
REVIEWS

Models for predicting the evolution of influenza to inform vaccine
strain selection

Joseph K. Agora and Osman Y. €Ozaltınb

aOperations Research, North Carolina State University, Raleigh, NC, USA; bEdward P. Fitts Department of Industrial and Systems Engineering,
North Carolina State University, Raleigh, NC, USA

ARTICLE HISTORY
Received 6 September 2017
Revised 6 December 2017
Accepted 28 December 2017

ABSTRACT
Influenza vaccine composition is reviewed before every flu season because influenza viruses constantly
evolve through antigenic changes. To inform vaccine updates, laboratories that contribute to the World
Health Organization Global Influenza Surveillance and Response System monitor the antigenic
phenotypes of circulating viruses all year round. Vaccine strains are selected in anticipation of the
upcoming influenza season to allow adequate time for production. A mismatch between vaccine strains
and predominant strains in the flu season can significantly reduce vaccine effectiveness. Models for
predicting the evolution of influenza based on the relationship of genetic mutations and antigenic
characteristics of circulating viruses may inform vaccine strain selection decisions. We review the
literature on state-of-the-art tools and prediction methodologies utilized in modeling the evolution of
influenza to inform vaccine strain selection. We then discuss areas that are open for improvement and
need further research.
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Introduction

Influenza (flu) is a highly contagious, acute, respiratory viral
disease. Seasonal flu epidemics impact 5–15% of the world’s
population, resulting in 3–5 million cases of severe illnesses
and up to 500,000 deaths annually.1 There are three serotypes
of the flu virus: influenza A, B, and C. Influenza A and B viruses
are mainly responsible for seasonal flu epidemics, whereas
influenza C viruses are less common and usually cause mild
upper respiratory illnesses.2 Influenza A viruses are subtyped
on the basis of their two surface proteins: hemagglutinin
and neuraminidase. Influenza A subtypes and influenza B
viruses are further classified into strains based on their anti-
genic properties.

The first line of defense against seasonal epidemics is the flu
shot, which contains two strains of the A virus (H1N1 and
H3N2) and one or two strains of the B virus. Since 1970s, influ-
enza B viruses have diverged into two antigenically distinct
lineages.3 Therefore, in addition to the trivalent vaccine, manu-
facturers also produce the quadrivalent vaccine with two influ-
enza B strains to cover both lineages.4 Most individuals have
some level of prior immunity. However, new strains with muta-
tions in their epitopes (protein regions that are recognized by
human antibodies) frequently arise. These new strains have a
fitness advantage over existing dominant strains because they
can more effectively escape from host immunity.5 This continu-
ous process of evolution – also known as antigenic drift –
results in rapid turnover of the viral population.

The flu shot is unique in that it is annually reformulated and
prepared at least six months in advance of the upcoming flu
season due to rapid emergence of new strains and the time

consuming nature of vaccine production (see Fig. 1).6 In cur-
rent practice, the flu shot compositions of the Northern and
Southern Hemispheres are reviewed and updated as necessary
by the World Health Organization (WHO) through a global
surveillance and response system.7 Besides surveillance on
emerging virus variants, antigenic characterization of circulat-
ing viruses by standard ferret antisera is the main determinant
in vaccine strain selection. Lesser determinants include genetic
variations, prevalence rates, and geographic distributions of
virus variants.8 The accurate prediction of emerging strains,
however, is a complex problem because of the stochastic nature
of the antigenic drift process. Predicting the fate of strains cur-
rently circulating in the population is also not easy for two rea-
sons. First, multiple strains carrying different combinations of
mutations co-circulate and to some extent compete with one
another for susceptible hosts.5 Second, antigenic characteriza-
tion by ferret antisera is different from that by human post-vac-
cination antisera because humans and ferrets have different
immune systems as well as very different prior exposure histo-
ries to influenza virus.8

Seasonal influenza vaccine effectiveness mainly depends on
how well vaccine strains represent prevalent viruses circulating
in the community. The vaccine effectiveness estimates for years
without antigenic mismatch between the flu shot strains and
circulating strains ranges between 49% and 60%. As recently as
the 2014–2015 flu season, however, a poor match between the
selected A (H3N2) vaccine strain and the ones that predomi-
nantly circulated in that season reduced the vaccine effective-
ness to 19% in the US.9 Note that the vaccine effectiveness data
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only becomes available towards the end of the flu season. For
instance, the WHO made the decision on the 2014–2015
Northern Hemisphere vaccine composition in Feb 2014, while
vaccine effectiveness data came out in early 2015. Thus, vaccine
effectiveness provides only a retrospective review on seasonal
vaccine performance, but never plays a role in the selection
process for vaccine strains.

