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Abstract

Ductal carcinoma in situ (DCIS) can be a precursor of invasive breast cancer. Since the advent of
screening mammography in the 1980's, the incidence of DCIS has increased dramatically. The
value of screen detection and treatment of DCIS is a matter of controversy, since it is unclear to
what extent detection and treatment of DCIS prevents invasive disease and reduces breast cancer
mortality. The aim of this paper is to provide an overview of existing Cancer Intervention and
Surveillance Modelling Network (CISNET) modeling approaches for the natural history of DCIS,
and to compare these to other modeling approaches reported in the literature. Five of the six
CISNET models currently include DCIS. Most models assume that some, but not all, lesions
progress to invasive cancer. The natural history of DCIS cannot be directly observed and the
CISNET models differ in their assumptions and in the data sources used to estimate the DCIS
model parameters. These model differences translate into variation in outcomes such as the
amount of overdiagnosis of DCIS with estimates ranging from 34%-72% for biennial screening
from age 50-74 years. The other models described in the literature also report a large range in
outcomes with progression rates varying from 20%-91%. In the future, DCIS data by grade from
active surveillance trials, development of predictive markers of progression probability, and
evidence from other screening modalities, such as tomosynthesis, may be utilized to inform and
improve the models' representation of DCIS and might lead to convergence of the model estimates.
Until then, the CISNET model results consistently show a considerable amount of overdiagnosis
of DCIS, supporting the safety and value of observational trials for low-risk DCIS.
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Introduction

Ductal carcinoma in situ (DCIS) represents a spectrum of abnormal cells confined to the
breast duct and is a risk factor for invasive breast cancer development [1]. Before the
introduction of mammography screening, DCIS was not often diagnosed. Since the advent
of screening mammaography in the 1980s, the incidence of DCIS has increased dramatically.
In the United States, the incidence of DCIS increased from 5.8 per 100,000 women in 1975
to 68.9 per 100,000 women in 2010 [2-4]. By the year 2020, more than one million US
women are expected to be living with and have been treated for a DCIS diagnosis [1].

The etiology of DCIS is presumably heterogeneous and its natural history is poorly
understood as onset, progression and regression rates are not directly observable. Some
DCIS lesions likely represent a precursor to subsequent invasive breast cancer, but DCIS
may also remain indolent for sufficiently long that a woman dies of other causes [5-7]. The
proportion of untreated DCIS that will progress to invasive breast cancer is unknown [1],
and therefore, the impact of detecting and treating DCIS, particularly for any given woman,
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is unclear. Treating some DCIS lesions will probably prevent invasive disease, and
consequently might reduce breast cancer mortality, thus can be considered a benefit. Other
lesions might remain indolent in the absence of treatment with only harms related to their
treatment (representing overdiagnosis and overtreatment). Since we do not know which and
how many DCIS lesions will progress, the value of screen detection and treatment of DCIS
remains unknown and is a matter of considerable controversy.

Despite the uncertainty around the natural history of DCIS, some predictors for progression
have been identified. For example, younger age at diagnosis and black ethnicity are
associated with higher breast cancer-specific mortality among patients with DCIS [8, 9].
Other identified factors for progression include estrogen receptor (ER) negative status, larger
DCIS tumor size, and comedonecrosis [9]. In addition, DCIS progression to invasive breast
cancer can be predicted by cytologic grade [5, 7, 9]. Pathologists use three grading
categories: corresponding to well (grade 1), moderately (grade 2), and poorly (grade 3)
differentiated DCIS [10], also referred to as “low grade”, “intermediate grade”, and “high
grade”, respectively. Grade has been found to be associated with recurrence [11, 12] and the
survival benefit of surgical treatment has been found to be lower for low-grade DCIS than
that for intermediate or high-grade DCIS [13]. Furthermore, the DCIS Score, based on
Oncotype DX, has been found to be associated with recurrence of DCIS (either as DCIS or
invasive breast cancer) [14].

