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Abstract

The MISCAN-Fadia microsimulation model uses continuous tumor growth to simulate the natural 

history of breast cancer and has been used extensively to estimate the impact of screening and 

adjuvant treatment on breast cancer incidence and mortality trends. The model simulates 

individual life histories from birth to death, with and without breast cancer, in the presence and in 

the absence of screening and treatment. Life histories are simulated according to discrete events 

such as birth, tumor inception, the tumor’s clinical diagnosis diameter in the absence of screening, 

and death from breast cancer or death from other causes. MISCAN-Fadia consists of four main 

components: demography, natural history of breast cancer, screening, and treatment. Screening 

impact on the natural history of breast cancer is assessed by simulating continuous tumor growth 

and the “fatal diameter” concept. This concept implies that tumors diagnosed at a size that is 

between the screen detection threshold and the fatal diameter are cured, while tumors diagnosed at 

a diameter larger than the fatal tumor diameter metastasize and lead to breast cancer death. 

MISCAN-Fadia has been extended by including a different natural history for molecular subtypes 

based on a tumor’s estrogen receptor (ER) status and human epidermal growth factor receptor 2 

(HER-2) status. In addition, personalized screening strategies that target women based on their risk 

such as breast density have been incorporated into the model. This personalized approach to 

screening will continue to develop in light of potential polygenic risk stratification possibilities 

and new screening modalities.

Introduction

Randomized trials are considered the gold standard to assess the efficacy of cancer screening 

interventions. However, ethical concerns, participants lost to follow-up, feasibility issues 

regarding the number of evaluated screening strategies, and limited quantification abilities of 

the harms of screening such as overdiagnosis, emphasize the need for ways to complement 

randomized trials. The breast cancer models of the Cancer Intervention and Surveillance 

Modeling Network (CISNET) simulate the effects of screening and treatment for lifetime 

follow up, with varying compliance rates, for an unlimited number of screening strategies, 

and thereby extrapolate the findings from randomized trials.
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MISCAN-Fadia, acronym for Micro Simulation Screening Analysis – Fatal Diameter, has 

been part of CISNET since its start in 2000, usually referred to as Model E (i.e., Erasmus 

Medical Center). Before the development of MISCAN-Fadia, a microsimulation model with 

discrete tumor progression was developed at Erasmus already in the 1980’s to evaluate the 

effects of breast cancer screening in the Netherlands [1]. However, compared to observed 

stage distribution data, the model over-estimated the number of early-stage cancers 

diagnosed at subsequent screens. Sensitivity analysis of screening sensitivity did not lead to 

better estimates [2]. Moreover, it was difficult to explore different natural history 

assumptions because tumor progression was directly linked to discrete stages. MISCAN-

Fadia, with continuous tumor growth, was initiated to overcome this rigid property. This 

model was developed with the intent of creating a more biologically oriented breast cancer 

model to evaluate the impact of screening and treatment on breast cancer incidence and 

mortality. Since tumor size is measurable and tumor growth is continuous, these properties 

form the biological approach to modeling the natural history of breast cancer. In the model, a 

distinction is made between tumor biology (growth function) and other model variables that 

are more likely to vary by calendar year and possibly differ between geographical areas such 

as access to screening facilities, screening equipment and consequently screening test 

sensitivity, clinical diagnosis in the absence of screening due to fewer breast self-

examinations and less public awareness of breast cancer risk. Sensitivity of a screening test 

is translated into a diameter size at which tumors become screen detectable. In MISCAN-

Fadia, ductal carcinoma in situ (DCIS) as well as invasive tumors are simulated. Tumor 

properties like exponential growth rate, clinical diagnosis diameter, minimal diameter for 

screen detection and fatal diameter are drawn from probability distributions to account for 

variability between tumors. The fatal diameter concept implies that available treatment only 

cures tumors that are diagnosed at a smaller diameter than the tumor’s fatal diameter. 

Available treatment options are not sufficient for tumors diagnosed past their fatal diameter 

and these tumors will cause breast cancer death.

Disease processes such as the moment of onset of breast cancer and progression or 

regression of DCIS and breast cancer are unobservable in reality. These are nonetheless 

important determinants that influence the balance of harms and benefits of screening and 

treatment. Modeling allows us to explore the effect of changing one of these unobservable 

factors on modelled outcomes such as breast cancer incidence and mortality. Likewise, it is 

possible to study the effect of changing tumor onset and tumor growth while keeping all 

other parameters unchanged to gain insight into the natural history of breast cancer and its 

interaction with cancer control interventions. To quantify the harms and benefits of different 

screening and treatment strategies, the model simulates the same female population twice. 