A serologic assay, i.e., hemagglutinin inhibition (HI), is used
for antigenic characterization of the circulating strains in the
flu shot design process.2 The HI assay, however, does not
explain the association between antigenic difference and genetic
mutations. To accomplish this and model the evolution of
influenza, genetic data of previous viruses should be analyzed.
The WHO has accumulated a multitude of data for this pur-
pose. Since this data can now be collected rapidly and economi-
cally, antigenic characterization of the influenza virus based on
its genetic material can enable early detection of emerging
strains and increase influenza surveillance efficiency, thus
enhancing influenza vaccine strain selection.10

Our goal in this paper is to review the current tools and
methods employed in predicting the evolution of influenza
which might aid when determining the composition of the sea-
sonal influenza vaccine. In Section2, we discuss the relevant lit-
erature about tools developed for visualizing the evolution of
influenza. In Section3, we discuss the models proposed for pre-
dicting the evolution of influenza. Finally, in Section 4, we pro-
vide insights and identify areas in modeling the evolution of
influenza that are open for improvement.

Tools for visualizing the evolution of influenza

In any given year, the particular choice of vaccine strain plays a
major role in determining vaccine efficacy and so it is of critical

importance to develop tools to analyze the ongoing evolution
of influenza.12 A widely used tool to visualize the evolution of
influenza is called a phylogenetic tree or evolutionary tree. In
general, these diagrams show inferred evolutionary relation-
ships among biological entities based on similarities and differ-
ences in their genetic characteristics. Every leaf node in the tree
represents a species, each edge denotes a relationship between
two neighboring species, and the length of an edge indicates
the evolutionary distance between species.13

There have been many tools developed to generate and ana-
lyze phylogenetic trees,14-19 With respect to influenza, Neher
and Bedford12 designed an online visualization tool entitled
nextflu that displays a phylogenetic tree of the most recent
influenza virus sequences (see Fig. 2). This tool allows users to
visualize many genetic and epidemiological features of influ-
enza strains and aids in the current vaccine strain selection pro-
cess. Bedford and Neher20 demonstrated the use of nextflu to
analyze seasonal influenza circulation patterns and provided
projections for the 2017–2018 flu season. In a similar vein,
Steinbr€uck and McHardy21 introduced allele dynamics plots
(AD plots) as a method for visualizing the evolutionary dynam-
ics of a gene. The AD plot of a population-level sequence sam-
ple combines information from phylogenetic inference and
ancestral character state reconstruction to identify the alleles
that might have selective advantage. Using this tool, Steinbr€uck
and McHardy21 identified emerging strains of influenza A
(H3N2) and 2009 A (H1N1) pdm viruses.

Another method to visualize the evolution of influenza is
through antigenic cartography or antigenic maps.22 Antigenic
cartography is currently used to analyze the global data from
the WHO influenza surveillance network as part of the influ-
enza vaccine strain selection process (see Fig. 3). Antigenic
maps differ from genetic trees in that they are based on

Figure 1. Influenza vaccine manufacturing process and timeline.11 It takes at least six months for the first supplies of approved vaccine to become available once the vac-
cine composition is decided. This lead time is needed because the vaccine production process involves many sequential steps, and these steps are strictly controlled by
government health agencies.
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serology data that reflect the antigenic properties of pathogens
(in this case as revealed by HI assay based on ferret antisera).
These maps can reveal long-term trends in the antigenic space
leading to improved understanding of genetic and antigenic
evolution.22

Antigenic characterization based on the HI assay is a routine
procedure for influenza vaccine strain selection. However, the

HI assay only reveals the cross reaction among test strains
(antigens) and reference antisera (antibodies). Furthermore,
antigenic characterization is usually based on multiple HI
assays performed by different WHO collaborating centers. The
combination of these datasets results in an incomplete HI
matrix with many unobserved entries. Cai et al.23 developed a
computational tool entitled AntigenMap for antigenic cartog-
raphy construction from this incomplete matrix. Their
approach first reconstructs the HI tables using matrix comple-
tion techniques, and then generates the two-dimensional anti-
genic cartography using multidimensional scaling. By applying
this method to HI datasets containing influenza A (H3N2)
viruses isolated between 1968 and 2003, Cai et al.23 identified
eleven clusters of antigenic variants, representing all major
antigenic drift events during these 36 years.

Predicting the evolution of influenza

Through the use of tools mapping the evolution of influenza,
such as phylogenetic trees and antigenic cartographs, statistical
learning models have been proposed to predict the next evolu-
tionary step of influenza. These models aim to combine serol-
ogy data and genetic mutation information to explain antigenic
difference. We review some of the most recent studies in the lit-
erature that propose methods to inform strain selection for the
seasonal influenza vaccine.

