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Abstract

Impaired blood flow to peripheral tissues during advanced age is associated with endothelial dysfunction and diminished bioavailability of 
nitric oxide (NO). However, it is unknown whether aging impacts coupling between intracellular calcium ([Ca2+]i) signaling and small- and 
intermediate K+ channel (SKCa/IKCa) activity during endothelium-derived hyperpolarization (EDH), a signaling pathway integral to dilation of 
the resistance vasculature. To address the potential impact of aging on EDH, Fura-2 photometry and intracellular recording were applied to 
evaluate [Ca2+]i and membrane potential of intact endothelial tubes (width, 60 µm; length, 1–3 mm) freshly isolated from superior epigastric 
arteries of young (4–6 mo) and old (24–26 mo) male C57BL/6 mice. In response to acetylcholine, intracellular release of Ca2+ from the 
endoplasmic reticulum (ER) was enhanced with aging. Further, treatment with the mitochondrial uncoupler FCCP evoked a significant increase 
of [Ca2+]i with membrane hyperpolarization in an SKCa/IKCa-dependent manner in the endothelium of old but not young mice. We conclude that 
the ability of resistance artery endothelium to release Ca2+ from intracellular stores (ie, ER and mitochondria) and hyperpolarize Vm via SKCa/
IKCa activation is augmented as compensation for reduced NO bioavailability during advanced age.
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Gerontologists predict that individuals of advanced age (≥65 years) will 
compose approximately 25% of the United States population by 2030 
(1). Aging is the key risk factor for cardiovascular disease (2,3) with 
endothelial dysfunction a prime indicator (4,5). This disorder is typically 
manifested by impaired vasodilation to acetylcholine (ACh) (6,7) or the 
restriction of blood flow during physical activity (6,8). Nevertheless, 
recent findings indicate that aging may be beneficial to endothelial 
cell (EC) survival (9). In the present study, our goal was to determine 
whether, and if so, how the endothelium of resistance arteries may adapt 
to maintain its role in effecting vasodilation during advanced age.

During the local control of tissue blood flow, vasodilation is 
coordinated along the branches of resistance networks, including the 
proximal feed arteries and the arteriolar networks they supply (10). 
An integral mechanism of vasodilation in the resistance vasculature 
entails endothelium-derived hyperpolarization, “EDH” (11,12). 
Thus, in response to a rise in intracellular Ca2+ concentration 

([Ca2+]i), the opening of small- and intermediate- calcium-activated 
K+ channels (SKCa/IKCa) in ECs generates hyperpolarization, which 
spreads from cell to cell through gap junctions between ECs and into 
surrounding smooth muscle cells (SMCs) through myoendothelial 
gap junctions (13,14). In resistance arteries, the endothelium serves 
as the principal cellular pathway for electrical signal transmission 
(15–18) which can be modulated by affecting gap junctions coupling 
neighboring cells or altering the activity of ion channels expressed 
in the plasma membrane (11,19). In contrast to the lack of selective 
pharmacological interventions for gap junctions (20,21), SKCa/IKCa 
are effective targets for pharmacological treatment of endothelial 
dysfunction (22–25). Whereas advanced age diminishes blood flow 
to key organs and tissue in association with a decrease in the bio-
availability of nitric oxide (NO) (26,27), little is known of how the 
aging process impacts coupling between [Ca2+]i signaling and SKCa/
IKCa activity underlying EDH. Because these signaling events effect 
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vasodilation in the small resistance arteries that control tissue blood 
flow (28,29), greater insight is needed to understand how EDH may 
be affected during advanced age, where tissue perfusion may be 
compromised.

The principal organelles that govern the intracellular storage, 
sequestration, and release of [Ca2+]i are the endoplasmic reticulum 
(ER) and mitochondrion (30–32). Muscarinic receptor (M3) stim-
ulation (eg, by ACh) increases the availability of cytoplasmic ino-
sitol trisphosphate (IP3), thereby triggering a rise in [Ca2+]i via the 
activation of inositol 1,4, trisphosphate receptors (IP3Rs) in the ER 
(12,33). The rise in [Ca2+]i is sustained by the influx of extracellu-
lar Ca2+ through open transient receptor potential channels (33–35) 
and this response is enhanced during advanced age (9). Because ECs 
rely primarily on glycolysis rather than oxidative phosphorylation 
for generating adenosine triphosphate (ATP) (36,37), key roles for 
endothelial mitochondria entail the regulation of [Ca2+]i and the pro-
duction of reactive oxygen species (31,38). Moreover, the role of 
mitochondria in buffering [Ca2+]i can increase with advanced age, as 
shown for intestinal SMCs (39) and peripheral sympathetic neurons 
(40). In turn, release of Ca2+ from mitochondria effects membrane 
hyperpolarization via SKCa/IKCa activation and these ion channels are 
highly expressed in the endothelium of resistance arteries (41). The 
proton ionophore carbonyl cyanide-4-(trifluoromethoxy)phenylhy-
drazone (FCCP) dissipates the inner mitochondria membrane poten-
tial (≈ −180 mV relative to cytosol) with consequences of releasing 
mitochondrial Ca2+ (42–47) leading to activation of KCa channels 
(46). Further, the ability of FCCP to uncouple mitochondria and 
depolarize the inner mitochondrial membrane potential (∆Ψmt; 
42–44) may also reflect the physiological actions of uncoupling pro-
teins (48) and mitochondrial K+ channels (49,50). Thus, FCCP may 
be used as a tool to evaluate the role of mitochondria as a Ca2+ 
source for governing membrane potential (Vm) of ECs. However, the 
respective roles of ER and mitochondria in shaping [Ca2+]i signaling 
and activating endothelial SKCa/IKCa to evoke hyperpolarization has 
received little attention.