These identified prognostic factors for recurrence may enable physicians to tailor treatment
strategies. Specifically, recommending treatment that is less aggressive would be appropriate
for DCIS that has a low risk for future recurrence, and predictors such as age, ER status,
and/or grade might be used to identify low-risk lesions. Thus, understanding the natural
history of DCIS and its recurrence and progression predictors to guide treatment strategies is
important for both clinical and public health decisions. However, investigating the natural
history of DCIS is difficult as ideal high-quality data is lacking, given that progression paths
are not directly observable. In addition, data are also limited because survival for women
diagnosed with DCIS is very high and a trial would need to enroll very large numbers of
women and follow them for a lifetime to be adequately powered to detect an impact of
screening and treatment on mortality or other endpoints. Moreover, the natural history of
DCIS is difficult to study because the standard of care is immediate treatment following
diagnosis. In these instances (comparative) modeling can be useful, for example to provide a
range of plausible DCIS progression and regression rates by evaluating what set of
assumptions about these rates best fit the existing observable data. In addition, in natural
history models, the difference in risk of progression based on age, grade and ER status can
be included by allowing varying transition rates for these factors, which has already been
done in a well-established microsimulation model to include grade [15].

Furthermore, within the Cancer Intervention and Surveillance Modelling Network
(CISNET) comparative modeling work has been done. Previously, three CISNET models
estimated the amount of DCIS overdiagnosis in women age 74 and older. The results
indicated that at older ages harms began to outweigh benefits, largely as a consequence of
the increasing amount of overdiagnosis of DCIS at older ages [16], which is partly due to the
higher death rate from competing causes with aging. Together, these modeling papers, on
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one hand highlight the uncertainty regarding the natural history of DCIS, but also show the
potential value of modeling in providing information where results are consistent.

The aim of this paper is to provide an overview of the ways CISNET models simulate the
natural history of DCIS, illustrate how different assumptions affect results, to compare the
CISNET models to other models described in the literature, and to highlight developments
that might lead to model improvements or refinements.

CISNET models
CISNET DCIS models — model overview

CISNET is a consortium of National Cancer Institute (NCI)-sponsored investigators who use
statistical modeling to improve our understanding of cancer control interventions in
prevention, screening, and treatment and their effects on population trends in incidence and
mortality. The CISNET breast models have been described in detail previously and recently
updated descriptions have been given [17-22]. Briefly, the models are designed to match
breast cancer incidence and mortality rates observed in the US. Four models are micro-
simulation models (models developed by Erasmus MC, University Medical Center
Rotterdam, model E; Georgetown University Medical Center, and Albert Einstein College of
Medicine, model G-E; MD Anderson Cancer Center, model M; and University of
Wisconsin, Madison and Harvard Medical School, model W), one model uses an analytic
approach (model developed by Dana-Farber Cancer Institute, model D), and the remaining
model is a hybrid Monte Carlo simulation (model developed by Stanford University, model
S). The micro-simulation models include natural history components that approximate tumor
progression in size and stage (https://resources.cisnet.cancer.gov/registry/site-summary/
breast/). Five of the six CISNET models currently include DCIS (all except model S). Most
models assume that some, but not all, lesions progress to invasive cancer, for example by
including three different types of preclinical DCIS: DCIS that progresses to invasive disease
during the preclinical phase, progressive DCIS that is diagnosed clinically, and DCIS that
does not progress (and might regress). However, the models differ in natural history of DCIS
(Table 1) and model structure (see Figure 1), with different pathways for the progression and
regression of DCIS and breast cancer. For example, invasive cancer can either develop
through pre-clinical screen-detectable DCIS (Figure 1C), or also develop directly from pre-
clinical DCIS that is not detectable at screening (Figure 1A and 1B). In the models, DCIS
can regress from pre-clinical screen-detectable DCIS to pre-clinical undetectable DCIS
(Figure 1A) or to an absorbing ‘no breast cancer’ state and disappear (“cease to exist”)
(Figure 1B and 1C). One model (model W) allows regression of pre-clinical DCIS as well as
invasive disease (Figure 1D). Although the regression of breast cancer, especially invasive
disease, is controversial, there is some evidence supporting the possibility of regressing
tumors, including epidemiologic evidence [23] and a case report on regression of breast on
imaging [24].