He and Deem25 constructed protein distance maps for the
HA1 surface glycoprotein of the influenza 2009 A (H1N1) pdm
virus. In particular, they applied multi-dimensional scaling26 to
project the 329-residue long amino acid sequence of the HA1
protein onto two dimensions. This mapping technique was also

Figure 2. nextFlu display of influenza phylogenetic tree.12

Figure 3. Antigenic cartography of circulating A (H3N2) viruses considered by the
WHO in the 2017–18 Northern hemisphere influenza vaccine strain selection meet-
ing.24 Virus clades are color-coded. There is no significant antigenic difference
between the 3C2a clade in the brighter red color and the 3C2a1 clade in the darker
red color as they cluster. The Hong Kong/4801/2014-egg virus is on the edge of
that cluster, and the cluster is becoming more distinguishable from the earlier
3C3a viruses represented by A/Switzerland/9715293/2013 strain, which was a for-
mer vaccine strain. The WHO recommended the Hong Kong/4801/2014-like virus
for the 2017–18 influenza vaccine. (No change from 2016–17 recommendation).
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used by Lapedes and Farber27 to project HI assay data onto
lower dimensions. He and Deem25 then used kernel density
estimation to detect the incipient clusters on the protein dis-
tance map.

Steinbr€uck and McHardy28 used nonnegative least-squares
optimization to map pairwise antigenic distances onto the
branches of a phylogenetic tree. This resulted in the inference
of antigenic weights for the individual branches of the tree and
allowed antigenic weights to be determined for sets of coding
changes on the surface glycoprotein hemagglutinin (HA).
These weights contribute to identifying the antigenic impact of
HA alleles. Steinbr€uck et al.29 combined phylogenetic trees and
AD plots to identify the HA alleles that are most likely to
become predominant in the future seasons. They demonstrated
how to predict the evolution of the influenza A (H3N2) virus
using genetic and antigenic data from isolates sampled between
2002 and 2007. In this retrospective study, they identified the
most suitable vaccine strain for the A (H3N2) virus by detect-
ing antigenically novel HA alleles.

Neher et al.30 predicted the fitness of a virus from its
genetic information. In their method, first, a genealogical
tree for the virus population is constructed. The next step is
based on the intuition that as long as differences in fitness
values arise from the accumulation of multiple mutations
(i.e., antigenic drifts), the branching structure of the genea-
logical tree should exhibit an observable imprint of the nat-
ural selection process as it unfolds. Using this insight and
methods borrowed from statistical physics, Neher et al.30

analyzed the shape and branching pattern of the tree to
identify the fitness of different strains relative to each other.
They tested the proposed method using historical influenza
A virus data. In 16 of the 19 years studied, the genealogical
tree approach made meaningful predictions about which
viruses were most likely to give rise to future epidemics.

Neher et al.31 proposed a phylogenetic tree-based model and
a substitution model to explain antigenic difference. The tree
based model describes the HI titer between a test and a refer-
ence influenza strain as a sum of antigenic changes along the
path connecting them in a phylogenetic tree. The substitution
model explains HI titers as a sum of contributions associated
with amino acid substitutions between the reference and test
viruses. Through numerical experiments using data from iso-
lates sampled between 2002 and 2015, Neher et al.31 demon-
strated that both the tree based model and the substitution
model perform similarly in terms of prediction accuracy.

ºuksza and L€assig32 developed a fitness model to predict
the evolution of influenza by identifying changes in the
frequencies of strain groups referred to as clades. They con-
sidered two major groups of mutations at the epitope and
non-epitope regions of the virus’ surface protein. Mutations
at epitopes are likely to be beneficial to the virus, because they
alter the structural features targeted by host antibodies. Thus,
a strain can have better fitness than its competitors by being
antigenically distinct. In contrast, mutations outside epitope
regions are often deleterious because they reduce protein sta-
bility or upset evolutionarily conserved viral functions ºuksza
and L€assig32 used their model to predict frequencies of clades
one year in the future with considerable accuracy. Their
observations of how high and low fitness clades evolve

provide new perspectives on the evolution of influenza and
can potentially contribute to the vaccine selection process.

Wilson and Cox33 suggested that a drift variant of epidemio-
logic importance usually contains at least four amino acid sub-
stitutions located at more than two of the epitope regions on
the HA1 polypeptide. Lee and Chen34 showed that the number
of amino acid changes in the 131 amino acid positions around
the epitope sites had the highest correlation with the antigenic
distance and the best performance for predicting antigenic dif-
ference. Presumably not all 131 amino acid positions around
the epitope regions play a critical role in determining antigenic-
ity, and thus immunodominant positions (i.e., major antibody-
binding sites) should be identified using bioinformatics
models.35 Liao et al.36 explored the use of scoring methods,
such as the construction of similarity classes and substitution
matrices, to explain the antigenic differences of viruses’ using
genetic information. These methods considered polarity, charge
and molecular structure of the amino acids. Liao et al.36

employed statistical machine learning methods including itera-
tive filtering, multiple and logistic regression, and support vec-
tor machines to quantify the antigenic effect of amino acid
substitutions and identify immunodominant positions on the
HA1 polypeptide. Similarly, Sun et al.10 utilized bootstrapped
ridge regression and antigenic mapping to quantify antigenic
difference between influenza strains based on the HA1
sequence data. Recently, Lee et al.37 developed a general pur-
pose computational framework called DAMIP to discover gene
signatures that can predict vaccine immunity and efficacy.