The effect of aging and associated diseases (eg, obesity, type II 
diabetes, hypertension) on SKCa/IKCa function in generating EDH-
dependent vasodilation during aging lacks consensus. Some have 
suggested a loss of SKCa/IKCa-dependent vasodilation (25,51–53), 
whereas others have observed enhanced function of SKCa/IKCa in both 
intact arteries (54–60) and freshly isolated endothelium (41). The lat-
ter finding supports the hypothesis that an increase in EDH signaling 
serves as a compensatory mechanism in response to diminished NO 
bioavailability for endothelium-dependent vasodilation (61,62). By 
eliminating external influences (eg, perivascular nerves, SMCs, blood 
flow, hormones), the study of intact, freshly isolated endothelium 
from resistance arteries provides a powerful experimental approach 
to evaluate how aging affects the intrinsic ability of the ER and mito-
chondria within ECs to intrinsically activate SKCa/IKCa and to thereby 
engage in transducing [Ca2+]i dynamics into changes in Vm.

In accord with impaired tissue blood flow during cardiovas-
cular aging (27,61,63), we questioned how EDH as a vasodilator 
signal was affected by advanced age. A specific aim of this study 
was to resolve the interplay between mitochondria-associated 
[Ca2+]i signaling and hyperpolarization in endothelium freshly 
isolated from resistance arteries of mouse skeletal muscle with 
advanced age. Using mice at ages that correspond to humans in 
their early 20’s and mid-60s (64), we tested the hypothesis that 
enhanced SKCa/IKCa activation effected through increased [Ca2+]i 
signaling following mitochondrial uncoupling is integral to EDH 
during advanced age.

Methods

Animal Care and Use
All animal care and experimental procedures were approved by 
the Animal Care and Use Committee of the University of Missouri 
and performed in accord with the National Research Council’s 
Guide for the Care and Use of Laboratory Animals (8th ed., 2011). 
Experiments were performed on young (4–6 months; n = 31) and 
old (24–26  months; n  =  43) male C57BL/6 mice obtained from 
the National Institute on Aging (NIA) colonies at Charles River 
Laboratories (Wilmington, MA). Prior to use in experiments, mice 
were housed at the University Missouri for at least one week on a 12 
hours: 12 hours light: dark cycle at approximately 23°C with fresh 
tap water and standard chow available ad libitum. On the morn-
ing of an experiment, a mouse was anesthetized using pentobarbital 
sodium (60 mg/kg, intraperitoneal injection) and abdominal fur was 
removed by shaving. Following removal of tissues for experiments, 
the anesthetized mouse was killed by exsanguination.

Surgery and Microdissection
A ventral midline incision was made through the skin from the ster-
num to the pubis to expose the abdominal musculature. While view-
ing through a stereo microscope (SMZ800, Nikon; Tokyo, Japan), 
fat and connective tissue superficial to the sternum were removed to 
expose the proximal end of superior epigastric artery (SEA) bilater-
ally; each SEA was ligated together with its adjacent vein (6-0 silk 
suture; Ethicon; Somerville, NJ) to maintain blood in the lumen 
and thereby facilitate visualization during dissection. The abdomi-
nal musculature was removed from the mouse and each half was 
pinned onto transparent silicone rubber (Sylgard 184, Dow Corning; 
Midland, MI) in physiological salt solution (PSS) maintained at 4°C. 
Each artery was dissected from its proximal end to the first branch 
point (segment length: ~2 cm) and then cannulated at one end to 
flush blood the vessel lumen with PSS. Cannulae (tip outer diameter 
(OD), 50–80 µm) were made from heat-polished borosilicate glass 
capillaries (G150T-4, Warner Instruments; Hamden, CT).

Solutions
Control PSS contained the following: (in mmol/L): 140 NaCl, 5 
KCl, 2 CaCl2, 1 MgCl2, 10 N-2-Hydroxyethylpiperazine-N′-2-
ethanesulfonic acid (HEPES), 10 glucose. For “0 [Ca2+]o”, CaCl2 
was eliminated and EGTA (10–3 M) was added to sequester any free 
Ca2+ in the PSS (65). The pH of all solutions was adjusted to 7.4 
using NaOH prior to use. During vessel dissection, CaCl2 was absent 
from the PSS to relax SMCs. During dissociation of SMCs to obtain 
endothelial tubes (hereafter referred to as “tubes”, which are effec-
tively collapsed under these conditions), PSS contained 0.62 mg/mL 
papain (≥6 units), 1.5 mg/mL collagenase (≥15 units), 1.0 mg/mL 
dithioerythritol, 0.1% bovine serum albumin (USB Corp.; Cleveland, 
OH), and 0.1 mmol/L CaCl2. Reagents were obtained from Sigma-
Aldrich (St. Louis, MO) unless indicated otherwise.

