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Abstract

To assess whether Tie2-mediated vascular stabilization ameliorates neovascular age-related 

macular degeneration (AMD), we investigated the impact of adeno-associated virus-mediated gene 

therapy with cartilage oligomeric matrix protein angiopoietin-1 (AAV2.COMP-Ang1) on 

choroidal neovascularization (CNV), vascular endothelial growth factor (VEGF), and hypoxia-

inducible factor (HIF) in a mouse model of the disease. We treated mice with subretinal injections 

of AAV2.COMP-Ang1 or control (AAV2.AcGFP, AAV2.LacZ, and phosphate-buffered saline). 

Subretinal AAV2 localization and plasmid protein expression was verified in the retinal pigment 

epithelium (RPE)/choroid of mice treated with all AAV2 constructs. Laser-assisted simulation of 

neovascular AMD was performed and followed by quantification of HIF, VEGF, and CNV in each 

experimental group. We found that AAV2.COMP-Ang1 was associated with a significant 

reduction in VEGF levels (29–33%, p < 0.01) and CNV volume (60–70%, p < 0.01), without a 

concomitant decrease in HIF1-α, compared to all controls. We concluded that a) AAV2 is a viable 

vector for delivering COMP-Ang1 to subretinal tissues, b) subretinal COMP-Ang1 holds promise 

as a prospective treatment for neovascular AMD, and c) although VEGF suppression in the RPE/

choroid may be one mechanism by which AAV2.COMP-Ang1 reduces CNV, this therapeutic 

effect may be hypoxia-independent. Taken together, these findings suggest that AAV2.COMP-

Ang1 has potential to serve as an alternative or complementary option to anti-VEGF agents for the 

long-term amelioration of neovascular AMD.
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1. Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness 

among older Americans (Bressler, 2004; Congdon et al., 2004; Friedman et al., 2004; 

Pascolini et al., 2004). Neovascular AMD is a late form of the disease accountable for the 

majority of visual impairment connected with AMD (Ferris et al., 1984). The hallmark of 

neovascular AMD is choroidal neovascularization (CNV), which is typified by the growth 

and penetration of new blood vessels from the choroid through Bruch’s membrane and into 

the sub-retinal pigment epithelium (sub-RPE) and subretinal space, leading to fluid leakage, 

bleeding, and scarring of the macula (Nowak, 2006). Vascular endothelial growth factor 

(VEGF), a potent endothelial mitogen and vascular permeability factor, is the principal 

driver of angiogenesis in CNV (Funk et al., 2009; Sivaprasad and Hykin, 2013). The 

introduction of VEGF inhibitor drugs has been one of the greatest success stories of 

translational research, revolutionizing the treatment paradigm for neovascular AMD by 

slowing the progression of disease and stabilizing or reversing visual loss for the majority of 

patients (Brown et al., 2009; Campbell et al., 2012a; Comparison of Age-related Macular 

Degeneration Treatments Trials Research et al., 2012; Heier et al., 2012; Rosenfeld et al., 

2006; Sivaprasad and Hykin, 2013; Solomon et al., 2014; Stewart, 2012).

Unfortunately, anti-VEGF agents are far from risk-free, and there is room for improvement 

in their safety, efficacy, applicability, and ease-of-use. Often requiring indefinite monthly or 

bimonthly intraocular injections (Sivaprasad and Hykin, 2013), these drugs can be costly 

and produce a spectrum of ophthalmic complications such as infection, bleeding, and retinal 

detachment (Gragoudas et al., 2004; Heier et al., 2012; Rosenfeld et al., 2006). 

Pharmacologically, chronic blockade of VEGF may hamper its neurotrophic benefits to the 

retina (Lazarovici et al., 2006; Nishijima et al., 2007; Romano et al., 2012; Saint-Geniez et 

al., 2009; Wang et al., 2004; Yodoi et al., 2009). Anti-VEGF administration also seems to 

increase risk of stroke and thromboembolic events (Bressler, 2004; Campbell et al., 2012b). 

Most importantly, a sizeable subset of AMD is refractory to conventional anti-VEGF 

regimens (Broadhead et al., 2014; Brown et al., 2009; Calvo et al., 2015; Rosenfeld et al., 

2006; Shin et al., 2013; Tozer et al., 2013; Tranos et al., 2013). These limitations of VEGF 

blockers prompt the need to continue to investigate alternative or complementary strategies 

for neovascular AMD.

One possible target for therapeutic exploitation may be the Ang1-Tie2 signaling cascade. 

Like the VEGF-VEGFR system, it is an endothelial specific tyrosine kinase ligand-receptor 

system, which is a key player in vascular homeostasis, including vessel remodeling, 

maturation, and stabilization (Augustin et al., 2009; Das and McGuire, 2003; Fukuhara et 

al., 2010; Thurston et al., 2000). In pre-clinical studies, angiopoetin-1 (Ang1) has been 

shown to diminish CNV (Nambu et al., 2004, 2005; Wang et al., 2013) and counter VEGF 

by preventing vessel hyperpermeability (Baffert et al., 2006; Thurston et al., 2000, 1999). 

Cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) was engineered to 

enhance solubility, yield, potency, and stability while mimicking the anti-leakage activity of 

native Ang1 (Cho et al., 2004; Fuxe et al., 2011).
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To our knowledge, only one previous study has tested COMP-Ang1 in an AMD model, 

reporting that intravitreal injection of recombinant COMP-Ang1 protein is equivalent to the 

VEGF inhibitor fusion protein aflibercept in suppressing CNV formation, and superior to it 

in suppressing vascular leakage (Lee et al., 2014).

To build on this work, we hypothesized that the continuous expression of COMP-Ang1 via 

adeno-associated virus type 2 (AAV2)-mediated gene transfer would improve treatment 

sustainability. The sawtooth pattern of drug delivery entailed by the short half-life of 

recombinant protein (Zhu et al., 2011) creates a peak-trough problem with drug availability 

(Zhang et al., 2015) which could be circumvented by long-acting gene therapy with viral 

vectors (Campochiaro, 2011; Colella and Auricchio, 2010; Roy et al., 2010). The efficacy of 

Ad.COMP-Ang1 therapy is limited by its transient expression (i.e. 1 month duration) and 

intense immunogenicity (Campochiaro, 2011;Wang et al., 2004; Zhang et al., 2012). The 

intraocular humoral and cellular response to the nonpathogenic AAV, conversely, is minimal 

and benign (Amado et al., 2010; Cheng et al., 2013; Daya and Berns, 2008; Dismuke et al., 

2013; Roy et al., 2010; Wang et al., 2004; Zhang et al., 2012). In human studies, the AAV2 

serotype was shown to be safe for human retinal disorders, and effective for up to 3.5 years 

(Roy et al., 2010; Simonelli et al., 2010; Zhang et al., 2012).

Furthermore, because the pathology of AMD predominantly occurs in the subretinal tissues 

instead of the vitreous (Nowak, 2006), we surmised that localized subretinal delivery of 

COMP-Ang1 would improve treatment. With specificity for the outer retina and the RPE/

choroid complex (Cronin et al., 2012; Muhlfriedel et al., 2013; Zhang et al., 2012, 2015), a 

subretinal route for AAV2 offers stronger and more diffuse transfection of these layers, 

along with a milder immune reaction, compared to an intravitreal route (Campochiaro, 2011; 

Li et al., 2008). Targeting this space may also mitigate the danger of medication-induced 

global retinal toxicity linked with the intravitreal approach (Campochiaro, 2011; Grunwald 

et al., 2014; Rofagha et al., 2013; Zhang et al., 2015).

Finally, because of our laboratory’s recent discovery that AAV2.COMP-Ang1 has a 

stabilizing effect on the ocular vasculature in diabetic retinopathy mediated in part through 

its suppression of hypoxia-induced VEGF secretion (Cahoon et al., 2015), we conjectured 

that there may be a similar link between COMP-Ang1, VEGF, and hypoxia inducible factor 

(HIF) in neovascular AMD.

In our experiments on a laser-induced mouse model of AMD, we sought to test the utility of 

subretinal AAV2.COMP-Ang1 in reducing CNV volume, as well as initiate exploration into 

the molecular underpinnings of this treatment.

2. Materials and methods

2.1. Animals

Age-matched (12 week old) male C57Bl6 mice (The Jackson Laboratory, Bar Harbor, ME) 

were randomly allocated into one of five experimental groups: AAV2.COMP-Ang1, 

AAV2.AcGFP (Aequorea coerulescens green fluorescent protein), AAV2.LacZ (β-

galactosidase), phosphate-buffered saline (PBS), or no injection control.
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For all in vivo injection and laser procedures, mice were placed under general anesthesia 

with an intraperitoneal injection of ketamine/ xylazine (Vedco, Saint Joseph, MO) at a dose 

of 90 mg/ 10 mg per kg body weight. Topical application of 1% tropicamide (Bausch & 

Lomb, Tampa, FL) dilated the pupils and provided local anesthesia, respectively. For in vivo 

fundoscopy and optical coherence tomography (OCT), mice were anesthetized by an initial 

inhalation of 3% isoflurane/O2 mixture in a closed canister at a flow rate of 1.0 Lpm. Pupils 

were dilated with a 1% tropicamide solution and afterwards hydrated periodically with 

saline solution to prevent corneal desiccation. For ex vivo assays requiring harvesting of the 

globes, mice were euthanized with carbon dioxide (CO2), and both eyes were enucleated.

The protocol was approved by the Institutional Animal Care and Use Committee of the 

University of Utah, and all animal experiments were performed in accordance with 

guidelines from the Association of Research in Vision and Ophthalmology’s Statement for 

the Use of Animals in Ophthalmic and Vision Research.