First, a population is simulated in the absence of screening, and second, in the presence of 

screening. Key outcomes such as the number of breast cancers, the number breast cancer 

deaths and over diagnosed breast cancers can be calculated for lifetime follow-up for any 

possible screening strategy.

Population demography, natural history of breast cancer, screening and treatment are the 

four main parts of the model. All model inputs and model parameters belong to one of these 

components and are either calibrated to data from trials or are based on empirical research 

[3–5]. This paper presents the current model status and in particular the progress and 

van den Broek et al. Page 2

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extensions with respect to the first model paper [6], as well as the latest model applications 

that explore the possibilities of risk-based breast cancer screening.

Methods

Discrete event-driven microsimulation

Discrete event simulation implies that the model moves from the time of one event (e.g., 

birth) to the next event (e.g., tumor onset). The events in a woman’s lifetime are discrete and 

mutually exclusive. Microsimulation modeling entails simulation of independent life 

histories that can be aggregated to estimate the effects of screening and treatment at the 

population level. Life histories are simulated according to discrete events such as birth, a 

possible tumor inception, the diameter of the tumor when it would be clinically diagnosed in 

the absence of screening, a date of death from other causes, or, for woman with breast 

cancer, a date of breast cancer death. Events that affect the natural history of breast cancer, 

such as screening and treatment, are tied to the tumor’s continually growing diameter (i.e., 

screen detection of the tumor may take place from a certain tumor size and treatment may 

treat tumors successfully up to a certain tumor size). Each woman is simulated from birth 

and followed until death and time plays an essential role in the order of events in a woman’s 

life.

Parallel universe approach

In randomized controlled trials, randomization of participants is a key step to reduce the 

chance of systematic differences between study participants in the intervention and control 

group. In MISCAN-Fadia, this is imitated by simulating the same female population twice. 

First, the population is simulated in a no screening world, then, the identical population is 

simulated again and subjected to screening to evaluate the effects of screening and treatment 

on incidence and mortality. In microsimulation modeling this approach is often referred to as 

a parallel universe structure. Usually, populations of tens of millions of women are simulated 

with a model runtime of approximately fifteen minutes.

Breast cancer onset

The risk of developing breast cancer increases as women get older, while at the same time 

breast cancer risk may differ by birth cohort [7, 8]. Therefore, breast cancer onset in Model 

E is mainly driven by an age risk factor combined with a birth cohort risk factor to account 

for variations in the prevalence of risk factors that are related to birth cohort. The model uses 

as input breast cancer incidence (invasive and DCIS) in the absence of screening to derive 

breast cancer onset probabilities that vary by age and cohort. Considering breast cancer 

incidence in the absence of screening has not been available at the population level in the 

U.S. since routine mammography screening started in the 1980’s, most CISNET breast 

models used the breast cancer incidence in the absence of screening derived by Holford et al. 

[9]. Currently in Model E, the breast cancer onset parameters are calibrated to the U.S. 

incidence in the absence of screening that was derived and estimated by Gangnon et al. who 

extended the work by Holford by disentangling breast cancer incidence by cohort- and age-

related factors, and the impact of mammography screening dissemination in the U.S.. [10].
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The continuous tumor growth natural history model

Among women who develop breast cancer, the natural history of the disease is simulated as 

a continuously growing tumor. At tumor inception, the tumor’s diameter is 0.1 millimeter 

and based on the time it takes for the tumor to double in size, (i.e., the tumor volume 

doubling time) it grows exponentially. The DCIS model was originally based on the DCIS 

model of the Erasmus MISCAN breast model [11]. Once a breast lesion emerges from 

normal breast tissue, a woman is in the pre-clinical undetectable DCIS phase (Figure 1). The 

two possible transitions from there are either: pre-clinical screen-detectable DCIS, the state 

that all CISNET breast models that include DCIS have in common [12], or pre-clinical 

invasive breast cancer. From the pre-clinical screen-detectable state three different 

transitions are possible; regression to a breast cancer-free life, progression to pre-clinical 

invasive breast cancer, or progression to the clinical DCIS state. The duration (years) in each 

DCIS state is assumed to be exponentially distributed and transitions between DCIS states 

happen at exponential rates. These transition rates were estimated using SEER American 

Joint Committee on Cancer (AJCC) data on stage distributions and age-specific DCIS and 

invasive incidence rates between 1975 and 1999 [3].

The tumor diameter at which available treatment options no longer result in cure is the fatal 

disease diameter and reflects the spread of breast cancer, i.e., distant metastasis. If the 

disease is fatal at the moment of diagnosis (i.e., the tumor diameter at diagnosis is larger 

than the tumor’s fatal diameter), the time until death from breast cancer is determined by a 

draw from the survival distribution at the moment the disease became fatal (Figure 2). 