Endothelial Tube Isolation and Superfusion
Endothelial tubes were prepared as described (11,66). Briefly, each 
SEA was cut into segments 3–5 mm long, incubated in dissociation 
PSS for 30 minutes at 37°C, then transferred to a tissue chamber 
(RC-27N, Warner) containing dissociation PSS at room temperature. 
To dissociate SMCs, a vessel segment was gently triturated using 
aspiration and ejection from a micropipette during visual inspec-
tion at 200X. Dissociation pipettes were prepared from borosilicate 
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glass capillary tubes [1.0 mm OD/0.58 mm ID; World Precision 
Instruments (WPI), Sarasota, FL] that were pulled (P-97; Sutter 
Instruments; Novato, CA) and heat-polished at one end (tip internal 
diameter: 80–120 µm). Following dissociation, the tissue chamber 
containing an endothelial tube (width: ~60 µm, length: ≤1 mm) was 
secured to an aluminum platform (width: 14.5 cm, length: 24 cm, 
thickness: 0.4 cm). A micromanipulator (DT3-100, Siskiyou Corp.; 
Grants Pass, OR) mounted at each end of the platform held a blunt 
ended heat-polished micropipette (OD, 60–100 µm) that was used 
to position and secure the tube against the bottom (coverslip) of 
the tissue chamber. The tube was superfused at approximately 4 
mL/min with control PSS; flow through the chamber was parallel 
to the axis of the tube. The aluminum platform was mounted on 
an inverted microscope (Eclipse TS100, Nikon) positioned on a 
vibration-isolated table (Technical Manufacturing Corp., Peabody, 
MA). Throughout experiments, temperature of the chamber was 
maintained at 32°C using an in-line heater (SH-27B, Warner) and 
heating platform (PH6, Warner) coupled to a temperature controller 
(TC-344B, Warner). These preparations are stable for about 5 hours 
(33,66) and the present experiments were typically completed within 
2 hours.

Dye Tracking of the ER and Mitochondria
Mitochondria and ER were labeled simultaneously in endothe-
lial tubes using MitoTracker Deep Red (Excitation: 644/Emission: 
665) and ER Tracker Green (Excitation: 504/Emission: 511), respec-
tively, according to the manufacturer’s instructions (Molecular 
Probes, Eugene, OR). Briefly, Mitotracker Deep Red (10–7 M) and 
ER tracker (10–7 M) were applied to freshly isolated tubes for 30 
minutes at 37°C before images were captured using a 63× glycerol 
immersion objective (numerical aperture = 1.3) on a Leica SP5 con-
focal microscope using LAS Software (Leica Microsystems, Wetzlar, 
Germany).

Ca2+ Photometry
Ca2+ photometry was performed using an IonOptix system (Milford, 
MA) as described (33,34,67). Briefly, prior to loading Fura-2 dye, 
the endothelial tube was maintained at room temperature for 10 
minutes, whereas autofluorescence was recorded at 510 nm during 
alternate excitation at 340 and 380  nm (10 Hz). Fura-2 AM dye 
(5 µM; F14185, Life Technologies, Eugene, OR) was loaded for 20 
minutes followed by 20 minutes of washout to allow for intracel-
lular de-esterification. Temperature was raised to 32°C during the 
final 10 minutes. Autofluorescence during excitation at 340 and 
380 nm (average values over 30 s acquisition) were subtracted from 
respective recordings at 510 nm. The imaging window was 140 µm 
× 50 µm using a 40X objective (Nikon S Fluor; numerical aperture, 
0.90) and encompassed about 50 ECs (34).

Intracellular Recording and Current Microinjection
Microelectrodes were pulled (P-97; Sutter) from glass capillary tubes 
(GC100F-10, Warner) and backfilled with 2 mol/L KCl (tip resist-
ance, ~150 MΩ). Membrane potential of ECs was measured using 
an Axoclamp 2B electrometer (Molecular Devices; Sunnyvale, CA) 
coupled to a function generator (CFG253, Tektronix; Beaverton, 
OR) and an IE-210 amplifier (Warner). An Ag/AgCl pellet placed 
in effluent PSS served as a reference electrode. Amplifier outputs 
were connected to an analog-to-digital converter (Digidata 1322A, 
Molecular Devices) and data were recorded at 1,000 Hz on a 
Dell personal computer using Axoscope 10.1 software (Molecular 

Devices). Individual ECs were penetrated along the midline of the 
endothelial tube while viewing at 400X magnification (11,34,41). 
For simultaneous Ca2+ photometry and electrophysiology, the pho-
tometric window for acquiring Ca2+ measurements was positioned 
adjacent to the recording electrode (34).

Pharmacology
To examine the effect of ER Ca2+ release and Ca2+ influx underlying 
hyperpolarization with advancing age, 3 × 10–6 M ACh was applied 
for 2 minutes, which we have shown to evoke maximum hyper-
polarization and peak [Ca2+]i in preparations of SEA endothelium 
identical to those studied here (9,33,41). As the role of mitochon-
drial Ca2+ release and consequential changes in Vm evoked by the 
mitochondrial uncoupler FCCP have not been tested in the intact 
endothelium, we evaluated full concentration-response relationships 
for [Ca2+]i and Vm in response to a cumulative increase in [FCCP], 
from 10–8 M to 10–5 M. Responses were allowed to stabilize for 3 
minutes at each [FCCP]. Based on these data, ensuing experiments 
were performed using 3 × 10–7 M (submaximal) and 10–6 M (maxi-
mal) [FCCP] as these concentrations revealed differences in [Ca2+]i 
and Vm responses between young vs. old mice. Values for summary 
data were collected during the peak of F340/F380 and Vm responses. 
During exposure to 3 × 10–7 M FCCP, 3 × 10–7 M apamin + 10–7 M 
charybdotoxin were applied to block SKCa and IKCa, respectively, to 
evaluate the role of respective ion channels in EC hyperpolarization.