2.2. AAV2 vector construction

The plasmids pAAV.COMP-Ang1 and pAAV.AcGFP were created by ligating the COMP-

Ang1 cDNA from pCMV-dhfr2-COMP-Ang1 (Koh Laboratory of Regenerative Medicine, 

Korea Advanced Institute of Science and Technology, Daejeon) into pAAV-MCS (Agilent 

Technologies, Santa Clara, CA), while pAAV.AcGFP was created by the same technique 

with AcGFP cDNA from pIRES2-AcGFP1 (Clontech Laboratories, Mountain View, CA). 

The pAAV.LacZ plasmid was obtained from Stratagene (La Jolla, CA). The AAV viral 

vector was next converted to serotype 2 (Vector Core Gene Therapy Center, University of 

Massachusetts, Worcester, MA). Lastly, cassettes from the plasmids were integrated into the 

AAV2 vectors, driven by the CMV promoter, to generate the experimental treatment 

AAV2.COMP-Ang1 and its sham controls AAV2.AcGFP and AAV2.LacZ.

2.3. Subretinal treatment injections

Solutions of viral particles were prepared at the following titers: AAV2.COMP-Ang1 (3 × 

1011 viral units/mL); AAV2.AcGFP (3 × 1011 viral units/mL); AAV2.LacZ (5 × 1011 viral 

units/mL). Anesthetized mice were placed under a stereo microscope. A small incision was 

made behind the limbus with a 30.5-gauge needle. A blunt 33-gauge microsyringe 

(Hamilton Company, Reno, NV) was then inserted into the posterior chamber at the incision, 

passed through the vitreous to the posterior pole at the opposite wall of the globe, and then 

entered into the subretinal space (Fig. 1) to deposit 1 μL of AAV2 solution or PBS. Care was 

taken to avoid damaging the lens. Visualization of partial retinal detachment around the 

injection site by fundus examination at the conclusion of injection confirmed successful 

subretinal delivery.

2.4. Optical coherence tomography

To affirm the safety and efficacy of subretinal injections in vivo, the posterior segments of 

mice were imaged bilaterally with OCT (Spectralis HRA + OCT, Heidelberg Engineering, 

Heidelberg, Germany) at 3 and 4 weeks after subretinal injection.
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2.5. Funduscopy and X-Gal staining and light microscopy

To verify short-term AAV2 transfection in vivo, the retinochoroidal tissue in both eyes of 

mice from the AAV2.AcGFP group was funduscopically examined at one month after 

subretinal injection with the fluorescein angiography (FA) modality (Spectralis HRA + OCT, 

Heidelberg Engineering) for autofluorescence.

To reaffirm transfection ex vivo, retinas from the AAV2.LacZ group were harvested at the 

same one month endpoint and stained with X-gal (InvivoGen, San Diego, CA) as per 

manufacturer’s instructions. The RPE/choroid was then dissected, prepared for flat mount, 

and observed under brightfield illumination for blue LacZ signal.

2.6. Anti-FLAG immunoprecipitation and western blot

To verify long-term plasmid COMP-Ang1 transduction, globes from the AAV2.COMP-

Ang1, AAV2.LacZ, PBS, and no injection groups were harvested three months after initial 

subretinal injection. After isolating the RPE/choroid/sclera complex from the remaining 

structures, the RPE/choroid tissue was dissected from the sclera. The RPE/choroid 

specimens were next put in 400 μl of radioimmunoprecipitation assay (RIPA) buffer 

(Sigma–Aldrich, St. Louis, MO) containing a protease and phosphatase inhibitor cocktail 

(Roche Diagnostics, Indianapolis, IN), placed on ice, and subjected to homogenization with 

a sonic dismembranator (Fisher Scientific, Pittsburg, PA). Protein concentration was 

estimated by bicinchoninic acid assay (BCA), and overall protein levels were compared by 

running protein lysate samples on sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE), blotting, and probing with anti-GAPDH antibody (1:3000, 

Abcam, Cambridge, MA). Another set of protein lysate samples were immuno-precipitated 

with anti-FLAG M2 affinity gel (Sigma–Aldrich) as per the manufacturer’s instructions. 

Eluted protein samples were then run on 12% SDS-PAGE and transferred to a 

polyvinylidene difluoride (PVDF) membrane. After staining with anti-FLAG biotinylated 

M2 antibody (Sigma–Aldrich), the proteins were incubated with streptavidin horseradish 

peroxidase substrate (HRP, Abcam) and detected by transillumination (FOTO/Analyst 

Electronic Imaging Systems, FOTODYNE, Hartland, WI).

2.7. Laser-induced CNV

Laser-induced rupture of Bruch’s membrane is a well-accepted and frequently utilized 

murine model of choroidal neovascularization (Lambert et al., 2013; Tobe et al., 1998) 

which our laboratory has successfully adopted for animal studies on AMD. Each 

experimental group underwent laser treatment one month after subretinal injection. The 

beam from a diode laser (532 nm; OcuLight GLx, Iridex, Mountain View, CA) was directed 

onto the retina via slit lamp, using a 22-mm coverslip as a contact lens. The treatment 

parameters were optimized for the formation of a cavitation bubble in the choroid without 

hemorrhage (spot diameter, 100 μm; intensity, 120 mW; duration, 100 ms). All laser burns 

were produced symmetrically and circumferentially 2–3 disc diameters from the optic nerve. 

