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Abstract

Background: Identification of genes or fundamental biological pathways that regulate aging phenotypes and longevity could lead to possible 
interventions to increase healthy longevity.
Methods: Using data from the Long Life Family Study, we performed genomewide association analyses on an endophenotype construct, 
LF1, comprising a linear combination of traits across health domains. LF1 primarily reflected traits from the pulmonary and physical activity 
domains.
Results: We detected a significant association between LF1 and a locus on chromosome 10p15 (p-value = 4.65 × 10−8) and suggestive evidence 
(p-value < 5 × 10−6) for association on chromosomes 1, 2, 8, 12, 15, 18, and 22. Using data from the Health, Aging and Body Composition 
Study, we subsequently replicated the association for the 1p13 region near the NBPF6 locus (p-value = 3.65 × 10−4).
Conclusions: Our analyses indicate that loci influencing a healthy aging endophenotype construct predominantly comprised of pulmonary and 
physical function domains may be located on chromosome 1p13 near the NBPF6 locus. Further investigation of this possible locus and other 
suggestive loci may reveal novel biological pathways that influence healthy aging.

Keywords: Respiratory function—Motor activity—Mortality—Human genetics—Longevity

Identification of genes or biological pathways that influence longev-
ity and healthy aging could enable the development of interventions 
that will increase functional longevity, and thus decrease some of 
the age-related burden of disease. Studies in animal models, such as 
the nematode Caenorhabditis elegans, have revealed several genes 
that have dramatic effects on longevity (1). Additional genes with 
strong effects on longevity have been reported in yeast, flies, and 
mice (2–4). Although longevity is known to be heritable in humans 
(5), identification of specific genes that influence longevity in humans 
has been challenging (6). Numerous linkage, candidate gene, and 

genomewide association (GWA) studies have been performed for 
longevity in humans, but except for APOE, FOXO3, and a locus 
on chromosome 3, the results of these studies have been inconsist-
ent (reviewed by Brooks-Wilson (6)). A GWA study of longevity in 
CHARGE Consortium including 6,036 cases (≥90 years) and 3,757 
controls that died between ages 55 and 80 years also confirmed the 
association of FOXO3 and APOE with longevity (7). Meta-analysis 
of longevity GWA studies of long-lived individuals of European 
descent identified a novel locus on chromosome 5q33.3 and also 
replicated the association of TOMM40/APOE/APOC1 locus (8).  
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Recently, Flachsbart and colleagues (9) reported association of 
a novel longevity locus on chromosome 5q31.1. One factor that 
may be limiting new discovery is the heterogeneity of longevity. 
Potentially, healthy aging traits using disease free survival or com-
binations of health measures could be more specifically associated 
with genetic factors.

We previously developed a novel approach to define healthy 
aging phenotypes in the Long Life Family Study (LLFS) (10). Using 
factor analysis, five heritable traits or endophenotypes comprised of 
linear combinations of 28 traits across five health domains: cogni-
tion, cardiovascular, metabolic, physical activity, and pulmonary 
were established (10). Of these five heritable endophenotypes, the 
most dominant endophenotype, LF1, primarily reflected the physi-
cal activity and pulmonary domains. In addition, LF1 was indepen-
dently and significantly associated with lower mortality (p-value < 
10−6) and also attenuated 24.1% of the effect of increased age on 
mortality in LLFS (11). We subsequently validated this approach in 
a second cohort, the Health, Aging and Body Composition cohort 
(Health ABC). The most dominant endophenotype in the Health 
ABC cohort, HF1, predominantly reflected the physical activity and 
pulmonary domains, was significantly and independently associated 
with decreased mortality (p-value < 10−10), and attenuated the effect 
of age by 18.9% (11). Thus, this endophenotype construct identi-
fied a latent, heritable, healthy aging trait related to longevity. In 
the current study, we report the results of GWA analyses of the LF1 
endophenotype construct in LLFS, and subsequent replication in the 
Health ABC cohort with the HF1 endophenotype construct.