Tumors that are diagnosed at a smaller diameter than their fatal diameter are surgically 

removed, possibly radiated and adjuvant treatment ensures the woman will not die of breast 

cancer. Each tumor is unique and has different diameter sizes for: clinical diagnosis, screen 

detectability and metastasis (fatal diameter). As listed under ‘the life course of a tumor’, 

these tumor properties are governed by probability distributions to bring about variation 

between tumors.

Our natural history approach makes a distinction between tumor biology (i.e., growth rate of 

the tumor) and variables that are more likely to change over time, by age, or differ by 

geographical region. The advantage of this approach is that it readily lends itself to define 

separate distributions for different parameters based on risk groups and molecular tumor 

subtypes for example [13, 14]. As such, adapting the model to simulate subgroups of more 

aggressive and faster growing tumors (e.g., ER/HER2 molecular subtypes of breast cancer) 

was done by changing the growth rate of tumors while keeping other tumor aspects such as 

the clinical diagnosis diameter and tumor diameter threshold for screen detectability 

unchanged.

The life course of a tumor is described by

1. Tumor growth rate ~ Log Normal (μ1,σ1)

2. Fatal diameter of the tumor ~ Weibull (λ1,K1)

3. Survival time after reaching fatal diameter ~ Log Normal (μ2,σ2)

4. Screen detectable (threshold) tumor diameter ~ Weibull (λ2,K2)
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5. Clinical diagnosis diameter of the tumor ~ Log Normal (μ3,σ3)

6. Clinical diagnosis of the tumor caused by distant metastasis. This is modeled as a 

constant fraction of the survival after reaching the tumor’s fatal diameter.

7. Correlation between tumor growth rate and the tumor’s clinical diagnosis 

diameter: ρ1 e.g., fast growing tumors are diagnosed at larger diameters.

8. Correlation between tumor growth rate and survival time after reaching the 

tumor’s fatal diameter: ρ2 e.g., fast growing tumors have a shorter survival.

9. Correlation between tumor diameter at clinical diagnoses and survival time after 

reaching the tumor’s fatal diameter: ρ3 e.g., tumors with a large size at clinical 

diagnosis have a shorter survival.

10. The tumor diameter at which N1 lymph node disease becomes detectable ~ 

Weibull (λ3,K3)

11. Difference in tumor size at which N1 and N2 lymph node disease become 

detectable.

When a breast tumor is initiated in a simulated woman, values of the six (1–6) tumor 

variables are generated. For each simulated tumor, the clinical diagnosis diameter is 

determined by the smallest tumor diameter of either the diameter at clinical diagnosis or the 

diameter at clinical diagnosis because of fatal metastases. After tumor initiation, the growth 

rate of the tumor determines the times at which the tumor reaches the threshold diameter for 

detectability by screening, the clinical diagnosis diameter, and the fatal diameter. If the 

tumor diameter at diagnosis is larger than the fatal diameter, then the survival time after 

reaching the fatal diameter will give the time at which a woman will die of breast cancer. On 

the other hand, if a tumor is detected, either clinically or through screening, before the fatal 

diameter is reached, the woman will be cured of cancer and die of other causes. A graphical 

representation of how the natural history of breast cancer is modeled in MISCAN-Fadia is 

provided in Figure 2. In MISCAN-Fadia, initially, Weibull distributions were assumed for all 

variables. However, when it became apparent that correlations had to be assumed, the more 

convenient multivariate lognormal distribution was used for three correlated variables. The 

main reason was to get a better fit on the data of the base-case analysis.

For the CISNET breast “Base Case” analysis [15, 16], the maximum likelihood estimates of 

MISCAN-Fadia for the natural history parameters were initially based on detailed data from 

the Swedish Two County Study [4, 5]. These included estimates for tumor growth, tumor 

fatal diameter, survival duration since fatal diameter, clinical diagnosis diameter, and screen 

detectability diameter. The tumor size distribution and number of screen detected cancers 

and interval cancers per screening round were simulated and compared to the findings of the 

trial. A detailed description and estimation of these natural history parameters can be found 

elsewhere [6]. Since the base case analysis, the natural history parameters such as tumor 

growth rate, tumor fatal diameter, survival duration after reaching the fatal diameter, and the 

threshold for screen detection have been re-estimated for the simulation of various breast 

cancer molecular subtype combinations of ER and HER2. [13, 14]
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Population Demographics

MISCAN-Fadia can simulate one specific birth cohort, or, to account for varying 

demographic characteristics, a dynamic population consisting of multiple birth cohorts can 

be simulated. Certain birth cohorts may be assigned a different relative risk of developing 

breast cancer when cohort effects are present in the population. Nevertheless, each birth 

cohort is assigned an all-cause mortality table from which breast cancer as cause of death is 

removed. These mortality tables determine the date of non-breast cancer related death. A 

woman dies either from breast cancer or from other causes, whichever comes first. 