Four laser spots (3, 6, 9, and 12 o’clock axes) were generated for CNV volume analysis, 

while eight laser spots (adding in the 1.5, 4.5, 7.5, and 10.5 clock–hour axes) were generated 

for the VEGF and HIF1-α experiments. The creation of a break in Bruch’s membrane at 

each spot was verified by visualization of a bubble at the time of photocoagulation.
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2.8. Quantitation of VEGF

Multiple studies have demonstrated that VEGF levels in the RPE/ choroid climax at 3 days 

post laser photocoagulation (Ashikari et al., 2010; Mizutani et al., 2013; Nozaki et al., 2006; 

Sakurai et al., 2003). On this basis, globes from the AAV2.COMP-Ang1, AAV2.AcGFP, and 

PBS groups were harvested three days after laser-induced CNV. After isolation of RPE/

choroid tissue, an enzyme-linked immunosorbent assay (ELISA) was performed per 

manufacturer’s instructions using the Quantikine Mouse VEGF Kit (R&D Systems, 

Minneapolis, MN). VEGF-A concentrations were calculated from the standard curve and 

corrected by total protein.

2.9. Quantitation and qualitation of HIF-1α

In addition to VEGF, hypoxia-inducible factor 1-alpha (HIF-1-alpha, HIF-1α), a 

transcription factor which is activated by decreased oxygen availability in the cellular 

environment, becomes elevated after laser CNV. In response to hypoxic conditions caused 

by the insult, HIF-1α reaches maximum concentrations at day 3 after laser-induced CNV 

and can be assayed by Western blot or ELISA analysis (Yang et al., 2009).

To investigate the possibility of a hypoxia-based association between AAV2.COMP-Ang1 

and VEGF, we evaluated HIF-1α expression in the RPE/choroid with immunoblotting and 

ELISA. For immunoblotting, RPE/choroid lysates were detected usingWestern blot with 

anti–HIF–1α antibody (ab51608, Abcam, Cambridge, MA). For ELISA, the same antibody 

was used with the methods described above for VEGF quantification (Section 2.8).

2.10. Quantitation of CNV

Peak CNV volume has previously been shown to occur 7 days after laser-induced CNV 

(Mizutani et al., 2013). Accordingly, one week after laser injury, globes from the 

AAV2.COMP-Ang1, AAV2.AcGFP, and PBS groups were harvested. After removing the 

cornea and lens, the eye cup was fixed in 4% paraformaldehyde for 2 h at 4 °C. The retina 

was then dissected out. The sclera/choroid/ RPE complex was washed three times in PBS, 

permeated for 30 min in 1% triton X-100, blocked in 5% BSA with 0.2% tritonX-100 and 2 

mmol/L MgCl2, and stained with 5ug/mL Alexa Fluor (AF) 568-conjugated isolectin GS-

IB4 (1:200, Invitrogen) in blocking buffer overnight (Gaddipati et al., 2015). After three 

additional washings, samples were flat mounted on glass slides. Isolectin-568 and 

AAV2.AcGFP signal were analyzed by scanning laser confocal microscopy (Olympus 

America, Center Valley, USA). Four fields, comprising each of the laser spots, were imaged 

for each retina using the 40X oil objective, and CNV volume measurements were calculated 

(Sakurai et al., 2003; Uehara et al., 2013).

2.11. Statistical analysis

Data was collected and analyzed in Excel (Microsoft, Redmond, WA). Mean values and 

standard deviations were computed. The Student’s two-tailed t-test was performed to 

compare differences between two samples, with significance set at p < 0.05. Analysis of 

variance (ANOVA) with significance set at p < 0.05, followed by a post-hoc Bonferroni 

correction, was used for multiple pairwise comparisons involving three or more samples.
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3. Results

3.1. The retinal detachment created by subretinal injection resolves spontaneously

Although there is a theoretical risk of permanent damage from the iatrogenically formed 

rhegmatogenous retinal detachment during subretinal injection, prior studies have 

demonstrated that this side effect is temporary and self-resolving (Lai et al., 2012). When 

tracked by OCT, the retina typically reattaches as the injected subretinal fluid dissipates, 

without any concomitant impairment to visual function on electroretinography (ERG) or 

optokinetic tracking (OKT) (Zhang et al., 2015), likely helped by the fact that the 

penetration of the needle is in the peripheral retina distant from the macula.

Corroborating the existing data on the safety of subretinal injections, we found that by 3 and 

4 weeks post-injection, the retina had successfully reattached, with mild edema which 

gradually dissipated from one week to the next (Fig. 2, A and B). No other adverse 

injection-related sequelae were observed.

