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Abstract

Background—Collaborative modeling has been used to estimate the impact of potential cancer 

screening strategies worldwide. A necessary step in the interpretation of collaborative cancer 

screening model results is to understand how model structure and model assumptions influence 

cancer incidence and mortality predictions. In this study we examined the relative contributions of 

the pre-clinical duration of breast cancer, the sensitivity of screening, and the improvement in 

prognosis associated with treatment of screen-detected cases to the breast cancer incidence and 

mortality predictions of five Cancer Intervention and Surveillance Modeling Network (CISNET) 

models.

Methods—To tease out the impact of model structure and assumptions on model predictions, the 

Maximum Clinical Incidence Reduction (MCLIR) method compares changes in the number of 

breast cancers diagnosed due to clinical symptoms and cancer mortality between 4 simplified 

scenarios: 1) no-screening; 2) one-time perfect screening exam that detects all existing cancers and 

perfect treatment (i.e., cure) of all screen-detected cancers; 3) one-time digital mammogram and 

perfect treatment of all screen-detected cancers; and 4) one-time digital mammogram and current 

guideline-concordant treatment of all screen-detected cancers.

Results—The five models predicted a large range in maximum clinical incidence (19%–71%) 

and in breast cancer mortality reduction (33%–67%) from a one-time perfect screening test and 

perfect treatment. In this perfect scenario, the models with assumptions of tumor inception prior to 

when it is first detectable by mammography predicted substantially higher incidence and mortality 

reductions than models with assumptions of tumor onset at the start of a cancer’s screen-detectable 

phase. The range across models in breast cancer clinical incidence (11%–24%) and mortality 

reduction (8%–18%) from a one-time digital mammogram at age 62 with observed sensitivity and 

current guideline-concordant treatment was considerably smaller than achievable under perfect 

conditions.

Conclusions—The timing of tumor inception and its effect on the length of the pre-clinical 

phase of breast cancer had substantial impact on the grouping of the models based on their 

predictions for clinical incidence and breast cancer mortality reduction. This key finding about the 

timing of tumor inception will be included in future CISNET breast analyses to enhance model 

transparency. The MCLIR approach should aid in the interpretation of variations in model results 

and could be adopted in other disease screening settings to enhance model transparency.

Introduction

Collaborative modeling can enhance the rigor of modeling research through the use of 

multiple independent models to answer the same research question. The National Cancer 

Institute-funded Cancer Intervention and Surveillance Modeling Network (CISNET) was 

established in 2000 to use collaborative modeling to improve our understanding of the 

impact of cancer prevention, screening, and treatment dissemination on population trends in 

cancer incidence and mortality. The CISNET Breast Cancer Working Group includes six 

modeling teams: Dana-Farber (Model D) [1], Erasmus (Model E) [2], Georgetown-Einstein 

(Model GE) [3], MD Anderson (Model M) [4], Stanford (Model S) [5], and Wisconsin-
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Harvard (Model W) [6]. The modeling groups have collaborated to estimate the effects of 

breast cancer prevention [7], mammography screening [8–11], and systemic adjuvant 

treatment on trends in breast cancer incidence and mortality [12, 13]. Prior research has also 

investigated the impact of different screening scenarios on the balance of population-level 

benefits and harms, and the results have been used by policymakers to inform breast cancer 

screening guidelines [9, 14, 15].

Each of the models is unique in its structure, assumptions, and methods of synthesizing data. 

Consequently, they are unique in how they project the impact of screening and treatment on 

breast cancer incidence and mortality. Results that are similar across multiple models despite 

differences in assumptions and modeling approach, enhance the credibility of the findings 

and are more likely to be robust than conclusions obtained from a single model. For 

instance, in prior analyses, the models all closely estimated observed trends in US breast 

cancer incidence and mortality and consistently agreed on the ranking of screening scenarios 

based on several metrics, including mortality reductions. [9, 15]

Despite the consistency of prior conclusions about the effects of screening across the 

models, there are variations in the magnitude of the effects. [9, 15] For the interpretation of 

collaborative modeling results, it is important to understand how different model structures 

and combinations of assumptions contribute to this variation. Detailed model descriptions 