MISCAN-Fadia uses population parameters such as the number of birth cohorts and the 

proportion of each birth cohort in the overall U.S. population. These model inputs, as well as 

the other cause mortality tables are common CISNET model inputs [3].

Screening and screen detection

Characteristics of organized screening programs, such as screening ages, intervals, screening 

modality, and attendance by first and subsequent screens can be inserted directly into the 

model. The mammography screening dissemination that reflects the historic opportunistic 

screening patterns observed in the U.S. can also be simulated [17, 18]. Parameters to 

simulate screen detection, such as the sensitivity of the screening test, are translated into a 

diameter size at which tumors become screen detectable. By means of model calibration of 

tumor size distributions to observed tumor size distributions, the model estimates the screen 

detection (threshold) parameter. By varying of only the screen detection parameters, the 

model finds the parameter values that resemble the best match between the simulated data 

and observed data.

If a woman is screened after a tumor onset, but before the threshold tumor diameter of 

screen-detectability, the result of the screening test is false negative. If that woman would be 

screened when the tumor diameter is larger than the tumor’s screen-detectability diameter, 

the result of the screening test is true positive. This structure for screen detection implies that 

no false positives are registered as direct output from the model. The number of false 

positive mammograms is calculated based on the total number of mammograms performed 

in the model and the observed false positive rates. Screening sensitivity differences between 

screening modalities, as well as improvements in screening performance are modeled as a 

shift in the threshold diameter for screen-detectability. The advent of digital mammography 

between 2000 and 2010 has been incorporated into the model by calibrating the threshold to 

digital mammography data [19].

Overdiagnosis is defined as screen-detected DCIS or invasive breast cancer that would not 

have been diagnosed in a woman’s life in the absence of screening. The parallel universe 

approach; simulating the same population of women twice, implies that the women in the 

screened population are exactly the same women as in the unscreened population. This 

allows for exact quantification of overdiagnosis due to screening because of the lifetime 

follow-up of all women.
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Breast cancer staging

In MISCAN-Fadia, the severity of breast cancer is described by the diameter of the primary 

tumor and the extent to which the cancer has spread to lymph nodes or distant organs. This 

corresponds to the Tumor Node Metastasis (TNM) staging system that was developed and is 

maintained by the AJCC union that classifies tumors based on the size of the primary tumor 

(T), the nearby lymph nodes that are involved (N), and the spread of cancer as distant 

metastasis (M). To get to a stage at diagnosis, MISCAN-Fadia links tumor diameter to 

staging by including 3 parameters. First, continuous growth of the tumor diameter; the main 

concept of the natural history model, covers the T part of the staging system by the unique 

size of the tumor at diagnosis. Second, the lymph node status of tumors is covered by the 

inclusion of two parameters; N1: the size of the tumor that reflects the spread to 1–3 nearby 

lymph nodes, N2: the size of the tumor that corresponds to the diameter at which breast 

cancer has spread to 4 to 9 lymph nodes. This is modeled as a fixed diameter size larger than 

N1. Third, metastasis of the primary tumor is modeled and covered by the unique fatal 

diameter of each tumor. The values of N1 and N2 were calibrated to SEER data on stage at 

diagnosis of cancers diagnosed between 1975 and 2000 as part of the base-case analysis[6]. 

The definition of the AJCC staging system determines how cancers are staged at diagnosis; 

all DCIS diagnoses are staged as 0. Tumors smaller than 2 cm that have not spread to any 

nearby lymph nodes are staged as 1, tumors that are between 2 and 5 cm at diagnosis that 

have not spread to nearby lymph nodes are staged as 2a, and so on.

Adjuvant treatment

The benefit of adjuvant treatment is modeled as a shift in the fatal diameter. For each 

adjuvant treatment an age-specific cure proportion is estimated using the common CISNET 

model inputs [3] based on treatment effectiveness data from the meta-analyses by the Early 

Breast Cancer Trialists’ Collaborative Group (EBCTCG) [20, 21]. The cure proportions are 

translated into tumor diameters so that more effective treatment can cure a larger tumor. 