Methods

Study Design and Subjects
LLFS is a family-based cohort recruited by four study sites across 
the United States and Denmark. Family ascertainment has been 
described previously (12). Briefly, sibships were selected based on the 
exceptionality of the sibship’s survival into old age using a Family 
Longevity Selection Score (12). In addition, we recruited the off-
spring of each member of the long-lived sibship, and the offspring’s 
and sibling’s spouses. For the current study, complete phenotypic and 
genotypic data were available on 3,876 participants from 568 fami-
lies. Development of the endophenotype construct was described 
previously (10,11). Endophenotype values for individuals were cal-
culated using traits with factor loadings ≥ |0.3|.

Phenotypic and genotypic data were available on 1,470 
European American individuals from Health ABC, a longitudinal 
study of healthy men and women between the ages of 68 and 80 at 
baseline. Characteristics of the LLFS and Health ABC cohorts and 
factor loadings of the endophenotype construct (called LF1 in LLFS 
and HF1 in Health ABC) are given in Table 1. As can be seen, the 
factor loadings for each trait in LF1 and HF1 are similar, despite the 
absence of cognitive domain traits in Health ABC.

Genotyping and Imputation for Association Analysis
The Center for Inherited Disease Research (CIDR) assayed all LLFS 
subjects using the Illumina Human Omni 2.5 v1 chip. Quality con-
trol was performed by CIDR and the LLFS Coordinating Center. 
Single-nucleotide polymorphisms were excluded if they had low call 
rate (<98%), had Mendelian errors, or Hardy–Weinberg equilibrium 
deviations (p-value < 10−6). To account for population substructure, 
principal components were estimated (EIGENSTRAT) (13) using 
genotypes on 1,522 unrelated LLFS individuals. These principle com-
ponents for ancestry were expanded to all family members. Imputed 

genotypes were generated based on the cosmopolitan phased haplo-
types of 1000 Human Genome (1000HG, version 2010/2011 data 
freeze, 2012/2003/2004 haplotypes) using MACH (version 1.0.16, 
for pre-phasing of LLFS data) and MINIMACH (version of May 
2012) (14,15). This process led to a hybrid dataset with 38,245,546 
SNPs, of which 2,225,338 SNPs were genotyped and 36,020,208 
SNPs were imputed. Prior to the association analyses, additional 
filters were used (removing monomorphic SNPs, MAF < 1% and 
imputation quality score of r2 < .3), that reduced the number of vari-
ants for analysis from 38.25 M to 9.25 M.

In Health ABC, genotyping was performed by CIDR using the 
Illumina Human1M-Duo BeadChip system. SNPs with MAF < 
1%, with call rate < 97% and HWE p-value < 10−6 were removed. 
Imputation was done using 1.2 million successfully genotyped SNPs 
and 1,663 subjects using the 1000 Genomes reference haplotypes 
(June 2010 release). Additional information on genotyping, imputa-
tion, and derivation of principle components for ancestry have been 
previously reported (16).

Statistical Analysis and Bioinformatic Analyses
GWA scan was performed in LLFS assuming additive effects using a lin-
ear mixed-effect regression model correcting for family structure (17). 
LF1 was adjusted for sex, age, recruitment site and ancestry principle 
components by including these covariates in the model. Thresholds for 
suggestive and significant levels of association were p-value < 5 × 10−6 
and p-value < 5 × 10−8, respectively. Prior to initiating the study, LLFS 
investigators performed extensive power calculations indicating that 
we have 80% power to detect tag SNPs for latent causal variants that 
account for ≥ 1%–2% of the total endophenotypic variance.

To select an independent set of SNPs for replication, approximate 
conditional analyses were performed using GCTA software (18) at 
each suggestive locus (p-value < 5 × 10−6) selected for replication. 
Analyses were conducted by including all the SNPs within a window 
of ±1 MB around the lead SNP by using stepwise selection method 
(19) and independent SNPs (defined as having p-value < 10−5) were 
selected for follow-up in Health ABC. Association analyses were 
performed in the Health ABC cohort using ProbABEL (ProbABEL 
v. 0.4.1) (20). The following covariates were included in the mod-
els to test for association with the HF1 endophenotype: age, sex, 
recruitment center, and ancestry principle components.

For the subset of the SNPs that were selected for replication in 
Health ABC, combined p-values were also calculated using the fixed-
effect inverse variance approach as implemented in the METAL 
package (21).

