of memory have been tested: retrograde and
anterograde. In retrograde memory, animals are trained before injury and tested hours/days
after injury. This procedure tests the ability of TBI animals to recall previously learned
information. In the anterograde memory protocol, animals are robustly trained after injury
for many days and then tested.

Anterograde spatial memory

When tested in Barnes and Morris water mazes after moderate CClI, animals demonstrated a
significant impairment of spatial learning performance when examined at 10 PID and up to 1
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month after injury [45-48]. Specifically, TBI animals exhibited an increased escape latency
in the ability to reach the platform or the dark hole, and a more peripheral search pattern
compared to sham. Over time, TBI animal performance improved, reaching a performance
plateau that could be maintained up to 15 days from the last training day [47,49]. The CHI
experimental animal model, in a similar fashion, demonstrated an impaired spatial
performance up to 3 months post-injury [50].

Using the LFPI animal model, the severity of the injury causes different behavioral changes.
Specifically, a MWM study using two different levels of mild LFPI severity (1.0-1.5 atm)
demonstrated an increased latency to escape during the learning trials. However, in testing
trials, only the higher injury severity resulted in longer latency to reach the platform [51].
Moderate LFPI on the other hand was associated with significant impairments in spatial
learning performance up to 15 PID. These animals recover with no deficit observed at 3
months post-injury [52-54]. Of note, behavioral tasks examining spatial learning
performance with TBI animals has demonstrated that enhanced training leads to better
testing performance. Rigorous training results in TBI animals successfully completing the
task when compared to cohorts with nominal training [55]. Further experiments are needed
to specifically determine whether this effect is due to establishment of a neural spatial
representation of the maze or, a non-spatial strategy.

Retrograde spatial memory

Animals trained before undergoing LFPI (i.e., retrograde) demonstrated an impairment in
recalling the already learned information up to 14 PID [56]. A study with a radial arm maze
showed impairment in memory retention after mild and moderate TBI up to 25 PID
[35,37,56-59]. Interesting, no deficits were observed when given a brief reminding
procedural prompt [35,55]. These data suggest that information learned before TBI can be
recalled with longer recovery time and robust reminder training.

Episodic memory

After TBI, there are few experiments focused on examining episodic memory. In order to
test the time (or “when”) component of episodic memory, Gurkoff and colleagues used a
temporal order task [60¢]. Specifically, these animals were exposed to an odor sequence and
after an hour delay or longer, were tested for their ability to discriminate the initial odor
sequence versus a new sequence. Sham animals preferentially explored the initial odor,
whereas injured animals demonstrated no preference. In similar fashion when using a
different task, animals with mild CHI were unable to discriminate between odors up to 90
PID [61]. The propensity for control animals to prefer the initial sequence is analogous to
the primacy effect in humans, which describes the tendency to more easily remember the
first items presented in a sequence during a memory task [62,63].

To test the spatial (or “where”) component of episodic memory, topological tasks, such as
object place recognition tasks, are typically used [64]. Here, animals are tested for their
ability to distinguish when two objects have their locations transposed in space. Mild and
moderate LFPI demonstrated no significant impairments when a short delay time window is
used between familiarization and test phase [60¢]. However, at a longer time window (1
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hour), TBI animals were unable to discriminate that the object’s new location from the old
location (unpublished data).

Pathophysiology of memory impairment after TBI

Underlying the deficits seen in experimental models of TBI, are alterations in the
physiological circuitry of brain regions that confer the different types of memory we have
detailed in this review. Disruption to the hippocampus and cortex—regions critical to
memory function—are pathological features of both human and animal models of TBI
[5,6,65]. The hippocampus is a key part of a large network of brain areas that interact to
store and retrieve recent events, and guide memaory-driven actions. It receives inputs from
different cortical regions which are essential for episodic memory. Specifically, the
hippocampus receives spatial and non-spatial information about the environment via
projections from the medial entorhinal cortex and lateral entorhinal cortex, respectively.
Interactions between the hippocampus and the prefrontal cortex are also involved in
encoding, processing, and performance of working memory.

In order to review the current knowledge of TBI-induced pathophysiology within the
hippocampus and cortex, we have chosen to view these structures and their sub-regions, with
a “circuit-level” perspective. Therefore, we have narrowed our definition of pathophysiology
to include functional changes in neuronal output (i.e., how likely it is to fire an action
potential), examined by electrophysiological techniques. Additionally, we recognize that
even though the hippocampus and prefrontal cortex have been physiologically well studied
in the TBI literature, other brain regions that are important for memory, such as upstream
cortical regions (e.g., entorhinal cortex) have not been as well characterized.