Most of the CISNET models have used data from the Surveillance, Epidemiology, and End
Results (SEER) Program [25], typically age-specific incidence over time, combined with
data from other sources (Wisconsin cancer registry for model W, Dutch data for model E) to
estimate DCIS parameters, although one model used data from another source to develop
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their model (Norwegian data for model D) [26]. All CISNET models include a certain
probability for mammography to detect DCIS at screening (Table 2). Specifically models D
and GE use the same detection mechanism for DCIS as for invasive disease by including a
sensitivity of screening. Model W uses the detection probability as a function of tumor size
and because in situ lesions are small the likelihood of detecting DCIS is lower than that for
detecting invasive breast cancer. Model E includes two separate detection mechanisms;
DCIS detection is modeled by including a sensitivity, whereas screen-detection of invasive
disease is modeled by a threshold diameter. Thus, in some models the sensitivity of a
screening test differs for DCIS and invasive cancer.

CISNET models — analysis

The CISNET models were recently applied to evaluate screening outcomes of various
screening strategies differing by age at which screening starts (40, 45, or 50 years) and
screening interval (annual, biennial) for the US female population [27]. We assessed the
results of those prior analyses by focusing on the (as yet unpublished) model-specific rates
of DCIS detection and overdiagnosis of the five CISNET models that include DCIS [28].
Overdiagnosis was defined as the detection of tumors that would not have been detected in a
woman's lifetime in the absence of screening. We estimated the detection and overdiagnosis
rate per 1000 women screened followed from age 40 over their lifetimes. In addition, the
percentage overdiagnosis was calculated by dividing the rate of overdiagnosed DCIS by the
rate of detected DCIS. We focus on four screening scenarios: biennial screening from 50-74
years (base), more frequent screening (annual screening from age 50-74 years; A50-74), an
earlier starting age (biennial screening from age 40-74 years; B40-74), and later stopping
age (biennial screening from age 50-84 years; B50-84).

CISNET models — results and implications

For biennial screening between age 50 and 74 years, the five models that include DCIS
predict that 154.4 women (median; range across five models 137.4 — 158.5; Table 3) are
diagnosed with breast cancer per 1000 women followed from age 40 over their lifetimes. Of
these women, 26.7 (25.8 — 32.3) are diagnosed with DCIS and 128.2 (110.7 — 131.8) with
invasive disease. Of the women diagnosed with DCIS, 15.6 (9.0-18.8) are overdiagnosed,
representing 51.3% (33.7%-71.8%) of the detected DCIS (Table 3). In contrast, for invasive
disease, the models estimate that of the 128.2 (110.7-131.8) breast cancers detected, 3.3
(1.8-15.4) are overdiagnosed, corresponding to 2.6% (1.5%-12.0%; Table 3). This means
that 2.6% (1.5-12.0%) of the invasive breast cancers that are detected would not have been
detected in the absence of screening and are overdiagnosed. There is no direct connection
between the amount of overdiagnosis of DCIS and overdiagnosis of invasive disease in the
models. For example, one model predicts relatively low overdiagnosis percentages for DCIS
as well as invasive breast cancer (model GE), whereas another model predicts relatively high
percentages for both (model M). In contrast, there are also models that have modest
estimates of DCIS overdiagnosis combined with relatively high estimates of invasive disease
overdiagnosis (model W) or the other way around (model E).

