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Abstract

Ductal carcinoma in situ (DCIS) can be a precursor of invasive breast cancer. Since the advent of 

screening mammography in the 1980's, the incidence of DCIS has increased dramatically. The 

value of screen detection and treatment of DCIS is a matter of controversy, since it is unclear to 

what extent detection and treatment of DCIS prevents invasive disease and reduces breast cancer 

mortality. The aim of this paper is to provide an overview of existing Cancer Intervention and 

Surveillance Modelling Network (CISNET) modeling approaches for the natural history of DCIS, 

and to compare these to other modeling approaches reported in the literature. Five of the six 

CISNET models currently include DCIS. Most models assume that some, but not all, lesions 

progress to invasive cancer. The natural history of DCIS cannot be directly observed and the 

CISNET models differ in their assumptions and in the data sources used to estimate the DCIS 

model parameters. These model differences translate into variation in outcomes such as the 

amount of overdiagnosis of DCIS with estimates ranging from 34%-72% for biennial screening 

from age 50-74 years. The other models described in the literature also report a large range in 

outcomes with progression rates varying from 20%-91%. In the future, DCIS data by grade from 

active surveillance trials, development of predictive markers of progression probability, and 

evidence from other screening modalities, such as tomosynthesis, may be utilized to inform and 

improve the models' representation of DCIS and might lead to convergence of the model estimates. 

Until then, the CISNET model results consistently show a considerable amount of overdiagnosis 

of DCIS, supporting the safety and value of observational trials for low-risk DCIS.
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Introduction

Ductal carcinoma in situ (DCIS) represents a spectrum of abnormal cells confined to the 

breast duct and is a risk factor for invasive breast cancer development [1]. Before the 

introduction of mammography screening, DCIS was not often diagnosed. Since the advent 

of screening mammography in the 1980s, the incidence of DCIS has increased dramatically. 

In the United States, the incidence of DCIS increased from 5.8 per 100,000 women in 1975 

to 68.9 per 100,000 women in 2010 [2-4]. By the year 2020, more than one million US 

women are expected to be living with and have been treated for a DCIS diagnosis [1].

The etiology of DCIS is presumably heterogeneous and its natural history is poorly 

understood as onset, progression and regression rates are not directly observable. Some 

DCIS lesions likely represent a precursor to subsequent invasive breast cancer, but DCIS 

may also remain indolent for sufficiently long that a woman dies of other causes [5-7]. The 

proportion of untreated DCIS that will progress to invasive breast cancer is unknown [1], 

and therefore, the impact of detecting and treating DCIS, particularly for any given woman, 
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is unclear. Treating some DCIS lesions will probably prevent invasive disease, and 

consequently might reduce breast cancer mortality, thus can be considered a benefit. Other 

lesions might remain indolent in the absence of treatment with only harms related to their 

treatment (representing overdiagnosis and overtreatment). Since we do not know which and 

how many DCIS lesions will progress, the value of screen detection and treatment of DCIS 

remains unknown and is a matter of considerable controversy.

Despite the uncertainty around the natural history of DCIS, some predictors for progression 

have been identified. For example, younger age at diagnosis and black ethnicity are 

associated with higher breast cancer-specific mortality among patients with DCIS [8, 9]. 

Other identified factors for progression include estrogen receptor (ER) negative status, larger 

DCIS tumor size, and comedonecrosis [9]. In addition, DCIS progression to invasive breast 

cancer can be predicted by cytologic grade [5, 7, 9]. Pathologists use three grading 

categories: corresponding to well (grade 1), moderately (grade 2), and poorly (grade 3) 

differentiated DCIS [10], also referred to as “low grade”, “intermediate grade”, and “high 

grade”, respectively. Grade has been found to be associated with recurrence [11, 12] and the 

survival benefit of surgical treatment has been found to be lower for low-grade DCIS than 

that for intermediate or high-grade DCIS [13]. Furthermore, the DCIS Score, based on 

Oncotype DX, has been found to be associated with recurrence of DCIS (either as DCIS or 

invasive breast cancer) [14].