Hippocampus

As described earlier, experimental models of TBI show deficits in episodic memory.
Physiological disruption of hippocampal circuitry, comprised of the dentate gyrus, areas
CA3 and CA1, are thought to be largely responsible for disruption of episodic memory after
TBI, including spatial memory [66-71].

Dentate gyrus

The dentate gyrus (DG) is considered an important region in hippocampal memory
processing. Specifically, it is involved in pattern separation of cortical inputs [72-77].
Consequently, the DG is a crucial regulator of incoming excitability to the hippocampus, and
acts as a filter or gatekeeper of cortical input to the hippocampus [78]. The filtering function
of the DG is conferred by the low excitability of its principal cell type, the granule cell.
Normally, granule cells have an extremely low propensity to fire action potentials due to a
combination of their intrinsic properties and strong GABApergic inhibition by diverse
interneuron populations located around the granule cell layer and in the hilus [79-83].
However, after TBI, the DG becomes hyperexcitable, thus disrupting its filtering capabilities
[84-86].

TBI has been shown to alter inhibitory transmission onto granule cells, comprised of phasic
and tonic components. Phasic, synaptic GABAergic transmission onto the granule cells is

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2018 March 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Paterno et al.

Area CA3

Area CAl1

Page 7

diminished by TBI [84,85,87]. One month after LFPI phasic inhibition recovers; however
after CCl, inhibition remains diminished for several months post-injury [88,89].
Compromised phasic inhibition is associated with reduced expression of the potassium-
chloride membrane transporter KCC2, thus decreasing the driving force of chloride through
GABA receptors [90]. Therefore, a reduction in phasic GABAergic inhibition appears to
be present across TBI models, but the duration of these changes varies with injury severity.

In contrast, tonic inhibition is altered in opposite directions depending on the cell type. For
example, tonic inhibition is enhanced onto granule cells, while it is diminished onto a
subpopulation of granule cells, known as semilunar granule cells [91-95]. Therefore,
alteration in inhibition leads to a complicated dysfunction of the DG.

In order to understand alterations in granule cell firing, it is imperative to examine
alterations in DG interneurons. Of the diverse GABAergic interneuron subtypes, only
somatostatin-positive (SOM) interneurons, have been examined physiologically after TBI. A
study by Hunt and colleagues demonstrated that SOM interneurons receive more
glutamatergic synaptic input after injury, and fire more action potentials [89]. In addition,
glutamatergic mossy cells have been shown to fire more action potentials, resulting in
delayed excitatory postsynaptic currents in granule cells [87]. Increased mossy cell firing is
due to a shift in enhanced afferent excitatory input as well as homeostatic compensation of
intrinsic properties after TBI [96].

In summary, the current literature suggests that posttraumatic DG hyperexcitability is
primarily due to changes in GABAergic and glutamatergic synaptic transmission within
this sub-region. Future studies are needed to explore the functionality of the other DG
interneuron types.

Area CA3 also plays an important role in episodic memory encoding and retrieval [72—
74,97,98]. Despite the importance of this circuit in memory processing, few
electrophysiological studies have examined area CA3 after TBI. It is known however, that
area CA3 neurons are vulnerable to death after moderate TBI [86,99-102]. One study using
a CHI model showed no acute change in the intrinsic membrane properties of CA3
pyramidal neurons acutely after injury, but was not able to examine later time points because
cell survival did not exceed 3 days after injury [103].

In addition to injury-induced cell loss, CA3 pyramidal cells may also be vulnerable to
oxidative damage from /n vitroslice preparation, if taken from mature, adult tissue [104].
Therefore, the high susceptibility to both intended and unintended tissue injury, may explain
why so few studies have focused on area CA3 after experimental TBI.

Area CA1 has a distinct role in the encoding and retrieval of episodic memories [105-108].
In contrast to the DG’s hyperexcitable response to injury, area CA1 circuit activity becomes
hypoexcitable. One week after FPI, CA1 has demonstrated a decreased net response to
afferent fiber stimulation, accompanied by a higher threshold to initiate population spikes
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[84,109]. Therefore, the output of the CA1 circuit, mediated by the firing of CA1 pyramidal
neurons, is diminished after injury.

The hypoexcitable state of the CAL1 circuit can partly be explained by changes in synaptic
inputs onto pyramidal cells. A study utilizing a model of lateral cortical contusion injury
showed a reduction in fiber volley amplitude of afferent Schaeffer collaterals two days after
injury [110]. This same study also found that at 7 PID, fiber volley amplitudes were
restored, yet synaptic strength remained depressed. One week following FPI, postsynaptic
responses to evoked glutamatergic events from both AMPA- and NMDA-receptors have also
been shown to be diminished [111]. This indicates that while glutamatergic afferent fibers
can re-innervate their targets, the postsynaptic machinery may still be disrupted.