The literature on predicting the evolution of influenza is rich
and fast-growing. Seasons characterized by low vaccine effec-
tiveness due to a mismatch between the vaccine strains and the
circulating strains, such as the 2014–15 influenza season,6 high-
light the need to use advanced tools and innovative approaches
to improve the accuracy of the strain selection decisions. There
is room for development in this field as we discuss in the next
section.

Discussion

We have presented a detailed review of the most recent and
influential studies developing innovative methods for pre-
dicting the long-term evolution of influenza. The overarch-
ing goal of these studies is to inform and improve strain
selection for the seasonal influenza vaccine. While much
progress has been made, there are several areas that are still
open for improvement.

When building statistical models for predicting the evolu-
tion of influenza, out-of-sample performance is assessed to pre-
vent overfitting. However, the number of candidate model
features is usually large. For example, in an amino acid substi-
tution model,31,34 there are 329 amino acid residues on the
HA1 polypeptide, and mutation in any one of these residues
can potentially cause antigenic difference. Selecting a minimal
set of model features (e.g., amino acid residues) to ensure ade-
quate out-of-sample performance is a formidable task that can
be addressed via feature selection methods developed in the
machine learning literature.38–40

Many of the models in the literature assume rather simple
relationships between genetic differences of influenza strains
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(e.g., the number of amino acid substitutions around the epi-
tope regions) and the extent of cross-immunity that they can
induce in a host.5 However, antigenic analysis has shown that
only certain amino-acid changes near the epitope regions
cause antigenic difference.22 Current efforts to predict the
evolution of influenza try to map the serology data onto
genetic sequences and phylogenetic trees.31,32,34,37 Occasion-
ally, new strains, which are antigenically different from the
circulating dominant strains, still fail to spread in the popula-
tion although they have a higher probability of fixation.31

Therefore, incorporating serology data to consider empirically
informed associations between viral genotypes and their anti-
genic characteristics in addition to genetic mutations may
improve the predictive power of statistical models in detecting
emerging strains.

Another direction that is open for improvement pertains to
the generation of serology data. Currently, the ferret post-infec-
tion antisera are used in antigenic characterization for influenza
surveillance because ferrets have human-like respiratory
tracts.41,42 Despite this similarity, however, the process of ferret
immunity is different from that of human.8 In particular, the
human and ferret antibodies elicited via the same process may
target different epitopes of the influenza HA.43 Furthermore,
ferrets with no prior influenza infections are used to produce
reference antisera. In contrast, human immunity is largely
shaped by previous influenza infection and/or vaccination his-
tory.44 For example, many recent studies have shown that peo-
ple with repeated annual vaccination had lower vaccine
effectiveness than those who were not vaccinated in the prior
season, suggesting that immunological education and pre-exist-
ing immunity affects seasonal vaccine effectiveness.45-48 Xie
et al.8 have clearly demonstrated that human post-vaccination
antisera responded differently than ferret post-infection anti-
sera to H3 viruses. Therefore, more emphasis should be placed
on human serologic testing in assessing vaccination-induced
cross reactivity to improve influenza vaccine strain selection.

In summary, the seasonal influenza is a serious public health
concern, causing significant human suffering and economic
burden. Due to dynamic evolution of the virus, the influenza
vaccine composition is reviewed annually by the WHO to
ensure vaccine effectiveness. The overarching goal of this
review process is to predict which strains will provide a thor-
ough coverage as vaccine strains against prevalent circulating
strains during the upcoming flu season. Predicting virus evolu-
tion is an essential interim step towards achieving this goal
because once new variants are predicted to emerge, their repre-
sentative strains will be considered as candidate vaccine strains.
If an antigenic mismatch happens to occur between the vaccine
strains and the ones dominantly circulating in the population
during the flu season, then a vaccine with significantly reduced
effectiveness is still distributed because the vaccine production
is extremely time consuming. We have discussed tools and
methods used in the development of prediction models to aid
influenza vaccine strain selection. There are many opportuni-
ties for new innovative directions or for improvement of cur-
rent methodologies. Such developments can potentially lead to
more effective prevention of influenza worldwide saving lives,
time and money.
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