These identified prognostic factors for recurrence may enable physicians to tailor treatment 

strategies. Specifically, recommending treatment that is less aggressive would be appropriate 

for DCIS that has a low risk for future recurrence, and predictors such as age, ER status, 

and/or grade might be used to identify low-risk lesions. Thus, understanding the natural 

history of DCIS and its recurrence and progression predictors to guide treatment strategies is 

important for both clinical and public health decisions. However, investigating the natural 

history of DCIS is difficult as ideal high-quality data is lacking, given that progression paths 

are not directly observable. In addition, data are also limited because survival for women 

diagnosed with DCIS is very high and a trial would need to enroll very large numbers of 

women and follow them for a lifetime to be adequately powered to detect an impact of 

screening and treatment on mortality or other endpoints. Moreover, the natural history of 

DCIS is difficult to study because the standard of care is immediate treatment following 

diagnosis. In these instances (comparative) modeling can be useful, for example to provide a 

range of plausible DCIS progression and regression rates by evaluating what set of 

assumptions about these rates best fit the existing observable data. In addition, in natural 

history models, the difference in risk of progression based on age, grade and ER status can 

be included by allowing varying transition rates for these factors, which has already been 

done in a well-established microsimulation model to include grade [15].

Furthermore, within the Cancer Intervention and Surveillance Modelling Network 

(CISNET) comparative modeling work has been done. Previously, three CISNET models 

estimated the amount of DCIS overdiagnosis in women age 74 and older. The results 

indicated that at older ages harms began to outweigh benefits, largely as a consequence of 

the increasing amount of overdiagnosis of DCIS at older ages [16], which is partly due to the 

higher death rate from competing causes with aging. Together, these modeling papers, on 
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one hand highlight the uncertainty regarding the natural history of DCIS, but also show the 

potential value of modeling in providing information where results are consistent.

The aim of this paper is to provide an overview of the ways CISNET models simulate the 

natural history of DCIS, illustrate how different assumptions affect results, to compare the 

CISNET models to other models described in the literature, and to highlight developments 

that might lead to model improvements or refinements.

CISNET models

CISNET DCIS models – model overview

CISNET is a consortium of National Cancer Institute (NCI)-sponsored investigators who use 

statistical modeling to improve our understanding of cancer control interventions in 

prevention, screening, and treatment and their effects on population trends in incidence and 

mortality. The CISNET breast models have been described in detail previously and recently 

updated descriptions have been given [17-22]. Briefly, the models are designed to match 

breast cancer incidence and mortality rates observed in the US. Four models are micro-

simulation models (models developed by Erasmus MC, University Medical Center 

Rotterdam, model E; Georgetown University Medical Center, and Albert Einstein College of 

Medicine, model G-E; MD Anderson Cancer Center, model M; and University of 

Wisconsin, Madison and Harvard Medical School, model W), one model uses an analytic 

approach (model developed by Dana-Farber Cancer Institute, model D), and the remaining 

model is a hybrid Monte Carlo simulation (model developed by Stanford University, model 

S). The micro-simulation models include natural history components that approximate tumor 

progression in size and stage (https://resources.cisnet.cancer.gov/registry/site-summary/

breast/). Five of the six CISNET models currently include DCIS (all except model S). Most 

models assume that some, but not all, lesions progress to invasive cancer, for example by 

including three different types of preclinical DCIS: DCIS that progresses to invasive disease 

during the preclinical phase, progressive DCIS that is diagnosed clinically, and DCIS that 

does not progress (and might regress). However, the models differ in natural history of DCIS 

(Table 1) and model structure (see Figure 1), with different pathways for the progression and 

regression of DCIS and breast cancer. For example, invasive cancer can either develop 

through pre-clinical screen-detectable DCIS (Figure 1C), or also develop directly from pre-

clinical DCIS that is not detectable at screening (Figure 1A and 1B). In the models, DCIS 

can regress from pre-clinical screen-detectable DCIS to pre-clinical undetectable DCIS 

(Figure 1A) or to an absorbing ‘no breast cancer’ state and disappear (“cease to exist”) 

(Figure 1B and 1C). One model (model W) allows regression of pre-clinical DCIS as well as 

invasive disease (Figure 1D). Although the regression of breast cancer, especially invasive 

disease, is controversial, there is some evidence supporting the possibility of regressing 

tumors, including epidemiologic evidence [23] and a case report on regression of breast on 

imaging [24].