3.2. Subretinal AAV2 localizes and propagates within the RPE/ choroid

Subretinal AAV2 localization was first tested with well-established reporter genes: AcGFP, 

which has a fluorescent product (Cereso et al., 2014; Cronin et al., 2012; Li et al., 2008; 

Zhang et al., 2012, 2015), and LacZ, which has a chromogenic product (Hojo et al., 2004), 

to validate successful inoculation of the targeted tissue.

The structural integrity of flat mounted tissue from both AAV2.AcGFP and AAV2.COMP-

Ang1 preparations appeared grossly intact, with no obvious signs of damage. A diffuse GFP 

signal was seen in the AAV2.AcGFP group (Campochiaro, 2011) using ex vivo confocal 

microscopy (Fig. 3A and B) and in vivo funduscopy (Fig. 3C). AAV2 transfection was 

verified in the AAV2.LacZ group along by blue X-gal signal (Jomary et al., 1994) (Fig. 3D).

These viral control results confirmed efficient delivery, integration, and activity of AAV2 

batches prepared per our protocol.

3.3. Subretinal AAV2.COMP-Ang1 expresses COMP-Ang1 protein in the RPE/choroid

Intravitreal administration of AAV2.COMP-Ang1 was previously shown to successfully 

transducer and treat retinas of diabetic mice (Cahoon et al., 2015). As this is the first paper 

to test the same AAV2 payload using a subretinal approach, we first confirmed expression of 

COMP-Ang1 protein in the RPE/choroid prior to experimental trials.

An anti-FLAG monoclonal antibody (Cho et al., 2004; Hwang et al., 2008) was used to 

detect the FLAG sequence incorporated in our AAV2.COMP-Ang1 gene construct. This 

antibody labeled a band of the expected size (38 kDa) in RPE/choroids of mice treated with 

AAV2.COMP-Ang1 that was not apparent in controls (Fig. 4).

This data indicated that the incorporation of COMP-Ang1 plasmid DNA into an AAV2 

vector is an effective technique for the delivery of COMP-Ang1 protein to the subretinal 

tissue.
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3.4. Subretinal AAV2.COMP-Ang1 does not suppress HIF-1α in the RPE/choroid

CNV formation and VEGF production in AMD has been linked to hypoxia (Zhao et al., 

2008). HIF-1α may be involved in CNV formation by controlling VEGF secretion (Zhang et 

al., 2007). As a vascular stabilizing agent, which restores normal perfusion, we surmised that 

AAV2.COMP-Ang1 would be able to prevent hypoxia and the resultant upsurge in HIF-1α 
levels in the RPE/choroid.

Our western blot for HIF-1α did not show any observable difference between bands from 

either our AAV2.COMP-Ang1 or control groups (Fig. 5B). Band intensities were calculated 

using densitometry analysis but were not significant (data not shown). HIF-1α 
concentrations from ELISA (Fig. 5A) were as follows (mean ratio ± SD): AAV2.COMP-

Ang1, 0.18 ± 0.02 pg/mL; AAV2.GFP 0.16 ± 0.02 pg/mL; PBS 0.17 ± 0.02 pg/mL; no 

subretinal injection 0.17 ± 0.02 pg/mL. There was no difference between groups (p = 0.4).

These outcomes suggest that AAV2.COMP-Ang1 does not create a more normoxic 

environment in the RPE/choroid, contrary to our initial theory.

3.5. Subretinal AAV2.COMP-Ang1 suppresses VEGF levels in the RPE/ choroid

Since VEGF plays a central role in CNV pathogenesis, we explored the relationship between 

VEGF and AAV2.COMP-Ang1. ELISA is a common way to examine VEGF levels in the 

RPE/ choroid (Itaya et al., 2007; Kim et al., 2008; Zhang et al., 2015).

Our output VEGF-A/total protein ratios from ELISA, with n representing the number of 

mice, were as follows (mean ratio ± SD): AAV2.COMP-Ang1 0.10 ± 0.01 pg/μg (n = 6); 

AAV2.AcGFP 0.15 ± 0.03 pg/μg (n = 5); PBS 0.14 ± 0.03 pg/μg (n = 5) (Fig. 6). The VEGF 

concentration in the AAV2.COMP-Ang1 group was significantly decreased from both the 

AAV2.AcGFP (33%) and PBS (29%) (p < 0.01).

Consistent with earlier articles describing local suppression of VEGF levels at the site of 

COMP-Ang1 administration (Cahoon et al., 2015; Kim et al., 2008), these outcomes suggest 

that the subretinal injection of AAV2.COMP-Ang1 may downregulate VEGF expression in 

the RPE/choroid.

3.6. Subretinal AAV2.COMP-Ang1 suppresses CNV volume

Quantifying isolectin IB4 staining by confocal image analysis is an accepted method for 

appraising CNV, the dominant feature of neovascular AMD and the primary outcome of 

interest for this study (Gaddipati et al., 2015; Zhang et al., 2015).