Women diagnosed at a tumor diameter greater than the tumor’s fatal diameter, benefit from 

adjuvant treatment by a shift to a larger fatal disease diameter. If the new fatal diameter is 

larger than the diameter at diagnosis, the treatment results in cure and ultimately death from 

other causes. However, if the new fatal diameter is still smaller than the diameter at 

diagnosis, surgery and radiation combined with adjuvant treatment will not results in cure 

and the tumor will eventually cause breast cancer death. The dissemination of adjuvant 

treatment is modeled as the probability of being treated with a certain type of treatment (e.g. 

chemotherapy, tamoxifen) given stage at diagnosis, calendar year, age at diagnosis, ER and 

HER2 status.

Parameter estimation

Parameter estimates are obtained by optimizing the goodness of fit between simulated data 

and observed data. The stochastic nature of the model output and duration of the model runs 

make the process of finding solid parameter estimates time-consuming. For selected starting 

values of the parameters, one microsimulation run will produce, for instance, age-specific 

breast cancer incidence trends over time, and compare it to the observed breast cancer 

incidence levels. Maximum likelihood estimates of the model parameters are obtained by 
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repeated evaluation of the simulated breast cancer incidence for different sets of parameter 

values. Parameters are estimated by minimizing the sum of squared differences between 

observed and simulated data. This weighted sum measures the goodness of fit of the 

simulation results and is defined as a chi-squared distributed statistic. [22]. Minimization of 

the goodness of fit statistic leads to the optimal parameters, but requires frequent, and time-

consuming evaluations of the objective function. We used the Nelder and Mead Simplex 

(NMSM) algorithm [23], which has the advantage that it only uses the value of the objective 

function, i.e., the goodness of fit of the model, to find the minimum. In the NMSM 

approach, each step in the optimization algorithms is based on output from previous 

simulation runs in which large numbers of life histories have been simulated, and it performs 

quite well in locating the optimum.

Extensive model calibration for the CISNET base case analysis provided parameter 

estimates that resulted in a close match between the simulated U.S. incidence and mortality 

over time and the observed trends in incidence and mortality from 1975 to 2000 [16]. These 

parameter estimates from the base case analysis were only re-calibrated for a limited number 

of parameters at a time and within logical parameter bounds (e.g., new screening modalities 

with higher sensitivity of screening correspond to, and resulted in, a smaller threshold 

diameter for screen-detectability).

Validation

Establishing the degree to which MISCAN-Fadia is an accurate representation of the real 

world, is validation. Five types of validation [24] are addressed: face validity, internal 

validity, cross validity, external validity, and predictive validity. Face validity means the 

model makes sense at face value. MISCAN-Fadia’s structure with a biological entry of 

continuous tumor growth makes sense at face value. The model structure and data sources 

used as input lead to credible results that show no logical contradictions such as screening 

resulting in the diagnosis of more late stage tumors, or decreasing risk of developing breast 

cancer as women get older. Internal consistency, or verification, examines the mathematical 

calculations performed and its consistency with what could be expected based on the 

model’s specification. MISCAN-Fadia, programmed in Delphi, is a microsimulation model 

in which disease processes are mainly driven by clearly specified probability distributions 

that are widely used in modern programming software packages. Results of mathematical 

calculations for published parameter values can easily be verified when using these 

probability distributions.

Cross-validity covers the aspect of comparing model results to the results of other modeling 

groups. As MISCAN-Fadia has been part of CISNET since the start of its collaboration, this 

form of validation of the model has been done extensively [15, 25, 26]. External validity is 

the comparison of model outcomes to observed data that was not used for calibration and 

development of the model. MISCAN-Fadia is currently part of an independent external 

validation exercise wherefore we validated the results of five CISNET breast cancer models 

against the UK Age trial [27]. In the past, we conducted a dependent model validation 

against the UK Breast Screening Frequency trial [28]. UK specific breast cancer incidence 

and life tables were used, and the threshold diameter as well as the diameter of clinical 
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diagnosis were re-estimated based on the trial’s data. The model accurately reproduced the 

cumulative incidence in the intervention and control groups. Also, the percentage of screen 

detected and clinically diagnosed breast cancers were similar to the observed percentages in 

both groups, as were the number of breast cancer deaths [29]. Predictive validation is done 

by making model predictions for future outcomes of, for example, patterns in incidence and 

mortality. MISCAN-Fadia has made predictions about future trends in incidence and 

mortality [30], but it still remains to be seen how these predictions unfold.

Model input and output of MISCAN-Fadia

Differences in patterns of breast cancer incidence and mortality can often be traced back to 

different screening and treatment regimens, adherence patterns, and different underlying 

risks. To simulate the harms and benefits of screening and treatment at the population level, 

the model requires data for the four major model components: population demographics, 

natural history of breast cancer, screening and treatment. A list of inputs of MISCAN-Fadia 

is provided and described as common CISNET model inputs [3].