Functional annotation of the candidate SNPs was investigated 
using RegulomeDB (22). As the most significant SNP in a region may 
not be the functional SNP, proxy SNPs (r2 threshold ≥ .8) were identi-
fied using SNP Annotation and Proxy Search (SNAP; https://archive.
broadinstitute.org/mpg/snap) and also included in the analysis. We also 
performed pathway analysis by first mapping all SNPs to the RefSeq 
gene regions (±5 kb from the gene boundaries); a total of 10,947 SNPs 
with p-value < .001 were mapped to 1,116 genes. The lowest p-value of 
the SNPs within the gene region was assigned as the significance value 
for the gene. These genes were then imported into Ingenuity Pathway 
Analysis tool to assess whether specific canonical pathways were sig-
nificantly enriched (IPA; http://www.ingenuity.com/).

Results

Overall, the GWA scan for LF1 revealed evidence of association 
for a total of 72 SNPs, from suggestive loci, on chromosomes 1, 
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2, 8, 10, 12, 15, 18, and 22 with suggestive p-values < 5  ×  10−6 
(Supplementary Figure 1 and Supplementary Table 1); one locus on 
chromosome 10p15 reached genomewide significance. The variant 
with the strongest association (p-value = 4.65 × 10−8) is an insertion/
deletion (indel), that is located 27 kb downstream of the KLF6 gene. 
To select SNPs for replication, conditional analyses were performed 
at 12 suggestive genomic loci as described in the methods. We did 
not detect any additional signals in these regions, so the 12 lead 
SNPs from these regions were chosen for replication in the Health 
ABC cohort. A Bonferroni-corrected p-value ≤ .004 (0.05/12) was 
considered to be significant evidence for replication.

There was no replication of the locus on chromosome 10p15 
(near KLF6) in Health ABC; that is, endophenotype HF1 showed 
no association with any of the tested SNPs in this region (Table 2). 

The 10p15 region may be a false positive or it may be a true asso-
ciation and the causal variant is in linkage disequilibrium with 
tagging SNPs in our novel LLFS cohort. However, there was a sig-
nificant association (Health ABC p-value = 3.65 × 10−4, combined 
p-value = 1.67 × 10−9) between endophenotype HF1 and the locus 
on 1p13; an indel that is located 16  kb upstream of the NBPF6 
gene (Table 2). A  locus in the 1q42 region also reached genome-
wide significance in the combined meta-analysis, (combined 
p-value  =  1.17  ×  10−8); SNP rs4477283 is situated about 62  kb 
downstream of CAPN9 (Table 2). In addition, the locus on 18q11, 
reached suggestive genome-wide significance in the combined anal-
yses (replication p-value = .054, combined p-value = 4.86 × 10−7). 
In single SNP analyses, these SNPs accounted for 0.7%–1.0% of 
the variation.

Table 1. Population Characteristics of Persons and the Factor Loadings of the Endophenotype Construct in the Long Life Family Study 
(2006–2009) and the Health, Aging and Body Composition Study (1997–1998)

Characteristics

LLFS (n = 3,876) Health ABC (n = 1,470) Factor Loading

Mean (SD) or Frequency (%) Mean (SD) or Frequency (%) LF1 Factor Loadings HF1 Factor Loadings