(Table 1) are informative and contribute to model transparency. However, conveying 

between-model differences is not always straightforward for reasons related to the nature of 

modeling disease processes and their interaction with cancer control interventions. In 

particular, breast cancer modeling involves the representation of unobservable aspects of 

natural history such as tumor onset and tumor progression upon which interventions (e.g., 

screening and treatment) are overlaid. To do so, models make assumptions about the timing 

of tumor inception, tumor progression (e.g., discrete or continuous tumor growth), and 

progression variability among tumors. These assumptions in conjunction with model 

structure impact the three key determinants of screening effectiveness: 1) pre-clinical 

duration of breast cancer, i.e., the time period during which prevalent undiagnosed cancers 

could be detected by screening; 2) sensitivity of the screening test, i.e., the likelihood that 

cancers are detected at screening; and 3) improvement in prognosis from treatment, e.g., 

whether (earlier) treatment reduces (more) breast cancer mortality.

Given the complexity of interpreting outcomes from multiple models in a collaborative 

setting, it can be useful to isolate portions of the models to gain greater insight into how 

model structure and natural history assumptions systematically affect model results. The 

maximum clinical incidence reduction (MCLIR) method can be used to isolate the effects of 

tumor onset, tumor progression, screening test sensitivity, and treatment by comparing 

model results before and after imposing a one-time screening intervention under varying 

assumptions about screening performance and treatment effectiveness.

In the absence of screening, breast cancers will only be diagnosed as a result of clinical 

symptoms, i.e., clinical incidence, which is defined as breast cancers diagnosed due to 

symptoms. Screening is assumed to detect some of these cancers prior to symptomatic 

diagnosis, thereby reducing clinical incidence, and possibly cancer mortality. The MCLIR 
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method measures this reduction in breast cancer clinical incidence and mortality. While all 

models use the same data on screening sensitivity and breast cancer treatment, the 

implementation of screening and treatment in the models varies as model structures are 

different. Therefore, differences in clinical incidence reduction should reflect model-specific 

choices in their portrayal of the pre-clinical detectable phase of breast cancer (tumor onset 

and progression) and mechanisms of screen detection (e.g., how they incorporate 

sensitivity). Differences in breast cancer mortality are expected to capture model-specific 

assumptions about tumor onset and progression and how the implementation of treatment 

affects the natural history.

To date, the MCLIR method has been applied to three CISNET colorectal cancer models to 

clarify the effect of natural history assumptions and model structure on colorectal cancer 

incidence predictions. [16] In this study, we extended the MCLIR method to understand how 

differences among the CISNET breast cancer models affect predictions for screening 

effectiveness by projecting the clinical incidence and mortality reductions after a one-time 

screening exam at age 62 among women without prior screening or a past breast cancer 

diagnosis. The results are intended to provide a greater understanding of how the CISNET 

breast models depict unobservable processes, and how those representations may 

systematically affect conclusions about screening effects on incidence and mortality.

Methods

This research was approved as exempt by the Georgetown Institutional Review Board based 

on use of de-identified, publically available data. Five of the six CISNET breast models 

(those with natural history components) participated in this analysis.

Model Overview

The general model structure of the five models involves the simulation of women who may 

develop breast cancer in the absence or presence of screening. In all models, the majority of 

women live a breast cancer-free life and eventually die of causes other than breast cancer 

(Figure 1, panel A). For women who develop breast cancer, tumor inception is simulated 

either prior to (models E and S) or at the start of (models D, GE, and W) the tumor’s sojourn 

time. We define the sojourn time as the portion of time in the pre-clinical phase between 

when a cancer can be first screen-detectable (e.g., by mammography) and when clinical 

cancer diagnosis would occur due to symptoms in the absence of screening.[17] Tumor 

sojourn time is also termed ‘pre-clinical screen-detectable phase‘ (Figure 1).