Data Analysis
Analyses included: (a) Fura-2 fluorescence emission collected at 
510 nm and expressed as the ratio during excitation at 340 nm and 
380  nm (F340/F380); (b) change in F340/F380 ratio (∆F340/F380)  =  peak 
response F340/F380 − preceding baseline F340/F380; (c) resting baseline 
Vm (mV); (d) change in Vm (∆Vm) = peak response Vm − preceding 
baseline Vm. Summary data reflect values averaged over 10 seconds 
during stable recordings. Statistical analyses (GraphPad Software, 
Inc.; La Jolla, CA) included paired and unpaired Student’s t-tests, 
one-way and two-way repeated measures analysis of variance, 
with Tukey and Bonferroni post-hoc comparisons, respectively. 
Differences were accepted as statistically significant with p <.05. 
Summary data are presented as means ± standard error. Values for 
n reflects the number of independent endothelial tubes each studied 
from a different mouse for a given experimental protocol.

Results

Both ER and mitochondria are present in the endothelium of young 
and old mice (see Supplementary Figure 1). How Ca2+ and electri-
cal signaling are shaped by respective organelles to initiate EDH is 
unknown, particularly in the context of advancing age. In the present 
experiments, we tested how Ca2+ release from the ER or from the 
mitochondria affected Vm through SKCa/IKCa activation in endothe-
lium of resistance arteries from young and old mice.

Aging Enhances ER-Dependent [Ca2+]i Increases and 
Hyperpolarization
As illustrated in Figures 1A and 1B (left panels), from resting 
baseline in the presence of 2 mM extracellular Ca2+ concentration 
([Ca2+]o), ACh evoked an initial “peak” rise in F340/F380 attributable 
to release of Ca2+ from the ER followed by a sustained “plateau” 
attributable to Ca2+ influx (35,65). Resting values and peak F340/F380 
responses to ACh were similar between age groups (Figures 1C and 
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D). Pretreatment with 0 [Ca2+]o PSS containing EGTA (10–3 M) for 1 
minute prior to ACh application eliminated the plateau phase leav-
ing only the initial peak phase of the [Ca2+]i response (Figures 1A and 
B, right panels). A trend for greater plateau [Ca2+]i was observed in 
old vs. young endothelium under control conditions and was statisti-
cally significant at 30 seconds and 60 seconds (≥1.5-fold for ∆F340/
F380) following the peak phase of the [Ca2+]i response to ACh during 
removal of extracellular Ca2+ (Figure 1D). The peak phase of either 
age group was not altered significantly during 0 [Ca2+]o PSS (Figures 
1C and D). The kinetics of Vm in response to ACh mirrored those 
of [Ca2+]i (Figures 2A and B, left panels). Thus, hyperpolarization 
exhibited both a peak phase and a plateau phase under control con-
ditions, whereas Vm returned rapidly to resting levels during 0 [Ca2+]o 
despite sustained exposure to ACh (Figures 2A and B, right pan-
els). However, under control conditions, Vm at rest and in response 
to ACh were significantly greater in old vs. young endothelium 
(p  <  .05) and this difference between age groups persisted during 
the intermediate period (30 s and 60 s) of the plateau phase during 0 
[Ca2+]o PSS (Figure 2C). Though not consistently reaching statistical 
significance, similar differences between age groups were apparent 
for the changes in Vm from respective control baselines (Figure 2D). 
These data illustrate that the rise in [Ca2+]i and hyperpolarization to 
ACh are enhanced during aging.

Aging Enhances [Ca2+]i and Membrane 
Hyperpolarization Responses to Mitochondrial 
Uncoupling
Whether aging affects mitochondrial Ca2+ release and Vm in micro-
vascular endothelium have not been determined. Thus, concentra-
tion-response relationships to FCCP (10–8 M to 10–5 M) for [Ca2+]i 
(Figure 3) and Vm (Figure 4) were determined for young and old 
endothelium. FCCP is a proton ionophore that collapses the inner 
mitochondrial membrane potential (typically −180 mV in reference 
to the cytoplasm) which reduces the affinity for Ca2+ ions within the 
mitochondrial matrix (42–45). As a result, a slow increase in [Ca2+]i 
ensues (as compared to rapid [Ca2+]i increases on M3 receptor stimu-
lation; compare Figures 1 and 3). Increases in [Ca2+]i occurred during 
treatment with 3 × 10–7 M FCCP and were similar in young (Figure 
3A, left and Figures 3C and D) vs. old (Figure 3B, left and Figures 
3C and D). However, the magnitude of [Ca2+]i increased further dur-
ing 10–6 M FCCP in old (Figure 3B, right and Figures 3C and D) but 
not in young (Figure 3A, right and Figures 3C and D). Thus, peak 
[Ca2+]i reached a higher maximum in old vs. young endothelium in 
response to FCCP, suggesting a greater capacity for mitochondrial 
Ca2+ release in old. Net changes in Vm to FCCP were variable in 
young, being mild hyperpolarization (∆Vm < −10 mV) during 3 × 
10–7 M (Figure 4A, left and Figures 4C and D) with a significant 
depolarization (>+10 mV) in response to 10–6 M (Figure 4A, right 
and Figures 4C and D). In old, significant hyperpolarization of Vm 
(>−10 mV) occurred to both 3 × 10–7 M and 10–6 M FCCP (Figures 
4B–D). Altogether, peak [Ca2+]i increases to FCCP were higher in old 
and matched by hyperpolarization, whereas peak [Ca2+]i increases 
in young were lower in magnitude and typically corresponded to 
depolarization. Thus, [Ca2+]i responses to FCCP are greater in old vs. 
young endothelium, with membrane hyperpolarization correspond-
ing to mitochondrial uncoupling during aging.