Age, years 67.93 ± 14.57 73.68 ± 2.83
Female sex 55% 48%
Cognitive domain
 Animal recall testa 20.46 ± 6.36 na 0.19 na
 Vegetable recall testa 14.04 ± 4.66 na −0.11 na
 Digit span forward testb 8.30 ± 2.19 na 0.05 na
 Digit span backward testb 6.47 ± 2.27 na 0.05 na
 Immediate memory testc 12.15 ± 4.44 na 0.00 na
 Delayed memory testc 10.58 ± 4.83 na 0.00 na
Cardiovascular domain
 Hypertensiond (yes/no) 50% 43% −0.04 −0.05
 Systolic blood pressure, mm Hg 130.77 ± 20.88 133.15 ± 18.98 −0.02 −0.05
 Diastolic blood pressure, mm Hg 77.51 ± 10.99 69.91 ± 10.84 0.22 0.19
 Pulse pressure, mm Hg 53.12 ± 16.79 63.24 ± 16.31 −0.18 −0.18
 Total cholesterol, mg/dL 201.00 ± 41.55 201.20 ± 36.30 −0.08 −0.26
 HDL cholesterol, mg/dL 59.29 ± 17.15 52.44 ± 15.79 −0.29 −0.43
 LDL cholesterol, mg/dL 119.38 ± 35.24 119.88 ± 32.29 0.03 −0.04
 Triglyceride, mg/dL 108.47 ± 57.58 144.35 ± 66.64 0.03 −0.09
Metabolic domain
 Diabetese (yes/no) 6% 9% −0.16 −0.08
 Body mass indexf 27.14 ± 4.66 26.46 ± 4.08 0.04 0.09
 Creatinine, mg/dL 1.02 ± 0.24 1.00 ± 0.22 0.34 0.50
 Fasting glucose, mg/dL 93.98 ± 15.62 98.56 ± 20.94 −0.04 0.03
 Glycosylated hemoglobin, % 5.58 ± 0.45 6.05 ± 0.69 −0.19 −0.09
 Waist circumference, cm 94.59 ± 13.71 98.65 ± 11.61 0.19 0.21
Physical activity domain
 Average grip strength, kg 29.36 ± 11.62 29.26 ± 9.77 0.88 0.86
 Maximum grip strength, kg 30.21 ± 11.84 32.04 ± 10.36 0.88 0.85
 Gait speed, m/s 1.07 ± 0.29 1.25 ± 0.22 0.45 0.45
 Physical performanceg 10.41 ± 2.52 10.37 ± 1.35 0.44 0.39
Pulmonary domain
 Lung diseaseh (yes/no) 12% 14% −0.14 −0.20
 FEV1, mL 2493.83 ± 852.09 2291.47 ± 653.11 0.86 0.84
 FEV6, mL 3227.02 ± 1031.71 2994.89 ± 800.91 0.87 0.87
 FEV1:FEV6, % 76.98 ± 6.83 76.50 ± 7.31 0.09 0.08

Notes: FEV1 = forced expiratory volume in 1 s; FEV6 = forced expiratory volume in 6 s; HDL = high-density lipoprotein; Health ABC = Health, Aging, and 
Body Composition; LDL = low-density lipoprotein.

aScore: Number of items the participant can name in 60 s. bSource: Wechsler Memory Scales—III. Range of possible scores, 0–12. cSource: Wechsler Memory 
Scales—Revised. Range of possible scores, 0–25. dHypertension was defined as a self-report of hypertension confirmed by the use of antihypertensive medication 
or systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg. eDiabetes was defined as use of diabetes medication or fasting glucose concentra-
tion ≥126 mg/dL. fWeight (kg)/height (m)2. gPhysical performance was the sum of results from chair stands, a set of balance tests, and walking performance on 
a short-distance walk. Units could range from 0 to 12. hLung disease was defined as a self-report of a previous diagnosis of chronic bronchitis, emphysema, or 
chronic obstructive pulmonary disease.
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We next used RegulomeDB (22) to investigate whether any of the 
significant or proxy SNPs across the three regions of interest might 
be functional, but the scores of these SNPs were not indicative of 
function (RegulomeDB score ≥ 5) or data were unavailable. Results 
of the initial pathway analyses revealed that the most significant 
canonical pathway was the ubiquitous calcium transport I pathway 
(five genes/10 total genes in the pathway; p-value  =  6.38  ×  10−5). 
When the analysis was restricted to SNPs with p-value < 10−5 (only 
13 genes were included), the Amyotrophic Lateral Sclerosis sign-
aling pathway was the most significantly enriched pathway (two 
genes ALS2 and CAPN9 out of 111 total genes in the pathway, 
p-value = 2.06 × 10−3).

Discussion

In the current study, using GWA analysis on the LF1 endophenotype 
construct in LLFS, we obtained suggestive or significant evidence for 
association with loci in several chromosomal regions (Supplementary 
Figure 1). We then tested 12 SNPs across these regions for replication 
using data from the Health ABC cohort, and obtained a significant 
evidence for association of an indel in chromosomal regions 1p13 
(upstream of the NBPF6 gene). Two other SNPs, rs4477283 (1q42; 
Health ABC p-value =  .005) and rs7237853 (18q11; Health ABC 
p-value = .054) also reached nominal significance levels respectively. 
In the combined meta-analysis, the locus on 1q42 region reached 
genome-wide significance and the 18q11.2 region was suggestive.