Our CNV volume measurements (Fig. 7), with n representing the number of laser spots 

assayed, were as follows (mean volume ± SD): AAV2.COMP-Ang1 6.36 ± 1.94 × 104 μm3 

(n = 31); AAV2.AcGFP 21.32 ± 4.57 × 104 μm3 (n = 30); PBS 16.12 ± 3.16 × 104 μm3 (n = 

40) (Fig. 8). The AAV2.COMP-Ang1 group had significantly less CNV than the 

AAV2.AcGFP group (70%, p < 0.01) and the PBS group (61%, p < 0.0167).
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These results, revealing that AAV2.COMP-Ang1 has an anti-CNV effect, correlate well with 

existing data on CNV diminution by recombinant COMP-Ang1 protein in an identical 

model of AMD (Lee et al., 2014).

Taken together, our data posits the suppression of VEGF-mediated CNV formation as one of 

the mechanisms of action for AAV2.COMP-Ang1 in neovascular AMD, but does not 

provide a full picture of AAV2.COMP-Ang1’s therapeutic effect. The absence of a link with 

HIF-1α and the disproportionate difference in VEGF versus CNV suppression invites 

inquiry into other mechanisms which may be at play.

4. Discussion

This study expands our laboratory’s earlier findings on the efficacy and safety of using an 

AAV2 vector for delivery of COMP-Ang1 (Cahoon et al., 2015) and a subretinal modality 

for AAV2-mediated gene therapy in AMD (Zhang et al., 2015). To our knowledge, it is the 

first report of subretinal administration of AAV2.COMP-Ang1.

The broad transduction by AAV2.LacZ at 1 month post-injection, followed by sustained 

expression of COMP-Ang1 protein by AAV2.COMP-Ang1 at 3 months post-injection, 

together serve to validate subretinal AAV2 as a feasible vehicle delivering COMP-Ang1 to 

the RPE/choroid.

Our data builds upon previous reports, demonstrating that AAV2.COMP-Ang1 suppresses 

laser-CNV by up to 70%. As such, we sought to determine the mechanism for this anti-

angiogenic activity. We initially speculated that AAV2.COMP-Ang1 counteracts 

dysfunctional angiogenesis in AMD through vascular stabilization and subsequent 

modulation of hypoxia-induced VEGF secretion (Nakajima et al., 2013; Xiao et al., 2008).

Although we found significant VEGF-A reduction by AAV2.COMP-Ang1 compared to 

controls, we were unable to find significant differences in HIF-1α expression by either 

ELISA or immunoblotting. This could be due to the fact that VEGF-A is regulated my other 

inflammatory and factors besides HIF-1α (Lee et al., 2014; Nagineni et al., 2012, 2003). 

Additionally, although we saw decreases in VEGF levels in mice treated with AAV2.COMP-

Ang1 compared to controls, the VEGF suppression was minimal (29–33%) compared to a 

rather large decrease in CNV volume suppression (61–70%). As such, although our results 

indicate that laser-induced CNV suppression by AAV2.COMP-Ang1 may be partially due to 

VEGF-A reduction, hypoxia may not be the key mechanistic link. Additionally, there may 

be alternative, non-VEGF-A mediated mechanisms at play.

For example, Gavard et al. demonstrated that angiopoietin 1 treated endothelial cells inhibit 

VEGF-A pathways through sequestering the tyrosine kinase Src (Gavard et al., 2008). 

Angiopoietin 1 is also known to inhibit several inflammatory pathways (He et al., 2014; 

Ismail et al., 2012). Both Tie2 receptor expression and VEGF secretion can be found in the 

RPE cells (Oh et al., 1999; Otani et al., 1999; Zhang et al., 2015), vascular endothelial cells, 

choroidal fibroblasts (Kvanta, 1995), and macrophages (Gu et al., 2010; Jones et al., 2001; 

Lee et al., 2014; Nozaki et al., 2006; Sakurai et al., 2003) that constitute CNV membranes. 

Moreover, COMP-Ang1 administration, Tie2 activation, and VEGF inhibition all interfere 
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with vascular endothelial-cadherin (VE-cadherin) and zonula occludens (ZO) sequestration 

after an inflammatory insult (Giannotta et al., 2013; Koh, 2013; Lee et al., 2014; Murakami 

et al., 2009), thereby strengthening the endothelial tight junctions responsible for 

maintaining the barrier function of vessels vital for preventing vision-threatening fluid 

leakage.

Current treatments for neovascular AMD target angiogenesis through direct inhibition of 

VEGF-A. Although effective in most cases, there are many patients that are insensitive to 

anti-VEGF-A therapy. There are other factors (PDGF-BB and PDGF-CC) that contribute to 

CNV formation, growth, and persistence (Hou et al., 2010). Additionally, TGF- β, IFN-γ, 

TNF-α, and IL-1β are known to be potent inducers of VEGF secretion (Nagineni et al., 

2012, 2003), and macrophage infiltration is also responsible for increased VEGF levels (Lee 

et al., 2014), leading to CNV. In our current study, we demonstrated that AAV2.COMP-

Ang1 suppresses CNV growth and may serve as an alternative therapy to direct anti-VEGF-

A inhibition in combating neovascular AMD. Although in our present study we were unable 

to fully elucidate the exact mechanism for CNV and VEGF suppression, future investigation 

will focus on understanding this etiology and may provide a new candidate factor to target 

for anti-angiogenesis.