Because FCCP evoked hyperpolarization in Old but not Young 
endothelium and the activation of SKCa/IKCa channels is integral 
to EC hyperpolarization (14,62,68), we tested whether the effect 
of FCCP was susceptible to the actions of the SKCa/IKCa channel 

Figure 1. Aging enhances ER-dependent [Ca2+]i increases in response to ACh. 
Fura-2 recordings of [Ca2+]i in response to 3 × 10–6 M ACh in the presence 
of 2 × 10–3 M [Ca2+]o (Control, “C”) and with 0 [Ca2+]o in A, Young and B, Old 
endothelium. C, Summary data for F340/F380 and D, ΔF340/F380 at designated 
time points (gray dots; refer to traces in A and B). Note initial peak of [Ca2+]i 
transients (reflecting Ca2+ release from ER) followed by sustained plateau 
(reflecting Ca2+ entry through the plasma membrane) during 90 s following 
peak response. Note diminished plateau during 0 [Ca2+]o to eliminate Ca2+ 
entry (A and B, right vs. left panels). Peak [Ca2+]i responses were similar 
across groups irrespective of [Ca2+]o (C and D). However, in Old endothelium, 
increases in [Ca2+]i remain elevated at 30 s and 60 s with 0 [Ca2+]o (D). *p < 
.05, old vs. young, n = 10 per group. ACh = acetylcholine; ER = endoplasmic 
reticulum.
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Figure 2. Aging enhances hyperpolarization in response to ACh. Vm recordings 
(obtained simultaneously with Fura-2 data in Figure 2) in response to 3 × 10–6 
M ACh in the presence of 2 × 10–3 M [Ca2+]o (Control, “C”) and with 0 [Ca2+]o 
in A, Young and B, Old endothelium. Summary data indicate C, Vm and D, 
ΔVm (treatment − control) for respective age groups. Note initial “peak” of 
hyperpolarization followed by sustained “plateau” through 90 s (A and B, left 
panels). Defined time points indicated by gray dots in panels A and B. Note 
diminished plateau during 0 [Ca2+]o to eliminate Ca2+ entry (A and B, right 
vs. left panels)]. Peak Vm responses were greater (p < .05) in old vs. young 
in the presence of 2 × 10–3 M [Ca2+]o (panels C and D). Further, Vm remained 
hyperpolarized (*p < .05) in old vs. young at 30 s and 60 s during 0 [Ca2+]o, 
reflecting sustained internal release of Ca2+ (panel D). Traces for Figures 1A 
and 2A (Young) and Figures 1B and 2B (Old) represent simultaneous [Ca2+]i 
and electrical measurements. *p < .05, old vs. young, n = 10 per group. ACh 
= acetylcholine.

Figure  3. Aging elevates [Ca2+]i during mitochondrial uncoupling. Fura-2 
recordings during 3  ×  10–7 M and 10–6 M FCCP in A, young and B, old 
endothelium. Note that the F340/F380 ratio did not change from 3 × 10–7 M to 
10–6 M FCCP in young endothelium, whereas it increased in old endothelium. 
Summary data indicate C, peak F340/F380 ratio and D, responses relative to 
control (“C”) during exposure to 10–8 to 10–5 M FCCP. As the traces for Figures 
3A and 4A (young) and Figures 3B and 4B (old) represent simultaneous 
[Ca2+]i and electrical measurements, the gray dots in A and B indicate peak 
[Ca2+]i responses that coincide with peak Vm responses in the traces shown 
for Figures 4A and 4B. *p < .05 for young vs. old (n = 4 per group). Additional 
experiments (n = 12–22 total) were performed for comparisons for 3 × 10–7 
M to 10–6 M FCCP treatments between young and old [(3 × 10–7 M: young, 
ΔF340/F380: 0.25  ±  0.02, n  =  14 and old, ΔF340/F380: 0.23  ±  0.02, n  =  12) and 
(10–6 M: young, ΔF340/F380: 0.23 ± 0.02, n = 12 and old: ΔF340/F380: 0.42 ± 0.04, 
n  =  22; p  <  .05 vs. young)]. FCCP  =  carbonyl cyanide-4-(trifluoromethoxy)
phenylhydrazone.
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blockers apamin and charybdotoxin in the endothelium from old 
mice. As illustrated in Figure 5, blockade of SKCa/IKCa channels in 
old endothelium converted the response to FCCP (3 × 10–7 M) from 
hyperpolarization to depolarization. Thus, when SKCa and IKCa 
were prevented from opening in old endothelium, the Vm response 
to FCCP approximated that in young endothelium. This differ-
ence between age groups suggests that SKCa/IKCa channel activation 
responds to [Ca2+]i increases following mitochondrial uncoupling as 
an adaptation to advanced age.