The outcomes listed in Table 1 can be produced for any screening scenario with different 

start and stop ages of screening, screening frequency and screening modality. In addition to 

different screening strategies, the model output can also be broken down by: calendar year, 

age group, and by tumor size or breast cancer stage such as AJCC. By assigning health 

utilities to specific health states and unit costs to specific events, total costs and Quality 

Adjusted Life Years (QALYs) can be calculated. Consequently cost-effectiveness analyses 

can be performed [31]. In addition, radiation-induced breast cancers and breast cancer 

deaths can be calculated using model output together with radiation dose [32].

Extensions and applications of the model

Targeting screening to women with the highest potential benefit and lowest potential harm 

can improve the overall balance between benefits and harms in the population. In recent 

years, we explored the effects of obesity and race on U.S. breast cancer mortality [30, 33] as 

well as the cost effectiveness of ultrasonography screening [31]. In the past years, we also 

examined the contributions of screening and treatment to reduction in molecular subtype 

specific breast cancer mortality by evaluating different screening scenarios, including risk-

based screening strategies. We present some examples of the model adaptations that formed 

the basis of these collaborative modeling studies.

Personalizing screening

To evaluate screening outcomes while taking into account advances in mammography and 

treatment of breast cancer, several screening strategies were modeled differing by age at 

which screening starts and screening interval. Biennial screening from age 50 to 74 years 

avoided a median of 7 breast cancer deaths per 1,000 women screened compared to no 

screening and is generally considered to have a favorable balance between benefits and 

harms. More intensive screening leads to more benefits (breast cancer deaths averted), but 

also to more harms (false-positives and over diagnosis). For example, annual screening from 

age 40 to 74 years avoided an additional 3 deaths, but yielded 1988 more false-positive 

results and 11 more over diagnosed cases per 1000 women screened [26]. Women aged 40 
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with a two-fold risk (compared to average risk) can expect the same balance of benefits and 

harms as average-risk women who receive biennial screening starting from age 50 [25].

Breast density and breast cancer

Breast density has been proposed to personalize mammography screening. Dense breast 

tissue is prevalent and associated with a higher risk of developing breast cancer [34]. 

Moreover, since breast density is relatively easy to measure on a mammogram, it can be 

used for risk stratification. Some studies have found that tumors in dense breasts 

(categorized as BI-RADS 3 and 4) may progress more rapidly than those in fatty breasts, 

categorized as BI-RADS 1 and 2 [35]. Based on this, breast density could be taken into 

account when personalizing a woman’s screening frequency. Breast density does not only 

affect risk of developing breast cancer, it also affects screening test sensitivity as dense 

breast tissue is comprised of less fat and more connective breast tissue which appears white 

on a mammogram. Moreover, cancer appears white on a mammogram and is therefore easier 

overlooked by radiologists, resulting in a lower screening test sensitivity.

Breast density in MISCAN-Fadia

Breast density has been incorporated into MISCAN-Fadia to assess the effects of 

personalized screening; breast density was assumed to influence the sensitivity of the 

screening test (threshold diameter) as well as the onset of breast cancer. We also 

incorporated the decrease in breast density as women age because mammographic density 

decreases after the menopause when ovarian function declines. When modeling both risk 

and density, we found that average-risk women (low breast density) undergoing triennial 

screening and higher-risk women (high breast density) receiving annual screening will 

maintain a similar or better balance of benefits and harms compared to biennially screening 

average-risk women [36].

Simulating molecular subtypes of breast cancer

It has been widely acknowledged that breast cancer is a heterogeneous disease and more 

knowledge is emerging on distinct molecular subtypes. Combinations of Estrogen Receptor 

(ER) and Human Epidermal Growth Factor Receptor 2 (HER-2) status have different tumor 

growth and are associated with different treatment responses that have been found to be 

important in targeting the treatment of breast cancer. To understand the relative contributions 

of screening and treatment to U.S. breast cancer mortality, first the major subtype 

combinations of ER positive and ER negative have been included in MISCAN-Fadia. Across 

CISNET models we found greater absolute breast cancer mortality declines in ER-positive 

cancers than among ER-negative cancers. The relative contribution of adjuvant treatment vs 

screening to breast cancer mortality reductions was higher for ER-positive cases; for ER-

negative cases, the relative contributions were similar [13]. We have recently also included 

HER-2 in the model [14], as well as the treatment Trastuzumab (Herceptin) that is an 

antibody that interferes with the HER2 receptor.
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Future directions of MISCAN-Fadia