Subretinal inoculation is a common practice and has been used on mice, rats, dogs, primates 

(Jacobson et al., 2006a, 2006b). Currently in humans, there are several clinical trials 

investigating the subretinal delivery of RPE stem cells (Schwartz et al., 2012, 2015). 

Previous studies have commented on the safety of subretinal inoculation of recombinant 

adeno-associated viruses (Jacobson et al., 2006a; Zhang et al., 2015). Jacobson et al., 

investigating use of an AAV2 vector for gene delivery in a model of Leber’s congenital 

amaurosis noted that there was no optic nerve or brain viral inoculation, retinal thinning was 

rare and post-injection inflammation resolved by 3 months (Jacobson et al., 2006a). This 

study also demonstrated that retinal function (via ERG) was no different compared to 

controls or pre-injection testing (Jacobson et al., 2006a, 2006b).

In our lab, we have also previously demonstrated the safety of 1) subretinal inoculation of 

recombinant intracellular-VEGF modulating AAV2 vectors and 2) intravitreal inoculation of 

AAV2.COMP-Ang1. Zhang et al. (2015) investigated the use of subretinal AAV2-Flt23k 

delivery, which decreased intracellular-VEGF levels in RPE/ Choroid tissue. In assessing 

retinal health, mice treated with subretinal injection of AAV2.Flt23k showed no decrease in 

ERG response, no retinal thinning, and no apoptosis of RPE or choroid cells compared to 

controls. Recently, Cahoon et al. (2015) also noted the safety of AAV2.COMP-Ang1 

administered via intravitreal route. Corroborating the results from Zhang et al. (2015), 

Cahoon et al. (2015) also noted no scotopic or photopic difference in b-wave amplitudes on 

ERG in mice treated with AAV2.COMP-Ang1 compared to AAV2.AcGFP or PBS treated 

mice. Our results add to these previous findings that subretinal administration of 

AAV2.COMP-Ang1 is both a safe and efficacious modality for CNV suppression. Although 

Zhang et al. (2015) and Cahoon et al. (2015) differed slightly from our experiment in either 

recombinant protein or location of injection (subretinal vs. intravitreal), their data support 

that sub-retinal injection of AAV2.COMP-Ang1 likely shares a similar safety profile.
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To date, subretinal injections in humans have been limited. There is theoretical risk for this 

type of treatment route including rhegmetogenous retinal detachment, retinal hemorrhage, 

retinal degeneration and atrophy, as well as local and systemic inflammatory response. 

Despite these theoretical risks, several human trials assert that subretinal injections are both 

safe and efficacious (Bennett et al., 2012; Hauswirth et al., 2008; Maguire et al., 2008; 

Schwartz et al., 2015). Subretinal injections have been used as gene therapy for Leber 

congenital amaurosis type 2 (LCA2) (Testa et al., 2013), stem cell transplantation for age-

related macular degeneration and Stargarts disease (Schwartz et al., 2012, 2015) during pars 

plana vitrectomy to reduce hemorrhage (Ehlers et al., 2015; Moisseiev et al., 2014). Several 

of these studies have also utilized AAV2 as a viral vector (Bennett et al., 2012; Hauswirth et 

al., 2008; Maguire et al., 2008). In these studies, safety assessment has revealed only 

minimal systemic and immunological response (Maguire et al., 2008). Early data appears to 

support safety of subretinal AAV2 administration in humans (Bennett et al., 2012; Hauswirth 

et al., 2008; Maguire et al., 2008). As such, the translation of AAV2 mediated therapies, 

delivered via a subretinal approach, into human models, is both relevant and vital.

Future directions for research include a focus on whether COMP-Ang1 antagonizes the pro-

permeability activities of VEGF via CNV leakage assays, followed by an evaluation of 

combination therapy to characterize whether COMP-Ang1 can work in concert with and/ or 

reduce the need for VEGF blockers. Additionally, given prior data demonstrating that AAV2 

expression peaks 4–8 weeks post-delivery (Wang et al., 2004), further study to identify the 

optimal concentrations and dosing intervals needed to maximize therapeutic outcomes is 

warranted.