Discussion

In accord with impaired tissue blood flow with cardiovascular aging 
(27,61,63), this study investigated whether advanced age affected 
EDH signaling and whether mitochondrial regulation of [Ca2+]i was 
involved. A specific aim was to resolve the interplay between mito-
chondria-associated [Ca2+]i signaling and membrane hyperpolariza-
tion in native intact endothelium freshly isolated from resistance 
arteries of mouse skeletal muscle at ages that correspond to humans 
in their early 20’s and mid-60s (64). We tested the hypothesis that 
enhanced SKCa/IKCa activation effected through increased [Ca2+]i 

Figure 4. Aging reverses Vm responses of endothelium to mitochondrial 
uncoupling. (A, B) Vm recordings during 3 × 10–7 M and 10–6 M FCCP in (A) 
young and (B) old endothelial tubes. Note that mild hyperpolarization (<−10 
mV) shifts to significant depolarization (>+10 mV) from 3 × 10–7 M to 10–6 M in 
young, whereas hyperpolarization responses are sustained in Old. Summary 
data for peak Vm (C) and changes in Vm (D) relative to control (“C”) in response 
to 10–8 to 10–5 M FCCP. As the traces for Figures 3A and 4A (young) and Figures 
3B and 4B (old) represent simultaneous [Ca2+]i and electrical measurements, 
the gray dots in A and B indicate peak Vm responses that coincide with peak 
[Ca2+]i responses in the traces shown for Figures 3A and 3B. Endothelial 
tubes from young reach a maximal depolarization (ΔVm ≈ 15 mV), whereas 
those from old reach a maximal hyperpolarization (ΔVm ≈ −20 mV) at the 
same [FCCP] of 10–6 M. *p < .05 for young (n = 10) vs. old (n = 8). Additional 
experiments (n = 20–22 total) were performed for comparisons for 3 × 10–7 M 
to 10–6 M FCCP treatments between young and old [(3 × 10–7 M: young, ΔVm: 
−5 ± 3 mV, n = 20 and old, ΔVm: −13 ± 2 mV, n = 21; p < .05 vs. young) and (10–6 
M: young, ΔVm: 14 ± 2 mV, n = 22 and old: ΔVm: −19 ± 3 mV, n = 22; p < .05 
vs. young)]. FCCP = carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone.

Figure  5. Blockade of SKCa/IKCa inhibits hyperpolarization in response 
to FCCP in endothelium of old mice. (A) Representative continuous Vm 
recording during 3  ×  10–7 M FCCP in the absence and presence of SKCa/
IKCa blockade (3  ×  10–7 M apamin + 10–7 M charybdotoxin; Ap + ChTx). (B) 
Summary data illustrating that SKCa/IKCa blockade reverses hyperpolarization 
to depolarization during mitochondrial uncoupling with FCCP. Compared 
to control Vm, FCCP evoked hyperpolarization (ΔVm ≈ −15 mV). Treatment 
with Ap + ChTx alone produced ≈10 mV depolarization; in the presence of 
FCCP, Ap + ChTx depolarized cells by ≈ 25 mV vs. control. *p < .05 (n = 4). 
FCCP  =  carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; SKCa/IKCa, 
small- and intermediate K+ channel.
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signaling following mitochondrial uncoupling is integral to EDH 
during advanced age. The present data indicate that aging enhances 
[Ca2+]i signaling and membrane hyperpolarization of ECs in response 
to ACh, the “gold standard” stimulus for evoking EDH (12,14,34). A 
key finding is that, in old but not young endothelium, mitochondrial 
uncoupling with FCCP evoked robust [Ca2+]i increases and hyper-
polarized Vm. In contrast, FCCP stimulation of young endothelium 
resulted in depolarization during the rise in [Ca2+]i. Further, block of 
SKCa/IKCa channels with apamin and charybdotoxin in old endothe-
lium reversed FCCP responses from hyperpolarization to depolari-
zation similar to that observed in young endothelium. Our findings 
collectively demonstrate that cardiovascular aging enhances [Ca2+]i 
signaling and SKCa/IKCa channel activity that underlies vasodilation 
through EDH and that Ca2+ release from mitochondria may be inte-
gral to this adaptation.

EDH With Aging: ER and Mitochondria-Mediated 
Ca2+ Release
In response to the classic endothelium-dependent vasodilator ACh, 
the duration of elevated [Ca2+]i governed the duration of Vm hyper-
polarization (Figures 1 and 2). These data illustrate the integral role 
of [Ca2+]i (ie, via IP3R-mediated Ca2+ signaling from the ER) to initi-
ate membrane hyperpolarization of the endothelium in response to 
a physiological agonist (68). The ability of resistance artery endothe-
lium to release Ca2+ from the ER in response to ACh (Figure 1) and 
hyperpolarize Vm (Figure 2) via SKCa/IKCa activation was enhanced 
in old vs. young endothelium. These findings are consistent with our 
previous studies (9,41) using the same experimental model and age 
groups studied here.