Most of the CISNET models have used data from the Surveillance, Epidemiology, and End 

Results (SEER) Program [25], typically age-specific incidence over time, combined with 

data from other sources (Wisconsin cancer registry for model W, Dutch data for model E) to 

estimate DCIS parameters, although one model used data from another source to develop 
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their model (Norwegian data for model D) [26]. All CISNET models include a certain 

probability for mammography to detect DCIS at screening (Table 2). Specifically models D 

and GE use the same detection mechanism for DCIS as for invasive disease by including a 

sensitivity of screening. Model W uses the detection probability as a function of tumor size 

and because in situ lesions are small the likelihood of detecting DCIS is lower than that for 

detecting invasive breast cancer. Model E includes two separate detection mechanisms; 

DCIS detection is modeled by including a sensitivity, whereas screen-detection of invasive 

disease is modeled by a threshold diameter. Thus, in some models the sensitivity of a 

screening test differs for DCIS and invasive cancer.

CISNET models – analysis

The CISNET models were recently applied to evaluate screening outcomes of various 

screening strategies differing by age at which screening starts (40, 45, or 50 years) and 

screening interval (annual, biennial) for the US female population [27]. We assessed the 

results of those prior analyses by focusing on the (as yet unpublished) model-specific rates 

of DCIS detection and overdiagnosis of the five CISNET models that include DCIS [28]. 

Overdiagnosis was defined as the detection of tumors that would not have been detected in a 

woman's lifetime in the absence of screening. We estimated the detection and overdiagnosis 

rate per 1000 women screened followed from age 40 over their lifetimes. In addition, the 

percentage overdiagnosis was calculated by dividing the rate of overdiagnosed DCIS by the 

rate of detected DCIS. We focus on four screening scenarios: biennial screening from 50-74 

years (base), more frequent screening (annual screening from age 50-74 years; A50-74), an 

earlier starting age (biennial screening from age 40-74 years; B40-74), and later stopping 

age (biennial screening from age 50-84 years; B50-84).

CISNET models – results and implications

For biennial screening between age 50 and 74 years, the five models that include DCIS 

predict that 154.4 women (median; range across five models 137.4 – 158.5; Table 3) are 

diagnosed with breast cancer per 1000 women followed from age 40 over their lifetimes. Of 

these women, 26.7 (25.8 – 32.3) are diagnosed with DCIS and 128.2 (110.7 – 131.8) with 

invasive disease. Of the women diagnosed with DCIS, 15.6 (9.0-18.8) are overdiagnosed, 

representing 51.3% (33.7%-71.8%) of the detected DCIS (Table 3). In contrast, for invasive 

disease, the models estimate that of the 128.2 (110.7-131.8) breast cancers detected, 3.3 

(1.8-15.4) are overdiagnosed, corresponding to 2.6% (1.5%-12.0%; Table 3). This means 

that 2.6% (1.5-12.0%) of the invasive breast cancers that are detected would not have been 

detected in the absence of screening and are overdiagnosed. There is no direct connection 

between the amount of overdiagnosis of DCIS and overdiagnosis of invasive disease in the 

models. For example, one model predicts relatively low overdiagnosis percentages for DCIS 

as well as invasive breast cancer (model GE), whereas another model predicts relatively high 

percentages for both (model M). In contrast, there are also models that have modest 

estimates of DCIS overdiagnosis combined with relatively high estimates of invasive disease 

overdiagnosis (model W) or the other way around (model E).