When annual screening from age 50-74 years is simulated, the models estimate 0.1-14.0
additional cases of DCIS being detected of which 0.1-13.7 are overdiagnosed (Table 4).
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Also, the models differ for the source for additional DCIS cases. For Models D, M, the
increase in detection of DCIS is entirely overdiagnosis, whereas in models E, GE, W it is
combination of overdiagnosis and earlier detection of lesions with progressive potential.

In addition, the order of scenarios that have the largest increase in overdiagnosis of DCIS
varies across models, as well as the magnitude of the increase. For example, for annual
screening the increase in overdiagnosis varies between 0.1 and 13.7 overdiagnosed DCIS
cases across models. Some models estimate the largest change in detection and
overdiagnosis when annual screening is considered (models E, M, W), whereas other models
predict the largest increase when upper age of screening is extended to age 84 (models D
and GE).

For the biennial screening scenario from age 50-74 years, the highest percentage of
overdiagnosis of DCIS and invasive breast cancer was estimated by model M followed by
W. This can be explained by the modeling choice of model M to assume a rather stable trend
in breast cancer incidence (background trend) over time and, therefore, assign more of the
increase to overdiagnosis than other CISNET models. Model W assumes that some invasive
disease is non-progressive, and consequently, has a higher estimate for overdiagnosis than
the other three models, especially for invasive disease.

For the other scenarios, annual screening from age 50-74 years, biennial screening from age
40-74 years, and biennial screening from age 50-84 years, there are two clusters of models:
models D and M assign the increase in detection of DCIS when screening more intensively
entirely to overdiagnosis. For model M that is again related to the stable background trend
and for model D, the screen detectable period for DCIS is relatively short. The other three
models (models E, GE, and W) only assign a proportion of the increase to overdiagnosis and
a proportion to earlier diagnosis. Models E and GE assign most of the increase to
overdiagnosis when moving to older ages and a smaller percentage when moving to younger
ages.

Description of other DCIS models in the literature

To improve the understanding of the natural history of DCIS, we conducted a literature
search to identify DCIS models that have been described in the literature. We searched
PubMed and JSTOR for “DCIS natural history modeling” and “DCIS progression”, and
selected the articles that focus on the estimation of key DCIS natural history parameters,
such as mean sojourn time for screen-detectable pre-clinical DCIS, and percent of DCIS
cases that progress to either invasive cancer, clinical DCIS, or potentially regress. We
identified 10 relevant studies, of which nine include DCIS natural history modeling (Table
5). Among them, four studies use Markov models [29-32] and five use simulation models
[15, 33-36], with parameters estimated with either maximum likelihood, Bayesian Gibbs
sampling or least square methods, and varying assumptions about DCIS natural history
pathways. Seven studies assumed that all invasive breast cancers progress through a pre-
clinical in situ or DCIS state that can be detected at screening [15, 29, 32-34, 36], whereas
the other two studies assumed that some DCIS or in situ lesions first become visible on
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mammograms as small invasive tumors [30, 35]. DCIS or in situ is assumed to have both
progressive and non-progressive paths in eight studies [15, 29-34, 36], with one study also
including non-progressive invasive cancers [36].

These 10 studies used various data sources including different combinations of: i) data
aggregated from population registries [15, 30, 35, 36], ii) observed national screening
service program data [32, 33, 37], iii) detailed data from randomized screening trials [29, 31,
32, 34] and iv) estimates made from previously reported studies including studies of DCIS
first overlooked at mammography [30, 36]. Generally, more detailed screening data makes it
possible to deduce more realistic natural history models, fitting the model using data from
different screening rounds and screening histories [29, 32]. In addition to the different data
sources, three studies include all in situ lesions [29, 31, 36], while seven others only include
DCIS [15, 30, 32-35, 37].