5. Conclusions

Our results indicate that a) subretinally administered AAV2 is a suitable vector for long-

lasting COMP-Ang1 expression in the RPE/ choroid tissue, b) AAV2.COMP-Ang1 

suppresses CNV, and c) although VEGF suppression in the RPE/choroid may be one of the 

mechanisms by which AAV2.COMP-Ang1 exerts its therapeutic effect, this effect is not 

driven by hypoxia. Moreover, there may be additional non-VEGF mediated mechanisms 

responsible for the anti-angiogenic activity of COMP-Ang1. Taken together, we believe 

these findings suggest that AAV2.COMP-Ang1 has the potential to serve as an alternative or 

complementary option to anti-VEGF agents for the long-term amelioration of neovascular 

AMD.
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Fig. 1. 
Schematic diagram depicting subretinal injection in a mouse model.
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Fig. 2. 
The retina reattaches after subretinal injection. A. Cross-sectional OCT image of the retina 

at the site of penetration 3 weeks post-injection demonstrating reapposition of the retina to 

the RPE/choroid with mild residual subretinal fluid. B. Sequential cross-sectional OCT 

image of the retina in the same location at 4 weeks post-injection showing continued 

attachment of the retina with progressive improvement in subretinal edema.
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Fig. 3. 
AAV2 successfully transduces subretinal and outer retinal tissues. A. RPE/choroid from an 

eye treated with AAV2.AcGFP (green) and stained with isolectin (red). Red neovascular 

tufts (at 2 and 5 o’clock) surrounded by diffuse GFP signal validate CNV formation within 

the AAV2 treated tissue. B. High power magnification of laser-induced CNV (isolectin, red) 

within AAV2.AcGFP treated RPE/choroid (green). C. Funduscopic FA modality image 

showing diffuse in vivo expression of GFP autofluorescence in an eye AAV2.AcGFP. D. 

RPE/choroid from an eye treated with AAV2.LacZ and stained with X-gal. Blue signal 

indicates successful AAV transduction following subretinal administration. Scale bars = 

1000 μm main, 400 μm inset. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
AAV2 expresses COMP-Ang1 protein in RPE/choroid. Western blot for anti-FLAG antibody 

in the RPE/choroid at 2 months after subretinal injection. Detection of a 38 kDa band 

signifies successful expression of COMP-Ang1 protein in the RPE/choroid. GAPDH and 

background bands indicate similar total protein in all samples.
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Fig. 5. 
AAV2.COMP-Ang1 does not suppress HIF-1α in RPE/choroid. A. Bar graph displaying 

mean HIF-1α levels in RPE/choroid per ELISA. There was no difference among HIF-1α 
levels among all groups (ANOVA p > 0.3). B. Western blot for anti–HIF–1α in RPE/choroid 

at 1 month after subretinal injection. There was no observable difference between bands 

from either our AAV2.COMP-Ang1 or control groups. Band intensities were calculated 

using densitometry analysis but were not significant (data not shown). The arrow denotes 

level of expected banding (~116 kDa).
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Fig. 6. 
AAV2.COMP-Ang1 suppresses VEGF in the RPE/choroid. Bar graph displaying mean 

VEGF levels in the RPE/choroid. AAV2.COMP-Ang1 significantly reduces VEGF levels 

compared to AAV2.AcGFP and PBS (p < 0.01) as per ANOVA with Bonferroni correction. 

The asterisk designates a significant difference in the AAV2.COMP-Ang1 group compared 

to both controls with the Student’s t-test.
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Fig. 7. 
AAV2.COMP-Ang1 inhibits laser-induced CNV. Immunofluorescent images of RPE/choroid 

flat mounts representative of average laser-induced CNV spot size (A–C). Magnitude of 

CNV is visibly lower in the AAV2.COMP-Ang1 group compared to controls. Scale bar = 50 

μm.
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Fig. 8. 
AAV2.COMP-Ang1 inhibition of laser induced CNV is statistically significant. Bar graph 

displaying mean CNV volume. AAV2.COMP-Ang1 significantly reduces CNV volume 

compared to AAV2.AcGFP (p < 0.01) and PBS (p < 0.0167) as per ANOVA with Bonferroni 

correction. The asterisk designates a significant difference in the AAV2.COMP-Ang1 group 

compared to controls with the Student’s t-test.

Lambert et al. Page 25

Exp Eye Res. Author manuscript; available in PMC 2018 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Animals
	2.2. AAV2 vector construction
	2.3. Subretinal treatment injections
	2.4. Optical coherence tomography
	2.5. Funduscopy and X-Gal staining and light microscopy
	2.6. Anti-FLAG immunoprecipitation and western blot
	2.7. Laser-induced CNV
	2.8. Quantitation of VEGF
	2.9. Quantitation and qualitation of HIF-1α
	2.10. Quantitation of CNV
	2.11. Statistical analysis

	3. Results
	3.1. The retinal detachment created by subretinal injection resolves spontaneously
	3.2. Subretinal AAV2 localizes and propagates within the RPE/ choroid
	3.3. Subretinal AAV2.COMP-Ang1 expresses COMP-Ang1 protein in the RPE/choroid
	3.4. Subretinal AAV2.COMP-Ang1 does not suppress HIF-1α in the RPE/choroid
	3.5. Subretinal AAV2.COMP-Ang1 suppresses VEGF levels in the RPE/ choroid
	3.6. Subretinal AAV2.COMP-Ang1 suppresses CNV volume

	4. Discussion
	5. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8