Mitochondria can sequester Ca2+ to upregulate the activity of cit-
ric acid cycle proteins involved in oxidative phosphorylation, poten-
tially increasing the rate of respiratory chain activity and production 
of hydrogen peroxide (69). As ECs primarily depend on glycolysis 
for the generation of ATP (36,37), it has been proposed that mito-
chondria of vascular endothelium play a prominent role in regulating 
[Ca2+]i (31,38). Indeed, the mitochondrium is a potent Ca2+ buffering 
organelle equipped with Ca2+ uniporters, Na+/Ca2+ exchangers, and 
a negative ∆Ψmt (≈−180 mV) that attract cations (70). Further, mito-
chondrial Ca2+ signaling can increase during advanced age (39,40) 
and may thereby provide an alternative source of Ca2+ for activating 
SKCa/IKCa channels in ECs. We therefore reasoned that dissipation of 
∆Ψmt with FCCP would trigger release of mitochondrial Ca2+ into 
the cytosol and thereby activate KCa channels to evoke hyperpo-
larization. Indeed, in old but not young endothelium, robust [Ca2+]i 
increases (Figure  3) and membrane hyperpolarization (Figure  4) 
due to SKCa/IKCa activation (Figure  5) were observed in response 
to FCCP. Further, blocking SKCa/IKCa channels in old endothelium 
prior to FCCP exposure approximated the depolarization to FCCP 
observed in young endothelium under control conditions (compare 
young data in Figure 4 with old in Figure 5).

Experimental Advantages and Limitations: 
Simultaneous Ca2+ Photometry and Intracellular Vm 
Recordings
An advantage of using Ca2+ photometry is the ability to obtain 
data from the same ECs throughout protocols of at least 5 minutes 
duration (see Figures 1–4). In this manner, Fura-2 photometry con-
comitant with intracellular recording provides insight with respect 
to the relationship between [Ca2+]i and SKCa/IKCa channel activa-
tion during membrane hyperpolarization. However, a limitation of 

Ca2+ photometry is that it reflects an average [Ca2+]i for ECs within 
the recording window, whereas intracellular recording using sharp 
microelectrodes reflects the difference in electrochemical driving 
force between the cytoplasm and the extracellular fluid. A  conse-
quence of this limitation is the inability to detect subcellular events 
occurring in subcellular signaling microdomains within the vicinity 
of individual ion channels (71). Nevertheless, the present findings 
provide a foundation for future studies using techniques that enable 
such higher resolution.

Use of FCCP to Uncouple Mitochondria and 
Mobilize Mitochondrial Ca2+

As an agent that generally uncouples mitochondria and depolarizes 
∆Ψmt (42–44), FCCP may reflect the broader physiological and path-
ological functions of native mitochondrial uncoupling proteins (48) 
and mitochondrial K+ channels (49,50). In this manner, FCCP also 
targets mitochondrial Ca2+ buffering (43,46,47,72,73) and thereby 
activates KCa channels (46). However, depolarization to micromolar 
concentrations FCCP in young endothelium (see Figure 4) may also 
reflect nonselective actions of H+ and/or Na+ influx into the cell inte-
rior across the plasma membrane (43). In old endothelium, the possi-
bility of such depolarization to FCCP may be “masked” by relatively 
large [Ca2+]i increases vs. young and the predominant effect of SKCa/
IKCa activation and hyperpolarization (compare Figures 4 and 5). 
Earlier findings concluded that FCCP may also promote depletion of 
ER Ca2+ based on reasoning that mitochondrial production of ATP 
is reduced, thereby impairing the ability of the smooth ER Ca2+ ATP-
ase (commonly referred to as SERCA) pumps to refill the ER with 
Ca2+ (74). However, those findings were based on a low affinity diva-
lent cation dye (ie, Furaptra) (74) that is nonselective for both Ca2+ 
vs. Mg2+ and ER vs. mitochondria (75). In addition, because ECs 
rely primarily on glycolysis for generating ATP (36,37), glucose was 
maintained at 10–2 M in the PSS used for superfusion throughout 
experiments. Importantly, the kinetics of [Ca2+]i responses to FCCP 
found here (ie, stable peak within 3 min) do not align with the earlier 
study [(74); which required ≥5 minutes for a response with no appar-
ent stability]. Further, the present experiments used freshly isolated 
endothelium (within 1 hour of being in the animal), whereas previ-
ous studies have evaluated mitochondrial Ca2+ buffering in isolated 
ECs or cultured ECs having altered (ie, “cobblestone”) morphology 
(76) and ion channel expression (77). Such conditions alter the spa-
tial and functional relationships between ER, mitochondria and the 
plasma membrane that are inherent to native endothelium. In accord 
with the present findings, we posit that increased mitochondrial Ca2+ 
release, and an overall increase in the release of Ca2+ from internal 
stores, promotes EDH to help maintain vasodilation—and thereby 
tissue blood flow—during advanced age.