In addition to decreased glutamatergic excitation, pyramidal cells also receive increased
GABA-receptor mediated inhibition from local interneurons. A study from our laboratory
using voltage-sensitive dye imaging revealed hyperpolarization in stratum oriens of area
CAL after LFPI, due to enhanced GABAergic inhibition from cannabinoid-sensitive
cholecystokinin (CCK) interneurons [112]. Therefore, imbalances in excitatory and
inhibitory synaptic inputs appear to underlie diminished CA1 circuit efficacy.

There are other studies from the TBI literature that instead report hyperexcitability in area
CAL after TBI. Two days after moderate LFPI, pyramidal cells showed hyperexcitability
accompanied by transiently enhanced afferent input [113,114]. One study using a CHI
model of injury, observed more frequent spontaneous action potentials in CA1 pyramidal
cells [103]. Additionally, one week following CCI, CA1 pyramidal cells were shown to
receive less inhibitory currents, as well as a selective loss of GABAaergic interneurons in
stratum pyramidale [115]. Taken altogether, these differential results in CA1 may reflect
experimental variations such as time points examined after injury, injury model, or injury
severity, as well as slice preparation. Much is left to future studies to examine the effects of
these factors on CA1 circuit function.

After TBI, only a few studies have attempted to correlate /n vivo hippocampal activity with
memory-associated behavior. Fedor and colleagues measured the correlation between
hippocampal theta rhythm—a narrow neuronal oscillation associated with memory
processing—and spatial memory performance in a Barnes Maze after moderate FPI [54].
Rats that had poor spatial strategies in the maze demonstrated a decrease in theta activity.
Another study measuring single-neuron spiking activity found that FPI animals had
decreased bursting activity in place cells, which was also associated with poor memory
performance in the T-maze [116]. In contrast, in a mild FPI model, a study showed only a
decrease in broadband activity (a measure of the overall multi-unit activity) and not theta
oscillations [117] supporting the hypothesis that TBI severity leads to different pathologies.

Prefrontal cortex

The prefrontal cortex (PFC), a cortical region heavily connected to the hippocampus, is
critically involved in working memory. Recently, we demonstrated that an impairment of
working memory in a T-maze task is accompanied by reduced excitability in the medial PFC
[36¢]. One week after LFPI, layer I1/111 neurons received an imbalance of more frequent
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spontaneous and miniature EPSCs and smaller amplitude IPSCs. Changes in synaptic inputs
were additionally accompanied by an increase in action potential threshold, as well as a
decrease in principal neuron firing rate. Downstream in layer V of medial PFC, pyramidal
neurons did not experience a change in afferent synaptic inputs, but rather had shifted
intrinsic membrane properties, such as a decrease in input resistance. In contrast another
study, using an acute slice injury model, reported increased excitatory, and decreased
inhibitory, synaptic currents onto layer V pyramidal cells [118]. These results demonstrate
that a combination of layer-specific synaptic and intrinsic alterations occur in the medial
prefrontal cortex after injury.

In cortical slices, it has been demonstrated that there can be differential effects on the
intrinsic properties of pyramidal neurons and their firing properties. Both axotomized (i.e.,
severed) and intact cortical pyramidal neurons maintain normal membrane properties, yet
the axotomized cells have a lower propensity to fire action potentials compared with intact
neurons [119]. An /n vitro model of TBI mechanical with cultured cortical neurons, resulted
in the membrane composition of glutamatergic receptors. That is, after stretch injury,
calcium-permeable AMPA receptors were upregulated in plasma membranes [120,121].

In relation to brain macrocircuitry, the prefrontal cortex is involved in rhythmic neuronal
oscillations, such as the thalamocortical relay. While no in vivo study has been conducted, /n
vitro brain slices reveal a significant decline in the presence of these oscillations after FPI
[122]. In summary, there are significant functional shifts in the PFC circuit that diminish
large-scale brain activity patterns and correlate with working memory impairments.

Potential therapeutic strategies to improve memory dysfunction after TBI

To date, the promising results from animal studies of potential TBI therapies (calcium-
channel antagonist, steroids, glutamate agonists, NMDA-receptor antagonists, oxygen free-
radical scavengers, immune system modulation, statins, progesterone, hypothermia, etc.)
have not been translated into successful phase 3 clinical trials. The reasons for the failure to
translate bench research to bedside clinical practice are multi-fold and a recent review
authored by Chakraborty et al 2016 analyzes in detail potential different causes of this
failure [123][123]. However, even with unsuccessful clinical trial results, we believe that
some of those therapies can be useful in TBI treatment if they would be designed to guide
the pathophysiology. Below, we will focus on new potential therapies that have
demonstrated memory improvement, but have not been tested yet in the clinical setting with
a clinical trial. All studies are described in the text and summarized in Table 2.