When annual screening from age 50-74 years is simulated, the models estimate 0.1-14.0 

additional cases of DCIS being detected of which 0.1-13.7 are overdiagnosed (Table 4). 
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Also, the models differ for the source for additional DCIS cases. For Models D, M, the 

increase in detection of DCIS is entirely overdiagnosis, whereas in models E, GE, W it is 

combination of overdiagnosis and earlier detection of lesions with progressive potential.

In addition, the order of scenarios that have the largest increase in overdiagnosis of DCIS 

varies across models, as well as the magnitude of the increase. For example, for annual 

screening the increase in overdiagnosis varies between 0.1 and 13.7 overdiagnosed DCIS 

cases across models. Some models estimate the largest change in detection and 

overdiagnosis when annual screening is considered (models E, M, W), whereas other models 

predict the largest increase when upper age of screening is extended to age 84 (models D 

and GE).

For the biennial screening scenario from age 50-74 years, the highest percentage of 

overdiagnosis of DCIS and invasive breast cancer was estimated by model M followed by 

W. This can be explained by the modeling choice of model M to assume a rather stable trend 

in breast cancer incidence (background trend) over time and, therefore, assign more of the 

increase to overdiagnosis than other CISNET models. Model W assumes that some invasive 

disease is non-progressive, and consequently, has a higher estimate for overdiagnosis than 

the other three models, especially for invasive disease.

For the other scenarios, annual screening from age 50-74 years, biennial screening from age 

40-74 years, and biennial screening from age 50-84 years, there are two clusters of models: 

models D and M assign the increase in detection of DCIS when screening more intensively 

entirely to overdiagnosis. For model M that is again related to the stable background trend 

and for model D, the screen detectable period for DCIS is relatively short. The other three 

models (models E, GE, and W) only assign a proportion of the increase to overdiagnosis and 

a proportion to earlier diagnosis. Models E and GE assign most of the increase to 

overdiagnosis when moving to older ages and a smaller percentage when moving to younger 

ages.

Literature

Description of other DCIS models in the literature

To improve the understanding of the natural history of DCIS, we conducted a literature 

search to identify DCIS models that have been described in the literature. We searched 

PubMed and JSTOR for “DCIS natural history modeling” and “DCIS progression”, and 

selected the articles that focus on the estimation of key DCIS natural history parameters, 

such as mean sojourn time for screen-detectable pre-clinical DCIS, and percent of DCIS 

cases that progress to either invasive cancer, clinical DCIS, or potentially regress. We 

identified 10 relevant studies, of which nine include DCIS natural history modeling (Table 

5). Among them, four studies use Markov models [29-32] and five use simulation models 

[15, 33-36], with parameters estimated with either maximum likelihood, Bayesian Gibbs 

sampling or least square methods, and varying assumptions about DCIS natural history 

pathways. Seven studies assumed that all invasive breast cancers progress through a pre-

clinical in situ or DCIS state that can be detected at screening [15, 29, 32-34, 36], whereas 

the other two studies assumed that some DCIS or in situ lesions first become visible on 
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mammograms as small invasive tumors [30, 35]. DCIS or in situ is assumed to have both 

progressive and non-progressive paths in eight studies [15, 29-34, 36], with one study also 

including non-progressive invasive cancers [36].

These 10 studies used various data sources including different combinations of: i) data 

aggregated from population registries [15, 30, 35, 36], ii) observed national screening 

service program data [32, 33, 37], iii) detailed data from randomized screening trials [29, 31, 

32, 34] and iv) estimates made from previously reported studies including studies of DCIS 

first overlooked at mammography [30, 36]. Generally, more detailed screening data makes it 

possible to deduce more realistic natural history models, fitting the model using data from 

different screening rounds and screening histories [29, 32]. In addition to the different data 

sources, three studies include all in situ lesions [29, 31, 36], while seven others only include 

DCIS [15, 30, 32-35, 37].