SKCa/IKCa Function With Aging and Vascular Disease
How SKCa/IKCa function conveys EDH-dependent vasodilation dur-
ing aging has lacked a consensus. Some studies suggest a loss of 
SKCa/IKCa-dependent vasodilation (51,53,78), whereas others have 
found enhanced SKCa/IKCa function (41,55,57). Difficulty in inter-
pretation may be attributed to factors confounding EC function 
such as perivascular nerves, SMCs and the flow of blood (carrying 
hormones, etc.). In addition, complementary signaling pathways 
include [Ca2+]i activation of endothelial NO synthase (eNOS) and 
large conductance calcium-activated K+ channels (BKCa) on SMCs, 
which can hyperpolarize ECs through myoendothelial coupling (79). 
These vasodilator pathways can also be governed by endothelial 
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mitochondria and reactive oxygen species (70,71). Indeed, BKCa func-
tion is increased with aging in SMCs of the mouse SEA (the source of 
endothelial tubes used within the current study) (80). Discrepancies 
between studies may also reflect a lack of awareness for structural 
changes (eg, arterial stiffening and smooth muscle hypertrophy) of 
the vasculature that may occur in conjunction with altered ion chan-
nel activity during aging (53,80,81). Thus, a key aspect of the experi-
mental design used here was to eliminate other influences to evaluate 
the intrinsic ability of SKCa/IKCa to engage in the transduction of 
[Ca2+]i signals to hyperpolarization in the endothelium isolated from 
resistance arteries of young and old mice. The present findings are 
consistent with our previous reports indicating that the function of 
underlying components of EDH signaling (ie, [Ca2+]i and SKCa/IKCa 
function) is enhanced during aging (9,41).

SKCa/IKCa as Pharmacological Targets: Increasing NO 
Bioavailability Through Hyperpolarization-Induced 
Ca2+ Entry
Through pharmacological intervention, SKCa/IKCa can be activated 
without elevating [Ca2+]i (22–25,82,83). Thus, in the face of impaired 
vascular NO production with aging, endothelial hyperpolarization 
via direct SKCa/IKCa activation can promote Ca2+ influx into the cell 
according to its electrochemical gradient (34) and thereby increase 
eNOS activation to generate NO (23,84), particularly with concomi-
tant activation of Ca2+-permeant channels in the plasma membrane 
(34). The activation of SKCa/IKCa may also serve as a feed-forward 
mechanism, whereby the increase in Ca2+ influx amplifies hyperpo-
larization via SKCa/IKCa activation (34,85). In such manner, the direct 
activation of SKCa/IKCa can be used effectively to promote vasodilation 
and tissue blood flow (86,87) during cardiovascular aging (27,61,63).

Enhanced Endothelial Ca2+ Mobilization and 
Activation of SKCa/IKCa Channels During Aging: 
A Potential Compensatory Mechanism for Reduced 
NO Bioavailability
The current study offers new perspective with regard to ER and mito-
chondrial mobilization of intracellular Ca2+ to activate endothelial 
SKCa/IKCa. In particular, the release of Ca2+ from endothelial mitochon-
dria can activate SKCa/IKCa channels to generate hyperpolarization 
and may thereby compensate for decreased bioavailability of NO in 
old age (26,27,62). However, only 10 to 15 mV of hyperpolarization 
from resting Vm (ie, −30 to −40 mV) is sufficient for maximal dilation 
of arteries and arterioles (16,18). Overactivation of SKCa/IKCa to the 
extent where Vm >−60 mV can cause “leaky” membranes, whereby the 
initiation and longitudinal spread of hyperpolarization along electri-
cally coupled ECs is short-circuited (11,41). Thus, a method for pre-
serving endothelial function during old age may be to restrict Ca2+ 
overload of mitochondria and limit the production of reactive oxygen 
species (69,88) to prevent overactivation of SKCa/IKCa channels (41). 
Nevertheless, the ability of endothelial mitochondria to affect SKCa/
IKCa channel function via increases in [Ca2+]i and reactive oxygen spe-
cies may be harnessed to promote vasodilation and maintain blood 
flow during healthy aging to compensate for reductions in NO bio-
availability (89). Thus, a balanced therapeutic approach is implied.

Summary and Conclusions

With advancing age, individuals 65 years or older will comprise 
approximately 25% of the US population by 2030 (1). This demo-
graphic typically manifests morbidity and mortality in the form of 

cardiovascular disease (2,3) with the hallmark of endothelial dysfunc-
tion (4,5) underlying impaired tissue blood flow. Our goal in the pre-
sent study was to determine whether, and if so, how the endothelium 
of resistance arteries may adapt to maintain its role in effecting vaso-
dilation during advanced age. We focused on the relationship between 
Ca2+ release from internal stores and the activation of SKCa/IKCa chan-
nels in native endothelium freshly isolated from skeletal muscle of 
young and old mice with an emphasis on the role of mitochondria. 
Whereas the increases in both [Ca2+]i and membrane potential in 
response to ACh (ie, muscarinic receptor activation) were sustained 
with advanced age, uncoupling mitochondria in the endothelium of 
old mice enhanced [Ca2+]i responses and augmented membrane hyper-
polarization through activation of SKCa/IKCa channels. Thus, despite 
elevated oxidative signaling (9,41,61) and diminished endothelium-
dependent dilation with advancing age (26,27), the ability of endothe-
lium to mediate vasodilation via the EDH electrical signaling axis is 
preserved. In such manner, mitochondrial [Ca2+]i signaling may effec-
tively govern SKCa/IKCa activity during advanced age. With the integ-
rity of EDH maintained via mitochondria versus the ER, targeting 
specific intracellular Ca2+ stores that govern SKCa/IKCa activity offers 
the potential for advancing therapeutic strategies designed to protect 
and restore tissue blood flow and oxygen delivery.
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