Risk based screening based on genetic risk profile

Genomic discoveries of genes associated with breast cancer risk may have the potential to 

personalize screening based on a woman’s genetic risk profile. It is one of our primary goals 

in the upcoming years to continue our research on estimating the population impact of using 

polygenic risk to tailor screening strategies. A growing group of single nucleotide 

polymorphisms (SNPs) are discovered that are associated with an elevated risk for breast 

cancer [37]. Individual SNPs identify a small increase in risk, however, multiple SNPs 

combined together can be translated into a polygenic risk score to stratify women based on 

their polygenic risk. We divide the population into risk groups based on observed polygenic 

risk score distributions. For each risk group, the models simulate routine digital 

mammography screening strategies by varying starting and stopping ages of screening and 

screening frequency. To warrant a more intense screening scenario for high risk groups and a 

less intense screening strategy for low risk groups, we compare the benefits and harms of the 

different screening strategies. The polygenic risk distribution in the U.S. female population 

determines how many women are eligible for each selected screening strategy and what the 

overall harms and benefits of polygenic risk-based screening will be.

A simplified analysis of using polygenic risk to inform screening strategies, can be 

performed by dividing the population into three (low, median, high) risk groups with varying 

prevalence (Figure 3). Targeted screening based on polygenic risk leads to a redistribution of 

benefits and harms. A more in-depth analysis will be performed in the near future within 

CISNET. MISCAN-Fadia will be used to quantify the benefits such as the breast cancer 

deaths averted, quality-adjusted life years saved, breast cancer mortality reduction, costs, 

and harms such as the false positive mammograms, over diagnosed cases, unnecessary 

biopsies, false negatives.

Strategies to reduce overtreatment of DCIS

While early detection of breast cancer and consequently less invasive treatment are often 

mentioned as benefits of screening, overtreatment of DCIS lesions that otherwise would not 

have clinically surfaced without screening is an increasing harm of screening since DCIS 

rates have increased dramatically over the last 30 years. Studies have shown that an increase 

in breast cancer mortality reduction due to screening comes with a substantial increased 

number of over diagnosed DCIS cases [11, 38]. MISCAN-Fadia will be extended to 

investigate if, how, and to what extent the harms of screening and treatment of DCIS can be 

reduced. By simulating ‘watchful waiting’ strategies and exploring risk factors for 

progression to invasive breast cancer such as cytological grade, ER status, age at diagnosis 

and ethnicity, MISCAN-Fadia will be used to assess how different screening strategies and 

treatment routines may affect incidence and mortality for varying progression and regression 

rates of DCIS.

van den Broek et al. Page 11

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

Trends in breast cancer incidence and mortality depend on many factors related to the 

biology and natural history of breast cancer. As tumor size is observable at diagnosis and 

tumors are considered to grow in continuous time rather than discrete time, these two 

aspects form MISCAN-Fadia’s biological entry to modeling the effects of screening and 

treatment on breast cancer incidence and mortality. The advantage of this biologically 

oriented approach is that it allows for simple hypothesis testing because the core biological 

mechanisms are separated from cancer control interventions. Changes or improvements in 

screening and treatment that may vary by age, or over time, can be implemented directly and 

be dealt with without changing breast cancer onset or tumor growth parameters. On the other 

hand, simulating less or even more aggressive tumor subtypes with a different growth 

function is also possible. Moreover, correlations that were added to the base case model in 

order to get a good overall fit with observed data, were plausible, and with a biological 

reasoning, intuitive to understand. In particular, one may expect faster growing tumors to be 

diagnosed at larger tumor diameters, and faster growing tumors to have a shorter survival as 

well as a larger clinical diagnosis diameter.

However, MISCAN-Fadia also has limitations and makes use of simplifying assumptions. 

We model only one tumor per woman while it may be possible that breast cancer develops in 

both breasts independently or at the same time, although such cancer development is not 

prevalent. Also, recurrence of breast cancer is not simulated in our model. We do not model 

specific factors associated with an elevated risk for breast cancer such as reproductive 

history, alcohol use, hormone therapy use or familial risk. These different risk groups are 

assumed to be captured by the distribution we simulate tumors from. The spread between 

slower and faster growing tumors with unique tumor characteristics is assumed to capture 

the entire population risk profile.