Parameters in the literature useful for DCIS modeling

The estimated proportion of DCIS progressing to invasive cancer varies widely in the
literature (Table 5), mainly due to the available data, study-specific model assumptions, and
different model structures. When all invasive breast cancer is assumed to go through a pre-
clinical screen detectable DCIS state, the estimated progression rate of DCIS to invasive
varies from 61% to 91% [15, 29, 31-34, 36]. When this assumption is not made, the
estimated progression rate from DCIS to invasive varies from 20% to 24.4% [30, 35]. Some
studies report a large proportion of progressive DCIS [31, 33, 34, 36], while other studies
report that most DCIS cases do not progress to invasive cancer [30, 35]. When the
proportion of progressive DCIS is reported by screening round, the subsequent screening
rounds often reported smaller proportions of progressive DCIS [29, 32] compared to initial
screening, as cases with a long sojourn time were diagnosed in earlier screening exams.
High-grade DCIS cases have a larger proportion progressing to invasive than low-grade
DCIS cases [15].

As for the mean sojourn time, when all invasive cancer are assumed to be screen detectable
at a pre-clinical DCIS stage, the estimated mean sojourn time for progressive DCIS cases in
the pre-clinical screen-detectable DCIS state are usually short varying from 1 month to 5
years [29, 31, 32, 34, 35]. On the other hand, the sojourn time estimates are much longer if it
is assumed that only a small fraction of invasive cancers comes from pre-clinical screen-
detectable DCIS [30]. The estimated mean sojourn time in pre-clinical screen-detectable
DCIS state for DCIS cases that progress to clinical DCIS or regress is in typically longer
than the mean sojourn time of DCIS cases that progress to invasive cancer [29, 32].

The mammography sensitivity for DCIS varies from 40% to 99% [29, 31, 33, 34]. The mean
sojourn time for progressive DCIS in the pre-clinical screen detectable DCIS state tends to
be smaller when mammography sensitivity is high. These variations reveal the uncertainty
regarding the natural history of DCIS, highlighting the need and potential directions of
CISNET modeling.
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Discussion

While the CISNET models have generated relatively similar results and conclusions in most
other respects, DCIS detection rates and overdiagnosis reveal more variation in results, with
predicted DCIS incidence ranging from 25.8 — 32.3 per 1000 women age 40 followed over
their lifetimes, and estimates of DCIS overdiagnosis ranging from 34%-72% for biennial
screening from age 50 to 74 years. The large difference in the predicted amount of
overdiagnosis of DCIS between models likely reflects the continued uncertainty about DCIS
natural history, in particular the progression rates, which is also reflected in the results from
other models described in the literature with reported progression rates varying from 20% to
91%.

In the literature outside of CISNET, several approaches have been proposed to model DCIS.
The variations in model structure, assumptions and results make it challenging to deduce
good overall estimates of key natural history parameters. Given the uncertainties in the DCIS
models, a realistic approach to DCIS modeling is to adopt several plausible sets of model
parameters and to evaluate a range of outcomes generated from the models. The CISNET
models are well-suited for this type of analysis. CISNET models have the ability to project
long-term implications for DCIS assumptions in terms of breast cancer outcomes such as life
expectancy and overdiagnosis, and can thus assess how much early detection impacts breast
cancer mortality. Also, moving forward, CISNET models are capable of utilizing multiple
models and vary model parameters, to explore the impact of different DCIS assumptions on
outcomes more systematically. In addition, both the impact of screening and treatment on
DCIS-related outcomes can be systematically reviewed and compared. Although it remains
to be seen to what extent these analyses will provide sufficiently accurate and consistent
findings to inform clinical practice, the comparative modeling effort of the CISNET models
will likely contribute to a greater understanding of DCIS.

Despite the large difference in the predicted amount of overdiagnosis of DCIS between
models, all models indicated that the amount of overdiagnosis of DCIS is substantial (i.e.,
34%-72% for biennial screening from age 50-74 years), indicating that per 1000 women
followed over their lifetimes 9-19 are overdiagnosed with DCIS and the majority of those
women will undergo treatment for their non-invasive disease. Almost all women (98%)
diagnosed with DCIS undergo a surgical procedure [13, 38] and recent work found an
increase in the utilization of mastectomy with reconstruction and contralateral risk-reducing
mastectomy over time [39]. There was also an increase in the proportion of women
undergoing adjuvant radiation therapy after surgery from 58.5% in 1998-1999 to 70% during
2006-2011 [39].