Parameters in the literature useful for DCIS modeling

The estimated proportion of DCIS progressing to invasive cancer varies widely in the 

literature (Table 5), mainly due to the available data, study-specific model assumptions, and 

different model structures. When all invasive breast cancer is assumed to go through a pre-

clinical screen detectable DCIS state, the estimated progression rate of DCIS to invasive 

varies from 61% to 91% [15, 29, 31-34, 36]. When this assumption is not made, the 

estimated progression rate from DCIS to invasive varies from 20% to 24.4% [30, 35]. Some 

studies report a large proportion of progressive DCIS [31, 33, 34, 36], while other studies 

report that most DCIS cases do not progress to invasive cancer [30, 35]. When the 

proportion of progressive DCIS is reported by screening round, the subsequent screening 

rounds often reported smaller proportions of progressive DCIS [29, 32] compared to initial 

screening, as cases with a long sojourn time were diagnosed in earlier screening exams. 

High-grade DCIS cases have a larger proportion progressing to invasive than low-grade 

DCIS cases [15].

As for the mean sojourn time, when all invasive cancer are assumed to be screen detectable 

at a pre-clinical DCIS stage, the estimated mean sojourn time for progressive DCIS cases in 

the pre-clinical screen-detectable DCIS state are usually short varying from 1 month to 5 

years [29, 31, 32, 34, 35]. On the other hand, the sojourn time estimates are much longer if it 

is assumed that only a small fraction of invasive cancers comes from pre-clinical screen-

detectable DCIS [30]. The estimated mean sojourn time in pre-clinical screen-detectable 

DCIS state for DCIS cases that progress to clinical DCIS or regress is in typically longer 

than the mean sojourn time of DCIS cases that progress to invasive cancer [29, 32].

The mammography sensitivity for DCIS varies from 40% to 99% [29, 31, 33, 34]. The mean 

sojourn time for progressive DCIS in the pre-clinical screen detectable DCIS state tends to 

be smaller when mammography sensitivity is high. These variations reveal the uncertainty 

regarding the natural history of DCIS, highlighting the need and potential directions of 

CISNET modeling.
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Discussion

While the CISNET models have generated relatively similar results and conclusions in most 

other respects, DCIS detection rates and overdiagnosis reveal more variation in results, with 

predicted DCIS incidence ranging from 25.8 – 32.3 per 1000 women age 40 followed over 

their lifetimes, and estimates of DCIS overdiagnosis ranging from 34%-72% for biennial 

screening from age 50 to 74 years. The large difference in the predicted amount of 

overdiagnosis of DCIS between models likely reflects the continued uncertainty about DCIS 

natural history, in particular the progression rates, which is also reflected in the results from 

other models described in the literature with reported progression rates varying from 20% to 

91%.

In the literature outside of CISNET, several approaches have been proposed to model DCIS. 

The variations in model structure, assumptions and results make it challenging to deduce 

good overall estimates of key natural history parameters. Given the uncertainties in the DCIS 

models, a realistic approach to DCIS modeling is to adopt several plausible sets of model 

parameters and to evaluate a range of outcomes generated from the models. The CISNET 

models are well-suited for this type of analysis. CISNET models have the ability to project 

long-term implications for DCIS assumptions in terms of breast cancer outcomes such as life 

expectancy and overdiagnosis, and can thus assess how much early detection impacts breast 

cancer mortality. Also, moving forward, CISNET models are capable of utilizing multiple 

models and vary model parameters, to explore the impact of different DCIS assumptions on 

outcomes more systematically. In addition, both the impact of screening and treatment on 

DCIS-related outcomes can be systematically reviewed and compared. Although it remains 

to be seen to what extent these analyses will provide sufficiently accurate and consistent 

findings to inform clinical practice, the comparative modeling effort of the CISNET models 

will likely contribute to a greater understanding of DCIS.

Despite the large difference in the predicted amount of overdiagnosis of DCIS between 

models, all models indicated that the amount of overdiagnosis of DCIS is substantial (i.e., 

34%-72% for biennial screening from age 50-74 years), indicating that per 1000 women 

followed over their lifetimes 9-19 are overdiagnosed with DCIS and the majority of those 

women will undergo treatment for their non-invasive disease. Almost all women (98%) 

diagnosed with DCIS undergo a surgical procedure [13, 38] and recent work found an 

increase in the utilization of mastectomy with reconstruction and contralateral risk-reducing 

mastectomy over time [39]. There was also an increase in the proportion of women 

undergoing adjuvant radiation therapy after surgery from 58.5% in 1998-1999 to 70% during 

2006-2011 [39].