Deep brain stimulation

Electrical stimulus therapy has been used successfully to treat motor dysfunction in
Parkinson disease, however only few studies tested this treatment in TBI. Only in the last
few years, has deep brain stimulation been tested in TBI animal models with promising
results. The basis of deep brain stimulation therapy is to improve abnormal synchrony
between different brain regions [124]. Specifically, it was found that stimulation given
within the theta frequency band to the medial septal nucleus transiently increased theta
activity in the hippocampus and led to improved spatial search pattern and decreased escape
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latency during Barnes Maze performance 5-7 PID after moderate LFPI [125]. Another deep
brain stimulation study showed an increased exploration time when animals were exposed to
new objects [126]. Furthermore, theta stimulation of the midbrain medial raphe and dorsal
raphe showed a decreased learning peak during reference memory acquisition, and theta-
burst stimulation of the fornix demonstrated improved working memory performance
[40,127]. Clinically, there have been a few studies where stimulation electrodes have been
successfully implanted in severe TBI patients chronically [128-132].

Neural Stem Cell Transplantation

In the last decade, the ability to repair and regenerate the injured brain has been used as
potential therapeutic target for TBI. Different types of cells have been used for neural
transplantation in TBI animal models. Interestingly, embryonic stem cell transplantation
successfully improved cognitive dysfunction [133-135]. However, some limitations on this
technique have been raised due to a limited neural long-term survival and increased tumor
risk [136]. Few studies investigated adult neural stem cell implantation showing interesting
results but none of them tested memory performance [137,138]. Instead, as alternative
strategy with less side effects, bone marrow stromal cells have shown therapeutic promise.
This technique resulted in improved cognitive dysfunction, a decreased brain lesion volume
and enhanced focal brain angiogenesis [139,140]. Despite the encouraging results of the
neuronal transplantation from the animal setting, the clinical translation is still far off. Some
issues such as generating sufficient neurons able to integrate in the existing neural network,
controlling the hostile environment due to the injury, need to be solved before treating
human brain to obtain a successful outcome.

Dietary therapy

Due to altered excitatory/inhibitory (E/I) balance caused by TBI, our laboratory sought to
develop a dietary therapy based on precursors of the excitatory neurotransmitter glutamate.
The inhibitory neurotransmitter GABA is synthesized from glutamate [141]. Branched chain
amino acids (BCAASs) are key amino acids involved in de novo glutamate synthesis [142].
We have found that dietary BCAA therapy restores limbic E/I balance and ameliorates
hippocampal-dependent contextual fear memory impairment in a mild/moderate FPI mouse
model [143]. Furthermore, we have demonstrated that BCAA therapy mitigates injury-
induced inability to maintain wakefulness [144s¢]. Specifically, BCAA therapy was shown to
restore brain EEG activity during wake and sleep cycles and increases hypothalamic orexin
neuronal firing, which are important in mediating wakefulness. We are currently
investigating the efficacy of our dietary therapy on altered episodic-like and working
memory tasks and the electrical brainwave activity that sub-serves these functions.

Environmental enrichment

As a non-invasive therapeutic approach, environmental enrichment has been demonstrated to
robustly attenuate TBI-induced memory impairments [145-149]. Environmental enrichment
is a rodent housing condition which combines complex motor, sensory, and social stimuli
within a large living space [150]. The most beneficial effects of this treatment have been
seen when rodents are introduced to an enriched environment immediately after TBI and
housed continuously for the duration of testing [151,152]. As a continuous-exposure model
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may not translate effectively in a clinical setting, other studies have demonstrated that
environmental enrichment can still have cognitive benefits when delayed after injury, and
also in abbreviated daily time periods [153,154]. Future studies optimizing the temporal
effects of environmental enrichment will readily facilitate its therapeutic efficacy in human
patients.

Conclusion

In consideration of the information summarized in this review, it is our opinion that the
success of future TBI clinical trials will depend on a preclinical approach that incorporates
both memory behavior and its underlying neural circuitry. While the current state of the
literature reflects overall deficits in certain types of memory, future behavioral studies
should expand on how the components of memory—encoding, maintenance, and retrieval—
are affected after TBI. Specifically, behavioral assessment of these memory components will
identify where TBI disrupts memory function.

To better understand alterations to memory components observed behaviorally, a circuit-
level physiological approach can be of major benefit. By examining cellular and synaptic
changes in the hippocampus and cortex, we can understand how behavioral memory deficits
occur. New technologies such as optogentics or chemogenetics, could be utilized to
substantiate the involvement of physiological mechanisms in behavioral outcome. In
conclusion, a combination of behavior and circuit physiology in preclinical studies will aide
in the discovery of specific therapeutic targets for clinical translation, and lead to meaningful
recovery of memory function in TBI patients.
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