Modeling estimates might improve and results might converge when new data becomes
available. A unique opportunity to improve DCIS natural history modeling comes from trials
on active surveillance. Several trials are currently underway to evaluate active surveillance
approaches for DCIS. In the UK, the Low Risk DCIS Trial (LORIS), is comparing surgical
excision to active surveillance without excision [40, 41]. Similarly, the European
Organisation for Research and Treatment of Cancer (EORTC) has started a trial on the
management of low-risk DCIS (LORD), which is a randomized, multicenter, non-inferiority
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trial, between standard therapy approach versus active surveillance [42]. In the US a
prospective, randomized trial, Comparing Operative to Medical Endocrine Therapy for low-
risk DCIS (COMET), has recently been funded. Women diagnosed with low-risk DCIS will
be randomized to receive either guideline-concordant care of surgical intervention, with or
without radiation, or active surveillance of a mammogram every 6 months for 5 years.
Patients in both trial arms are free to choose endocrine therapy. Also, in the US, several
research networks, called cooperative groups, that conduct cancer clinical research primarily
under the sponsorship of the NCI, are presently testing the use of neo-adjuvant hormonal
therapy in postmenopausal women with ER-positive DCIS prior to surgery; those with a
complete response based on magnetic resonance imaging (MRI) will not receive additional
therapy. However, it will take a long time before results are available, e.g., for LORIS initial
results are expected in 2020 and for LORD the results are not expected before 2029. When
they do become available these data present a unique opportunity to validate models by
comparing the model projections to the final trial data.

In the meantime, thus, before final results from these trials become available, the models can
be used to evaluate which assumptions affect outcomes most. Also, data from several
different sources might be used and combined to compare model outcomes and see what
model structure and progression rates fit the data best. For example, data from different
screening modalities can inform models, as the ability to detect DCIS varies across
modalities. Screening ultrasound is less likely to detect DCIS compared to mammography in
the small number of controlled experiments available that make this comparison, because
ultrasound is unlikely to detect micro-calcifications. MRI may be more sensitive than
mammography [43, 44] by detecting the pathophysiologic properties like basement
membrane permeability in DCIS [45] perhaps explaining the tendency of MRI to detect
intermediate and high grade DCIS more readily than mammaography. By using a particular
set of parameters and modelling different screening modalities, it might become possible to
narrow down the range of plausible progression parameters. Furthermore, data by ER and
grade might be used to refine the models. Subsequently, the updated and refined models can
be used to simulate active surveillance strategies and quantify the predicted outcomes for
subgroups of women varying by age and with DCIS varying by grade and ER status.

Until then, the model results consistently show a considerable amount of overdiagnosis of
DCIS, which increases with more frequent screening. This indicates that women undergoing
regular screening with a screen-detected DCIS are quite likely to be overdiagnosed. Thus,
given the substantial amount of overdiagnosis estimated by the CISNET models for DCIS in
general, the model results support the safety and value of observational trials for low-risk
DCIS.
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Schematic overview of models for the natural history of DCIS and invasive breast cancer.
Invasive cancer can either develop through pre-clinical screening detectable DCIS (Figure
1C), or also develop directly from pre-clinical DCIS not detectable at screening (Figure 1A,
1B and 1D). Models include progression from preclinical screen-detectable DCIS to either
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clinical DCIS or preclinical invasive disease (Figure 1A, 1B, 1C, 1D), regression from
preclinical DCIS to normal tissue (Figure 1D), to pre-clinical undetectable DCIS (Figure
1A), or to a ‘no breast cancer’ (absorbing) state in which women are no longer at risk for
developing DCIS or invasive breast cancer (Figure 1B and 1C). Regression from invasive
disease is also possible (Figure 1D).
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Table 1
Natural history of DCIS in the CISNET models.
Model in situ or DCIS?" Doall til:]n;_c;rus?start as Progression/regression Modé structure