Future development of the model will focus on evaluating the impact of using polygenic risk 

to inform screening strategies, evaluating the clinical management of screen-detected DCIS, 

and incorporating alternative and emerging screening modalities such as breast MRI and 

tomosynthesis.
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Figure 1. 
Ductal carcinoma in situ model in MISCAN-Fadia. Once a breast lesion emerges from 

normal breast tissue, a woman is in the preclinical undetectable DCIS phase. The two 

possible transitions from there are either: preclinical screen detectable DCIS or preclinical 

invasive breast cancer. From the preclinical screen detectable DCIS phase the tumor may 

regress and the woman will end up in the ‘No Breast Cancer’ pool. However, from the 

preclinical screen detectable DCIS phase the tumor may also progress to preclinical invasive 

breast cancer or the tumor may cause clinical symptoms and a DCIS case will be diagnosed 

as a result of clinical symptoms. If a tumor is in the preclinical invasive breast cancer state, 

the cancer may be screen detected or cause clinical symptoms that lead to a clinical breast 

cancer diagnosis. Depending on the moment of diagnosis and the type of treatment a women 

may cure or die from breast cancer.
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Figure 2. 
The MISCAN-Fadia breast cancer natural history model. After tumor onset, the values of six 

tumor characteristics are generated: growth rate of the tumor, the tumor’s fatal diameter that 

represents distant metastasis, survival time after reaching the fatal diameter, screen 

detectability diameter (threshold), and the clinical diagnosis diameter. The distribution 

curves on the y-axis demonstrate the probabilistic nature of the simulations and the variation 

between the screen-detection, fatal and clinical diagnosis diameter of tumors. The growth 

rate of the tumor determines the times since its initiation at which the tumor reaches the 

screen detectability diameter, the clinical diagnosis diameter, and the fatal diameter. If in the 

absence of screening the clinical diagnosis diameter is larger than the fatal diameter, the 

woman will die of breast cancer and the observed survival time is given as depicted in 

Figure 2. A woman will be cured if the breast cancer is detected, either clinically or through 

screening, before the fatal diameter is reached. Treatment (not shown in Figure 2) is 

modeled as a shift in fatal diameter and may affect survival and in the best scenario cause of 

death.
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Figure 3. 
Simulating a personalized approach to breast cancer screening based on genetic risk profile. 

Genetic variants for breast cancer have different risk alleles. Multiple single nucleotide 

polymorphisms (SNPs) combined together can be translated into a polygenic risk score to 

stratify women based on their polygenic risk. In Figure 3, a simplified analysis of the 

potential population impact of using polygenic risk to inform screening strategies is 

demonstrated by dividing the population into three (low, median, high) risk groups with 

varying prevalence. In this simplified example 10% of the population has a low risk of 

developing breast cancer, 80% an average risk, and 10% a high risk. More frequent 

screening could be offered to the high risk group and less frequent screening (compared to 

average risk group) could be offered to the low risk group. With more risk groups, or even a 

continuous risk distribution we could potentially optimize the tailoring of screening 

strategies based on polygenic risk which would lead to a redistribution of benefits and harms 
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compared to current practice. A more in depth analysis will be performed in the near future 

within CISNET.
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Table 1

Model output MISCAN-Fadia model

Output description

1 Invasive Breast cancer cases diagnosed clinically

2 Invasive Breast cancer cases diagnosed by screening

3 DCIS cases diagnosed clinically

4 DCIS cases diagnosed by screening

5 Life years in the absence of screening

6 Life years in the presence of screening

7 DCIS over diagnosed cases (in the presence of screening)

8 Invasive over diagnosed cases (in the presence of screening)

9 Breast cancer deaths in the absence of screening

10 Breast cancer deaths in the presence of screening

11 Deaths from other causes in the absence of screening

12 Deaths from other causes in the presence of screening

13 Number of mammograms

14 Number of cancers diagnosed in AJCC stage I, II, III, IV

15 Number of cancers diagnosed in SEER stage local, regional, distant

16 Number of cancers diagnosed by tumor size 0–20mm, 20–50mm, 50+ mm

17 Number of cancers treated with adjuvant treatment

18 Intervals between events, e.g., lead time (time between screen detection and diagnosis in the absence of screening), survival (time 
between diagnosis and death)

Med Decis Making. Author manuscript; available in PMC 2019 April 01.


	Abstract
	Introduction
	Methods
	Discrete event-driven microsimulation
	Parallel universe approach
	Breast cancer onset
	The continuous tumor growth natural history model
	Population Demographics
	Screening and screen detection
	Breast cancer staging
	Adjuvant treatment
	Parameter estimation
	Validation
	Model input and output of MISCAN-Fadia
	Extensions and applications of the model
	Personalizing screening
	Breast density and breast cancer
	Breast density in MISCAN-Fadia
	Simulating molecular subtypes of breast cancer

	Future directions of MISCAN-Fadia
	Risk based screening based on genetic risk profile
	Strategies to reduce overtreatment of DCIS

	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