NBPF6 (1p13) is a member of the neuroblastoma breakpoint 
family (NBPF). NBPF genes contain numerous repetitive elements 
and are abundantly expressed in breast and liver tissues (23). Calcium 
dependent protease CAPN9 (1q42) is predominantly expressed in 
the digestive tract (24) and also part of the Amyotrophic Lateral 
Sclerosis signaling pathway (25). ZNF521 (18q11) is expressed in 
multiple tissues (including brain, heart, skeletal muscles, spleen, and 
hematopoietic cells). The ZNF521 protein is a transcription factor, 
containing 30 kruppel-like zinc fingers and has been shown to play a 
role in erythroid cell differentiation (26,27).

The LF1 and HF1 endophenotype constructs primarily reflect 
physical function and pulmonary health in the LLFS and Health 
ABC cohorts, respectively. Both physical function and pulmonary 
health decline at older ages, perhaps because of a decline in skeletal 
muscle strength (28). Thus, the relationship between the identified 
loci and the endophenotype construct is unclear. These results may 
indicate that a novel neuromuscular biological pathway is involved 
in healthy aging and/or skeletal muscle strength. Alternatively, these 
associations may be spurious or the associated SNPs are not mark-
ing variation in these regions, but may be marking another, as yet 
unidentified function in these chromosomal regions.

Over the past decade, investigators have performed association 
studies (both candidate gene and genomewide) on long-lived individ-
uals to identify loci that may contribute to “desirable phenotypes,” 
such as longevity and healthy aging. Most of the results of these 
studies using data from long-lived individuals have been inconsist-
ent, perhaps indicating the environmental and genetic complexity, 
such as heterogeneity, that underlies longevity. The best replicated 
findings are for variation at the APOE locus and FOXO3 (7,29). The 
effects of variation at APOE on longevity are well-replicated and 
well-known (30–32). The FOXO3 gene lies within the insulin/insu-
lin-like growth factor 1 signaling pathway, a pathway that is known 
to extend lifespan in several animal models. We assessed whether 
variants in the 5q33, FOXO3, and APOE loci were associated with 
the LF1 endophenotype. The LF1 endophenotype was not associated Ta
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with any of the variants, with the exception of a nominal associa-
tion with the APOE e4 allele (p-value = .026) (results not shown). 
This result is not surprising given that longevity is a complex, het-
erogeneous trait. Furthermore, LF1 was predominantly comprised 
of traits from the pulmonary and physical activity domain, and not 
the metabolic function domain traits that have been associated with 
FOXO3 variants (33,34). Fewer association studies of healthy aging 
phenotypes have been performed, partly because healthy aging has 
been defined in various ways, including the absence of various dis-
ease or morbidities at a pre-defined “older” age (such as event-free 
survival) or the presence of desirable traits, such as mobility at a spe-
cific “older” age. To date, none of them have reported genomewide 
significant results (35,36).

This study has several limitations. One limitation of the current 
study is the sample size, which reduces our power to detect rare 
variants. However, power calculations indicated that we have 80% 
power to detect tag SNPs for latent causal variants that account for 
>1%–2% of the total endophenotypic variance. Another limita-
tion is that families in LLFS were recruited using a score based on 
exceptional longevity in families, thus identification of comparable 
cohorts for replication is challenging. The Health ABC cohort, a 
study of healthy individuals recruited between ages 68 and 80 years 
old, is a reasonable replication cohort, but identification of addi-
tional cohorts is necessary. In addition, multiple traits across differ-
ent domains were used to derive the endophenotype, and relatively 
few studies have data on all these traits. However, only a subset 
of traits contributed substantially to the endophenotype, and this 
smaller subset is likely to be available in additional studies.

Our analyses indicate that loci influencing a healthy aging endo-
phenotype construct predominantly comprised of pulmonary and 
physical function domains may be located on chromosome 1p13 
near the NBPF6 locus, chromosome 1q42.2 near CAPN9, and per-
haps, 18q11.2 near ZNF521. Further investigation of these novel 
loci may reveal additional biological pathways that fundamentally 
influence healthy aging.
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