Yes, but some DCIS is
not screen detectable

b DCIS only and assumed to progress
to invasive directly
E All insitu Yes
GE DCIS only Yes

DCIS progress to clinical DCIS or invasive breast
cancer at exponential rates with mean sojourn time of
1.5-3 years; DCIS may also go back to a state in which
it is undetectable [19]

Figure 1A

DCIS progress to clinical or invasive breast cancer at an
exponential rate with age and calendar year dependent Figure 1B
sojourn times; DCIS may also regress [22]

DCIS progress to clinical or invasive breast cancer at an
exponential rate with mean sojourn time of 2.97 years; Figure 1C
DCIS may also regress [21]

Model M is not a natural history model. It does not specify how tumors grow. It is an empirical model to describe screening,

incidence, treatment and mortality. Under different screening scenarios, different stage distribution tables obtained from observed data

All tumors, including DCIS, progress according to a
Gompertz-type growth function, where the growth
parameter is a random variable distributed with Gamma.

M [28] are used to assign tumor stages: DCIS, stages I, II, 111 or IV. DCIS patients are assumed to have the same survival as normal
population, given age and birth year, no matter what treatments they receive.[18]
All in situ. Model W also

W separated in situ into Yes

DCIS and non-DCIS in
situ

Small size defines in situ. All tumors grow until they
reach a maximum size. All tumors progress although a
subset with “limited malignant potential” (LMP) stop at
early invasive. LMPs comprise approximately 30-50%
of all onset tumors [17]

Figure 1D

Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University Medical Center Rotterdam, Rotterdam, the
Netherlands. M odel GE: Georgetown University Medical Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York.
Model M: MD Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin, Madison, Wisconsin, and Harvard Medical School,

Boston, Massachusetts.

*
in situ: DCIS and lobular carcinoma in situ (LCIS)
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Table 2

Detection mechanism of DCIS in the CISNET models.

Page 17

Model  Clinical detection mechanism

Screen detection mechanism

Detection mechanism DCIS
Vs. invasive cancer

Some DCIS progress to clinical DCIS with symptoms -
D this rate matches age-specific incidence rate of DCIS in
pre-screening era

Some DCIS progress to clinical DCIS with symptoms -
E this rate matches age-specific incidence rate of DCIS in
pre-screening era

Progressive DCIS are clinically detected the same as more
GE advanced lesions. Non-progressive DCIS are NEVER
clinically detected.

Sensitivity varying by screening
modality, age, calendar year

Sensitivity varying by calendar year

Sensitivity varying by screening
modality, age, calendar year

M Model M makes no explicit mechanism assumptions regarding DCIS detection.

Some DCIS are clinically diagnosed similarly as more
advanced lesions. Clinical detection probability is an
increasing function of tumor size and varies by age and

w calendar year. Clinical detection probabilities are in
general smaller than screen detection probabilities;
therefore a tumor is less likely to be detected via clinical
surfacing than by screening.

Sensitivity varying by is tumor size,
age, calendar year

Same mechanism for DCIS
and invasive cancer by test
sensitivity

DCIS is detected by test
sensitivity; invasive disease
is detected using a threshold
diameter

Same mechanism for DCIS
and invasive cancer by test
sensitivity

Detection probability is an
increasing function of tumor
size, thus because in situ are
small by definition,
likelihood of detection of
DCIS is less than that for
invasive cancer

Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University Medical Center Rotterdam, Rotterdam, the
Netherlands. Model GE: Georgetown University Medical Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York.
Model M: MD Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin-Madison, Madison, Wisconsin, and Harvard Medical

School, Boston, Massachusetts.
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