Modeling estimates might improve and results might converge when new data becomes 

available. A unique opportunity to improve DCIS natural history modeling comes from trials 

on active surveillance. Several trials are currently underway to evaluate active surveillance 

approaches for DCIS. In the UK, the Low Risk DCIS Trial (LORIS), is comparing surgical 

excision to active surveillance without excision [40, 41]. Similarly, the European 

Organisation for Research and Treatment of Cancer (EORTC) has started a trial on the 

management of low-risk DCIS (LORD), which is a randomized, multicenter, non-inferiority 
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trial, between standard therapy approach versus active surveillance [42]. In the US a 

prospective, randomized trial, Comparing Operative to Medical Endocrine Therapy for low-

risk DCIS (COMET), has recently been funded. Women diagnosed with low-risk DCIS will 

be randomized to receive either guideline-concordant care of surgical intervention, with or 

without radiation, or active surveillance of a mammogram every 6 months for 5 years. 

Patients in both trial arms are free to choose endocrine therapy. Also, in the US, several 

research networks, called cooperative groups, that conduct cancer clinical research primarily 

under the sponsorship of the NCI, are presently testing the use of neo-adjuvant hormonal 

therapy in postmenopausal women with ER-positive DCIS prior to surgery; those with a 

complete response based on magnetic resonance imaging (MRI) will not receive additional 

therapy. However, it will take a long time before results are available, e.g., for LORIS initial 

results are expected in 2020 and for LORD the results are not expected before 2029. When 

they do become available these data present a unique opportunity to validate models by 

comparing the model projections to the final trial data.

In the meantime, thus, before final results from these trials become available, the models can 

be used to evaluate which assumptions affect outcomes most. Also, data from several 

different sources might be used and combined to compare model outcomes and see what 

model structure and progression rates fit the data best. For example, data from different 

screening modalities can inform models, as the ability to detect DCIS varies across 

modalities. Screening ultrasound is less likely to detect DCIS compared to mammography in 

the small number of controlled experiments available that make this comparison, because 

ultrasound is unlikely to detect micro-calcifications. MRI may be more sensitive than 

mammography [43, 44] by detecting the pathophysiologic properties like basement 

membrane permeability in DCIS [45] perhaps explaining the tendency of MRI to detect 

intermediate and high grade DCIS more readily than mammography. By using a particular 

set of parameters and modelling different screening modalities, it might become possible to 

narrow down the range of plausible progression parameters. Furthermore, data by ER and 

grade might be used to refine the models. Subsequently, the updated and refined models can 

be used to simulate active surveillance strategies and quantify the predicted outcomes for 

subgroups of women varying by age and with DCIS varying by grade and ER status.

Until then, the model results consistently show a considerable amount of overdiagnosis of 

DCIS, which increases with more frequent screening. This indicates that women undergoing 

regular screening with a screen-detected DCIS are quite likely to be overdiagnosed. Thus, 

given the substantial amount of overdiagnosis estimated by the CISNET models for DCIS in 

general, the model results support the safety and value of observational trials for low-risk 

DCIS.
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Figure 1. 
Schematic overview of models for the natural history of DCIS and invasive breast cancer. 

Invasive cancer can either develop through pre-clinical screening detectable DCIS (Figure 

1C), or also develop directly from pre-clinical DCIS not detectable at screening (Figure 1A, 

1B and 1D). Models include progression from preclinical screen-detectable DCIS to either 

van Ravesteyn et al. Page 14

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clinical DCIS or preclinical invasive disease (Figure 1A, 1B, 1C, 1D), regression from 

preclinical DCIS to normal tissue (Figure 1D), to pre-clinical undetectable DCIS (Figure 

1A), or to a ‘no breast cancer’ (absorbing) state in which women are no longer at risk for 

developing DCIS or invasive breast cancer (Figure 1B and 1C). Regression from invasive 

disease is also possible (Figure 1D).
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Table 1

Natural history of DCIS in the CISNET models.

Model in situ or DCIS?* Do all tumors start as 
in situ? Progression/regression Model structure

D DCIS only

Yes, but some DCIS is 
not screen detectable 

and assumed to progress 
to invasive directly

DCIS progress to clinical DCIS or invasive breast 
cancer at exponential rates with mean sojourn time of 
1.5-3 years; DCIS may also go back to a state in which 
it is undetectable [19]

Figure 1A

E All in situ Yes
DCIS progress to clinical or invasive breast cancer at an 
exponential rate with age and calendar year dependent 
sojourn times; DCIS may also regress [22]

Figure 1B

GE DCIS only Yes
DCIS progress to clinical or invasive breast cancer at an 
exponential rate with mean sojourn time of 2.97 years; 
DCIS may also regress [21]

Figure 1C

M

Model M is not a natural history model. It does not specify how tumors grow. It is an empirical model to describe screening, 
incidence, treatment and mortality. Under different screening scenarios, different stage distribution tables obtained from observed data 
[28] are used to assign tumor stages: DCIS, stages I, II, III or IV. DCIS patients are assumed to have the same survival as normal 
population, given age and birth year, no matter what treatments they receive.[18]

W

All in situ. Model W also 
separated in situ into 

DCIS and non-DCIS in 
situ

Yes

All tumors, including DCIS, progress according to a 
Gompertz-type growth function, where the growth 
parameter is a random variable distributed with Gamma. 
Small size defines in situ. All tumors grow until they 
reach a maximum size. All tumors progress although a 
subset with “limited malignant potential” (LMP) stop at 
early invasive. LMPs comprise approximately 30-50% 
of all onset tumors [17]

Figure 1D

Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University Medical Center Rotterdam, Rotterdam, the 
Netherlands. Model GE: Georgetown University Medical Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York. 
Model M: MD Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin, Madison, Wisconsin, and Harvard Medical School, 
Boston, Massachusetts.

*
in situ: DCIS and lobular carcinoma in situ (LCIS)
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Table 2

Detection mechanism of DCIS in the CISNET models.

Model Clinical detection mechanism Screen detection mechanism Detection mechanism DCIS 
vs. invasive cancer

D
Some DCIS progress to clinical DCIS with symptoms - 
this rate matches age-specific incidence rate of DCIS in 
pre-screening era

Sensitivity varying by screening 
modality, age, calendar year

Same mechanism for DCIS 
and invasive cancer by test 
sensitivity

E
Some DCIS progress to clinical DCIS with symptoms - 
this rate matches age-specific incidence rate of DCIS in 
pre-screening era

Sensitivity varying by calendar year

DCIS is detected by test 
sensitivity; invasive disease 
is detected using a threshold 
diameter

GE
Progressive DCIS are clinically detected the same as more 
advanced lesions. Non-progressive DCIS are NEVER 
clinically detected.

Sensitivity varying by screening 
modality, age, calendar year

Same mechanism for DCIS 
and invasive cancer by test 
sensitivity

M Model M makes no explicit mechanism assumptions regarding DCIS detection.

W

Some DCIS are clinically diagnosed similarly as more 
advanced lesions. Clinical detection probability is an 
increasing function of tumor size and varies by age and 
calendar year. Clinical detection probabilities are in 
general smaller than screen detection probabilities; 
therefore a tumor is less likely to be detected via clinical 
surfacing than by screening.

Sensitivity varying by is tumor size, 
age, calendar year

Detection probability is an 
increasing function of tumor 
size, thus because in situ are 
small by definition, 
likelihood of detection of 
DCIS is less than that for 
invasive cancer

Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University Medical Center Rotterdam, Rotterdam, the 
Netherlands. Model GE: Georgetown University Medical Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York. 
Model M: MD Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin-Madison, Madison, Wisconsin, and Harvard Medical 
School, Boston, Massachusetts.
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