The point when a tumor becomes screen-detectable may depend on the sensitivity of the 

screening test, such that more sensitive tests can detect tumors closer to inception, and hence 

in earlier stages or at smaller tumor sizes. Tumor growth is simulated either continuously 

(models E, S, and W) or as movement through discrete stages (models D and GE). All 

models except model S include ductal carcinoma in situ (DCIS). Nonetheless, model S 

simulates the progression of breast cancers prior to clinical symptoms based on continuous 

tumor growth of invasive cancer (Table 1). [5]
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In the absence of screening, the models assume that some cancers will eventually cause 

symptoms and be clinically diagnosed (Figure 1, panel B). If a woman participates in 

screening during the cancer’s sojourn time, the cancer may be screen-detected in an earlier 

stage or at a smaller size than would have occurred with clinical diagnosis in the absence of 

screening.

The time period between when a cancer is screen-detected and when it would have been 

clinically diagnosed in the absence of screening is referred to as the lead-time (Figure 1, 

panel C). The lead time is part of the sojourn time, and the duration of the sojourn time is an 

important unobservable determinant of screening effectiveness because a longer sojourn 

time implies a longer period during which a screening test can potentially detect cancer. The 

sojourn time is based on assumptions about tumor inception and tumor growth, and the start 

of the sojourn time is determined by the sensitivity of the screening test (Figure 1, panel C).

Mortality reductions from screening may occur via improvements in survival related to the 

earlier stage or smaller tumor size at diagnosis of screened vs. unscreened women, given 

receipt of breast cancer treatment.

MCLIR Analysis

To illustrate the effects of model structure and assumptions about tumor inception, tumor 

progression, screening test ability to detect tumors, and treatment on breast cancer incidence 

and mortality predictions, the MCLIR analysis consists of comparisons between four 

scenarios. Three scenarios involve a one-time screening test at age 62 and the remaining no-

screening scenario serves as a comparator (Table 2). The study population for each scenario 

is a cohort of average risk women born in 1965, that have never been screened or diagnosed 

with breast cancer prior to age 62. Age 62 was chosen to illustrate model differences 

because it is in the middle of the start and stop ages of the generally recommended 

mammography screening guidelines [14, 18] and there is sufficiently high prevalence of 

breast cancer at this age to illustrate model differences. While all models have the capacity 

to include risk factors, to isolate model differences these analyses focused on the average 

risk population. Women were followed for 15 years (i.e., up to age 77) to capture the 

immediate and long-term effects of the intervention. Model outcomes were breast cancer 

clinical incidence and breast cancer mortality by age.

MCLIR Scenarios

Scenario 1 is the baseline scenario without screening where all breast cancers will be 

diagnosed due to clinical symptoms. Upon diagnosis, cancers are treated according to 

current guideline recommended treatment. [19] Guideline concordant treatment roughly 

implies that, after surgical removal of the tumor, estrogen receptor (ER)-positive breast 

cancers are primarily treated with hormone therapy and advanced stage ER positive tumors 

may also receive chemotherapy. ER-negative breast cancers are treated with chemotherapy 

only. Tumors that are Human epidermal growth factor Receptor 2 (HER2) positive are also 

treated with Trastuzumab (Herceptin). The effectiveness of breast cancer treatment was 

based on the most recent meta-analyses of randomized clinical trials reported by the Early 

Breast Cancer Trialists’ Collaborative Group (EBCTCG). [20] Scenario 1 provides baseline 
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information about the number of cancers that will lead to symptoms and be clinically 

diagnosed as well as the number of breast cancer deaths occurring in the 15-year follow-up 

period.

Scenario 2 involves a one-time perfect screening test at age 62 and perfect treatment. The 

hypothetical perfect screening test assumes that all tumors in existence are screen-detected, 

including those that may not be detectable by digital mammography. Perfect treatment 

means treatment is curative and that all women will be cured and will die from other causes 

than breast cancer. Comparing results from this scenario with the baseline (no-screening) 

scenario provides the maximum achievable clinical incidence and mortality reduction. It is a 

measure of the pool of cancers that technically could be screen-detected at age 62 and thus 

avoid clinical diagnoses of these cancers at a later age when they would cause symptoms. 

The change in the maximum achievable clinical incidence reduction over time as women age 

provides insight into the distribution of sojourn times of the existing tumors at age 62, i.e., 

key determinant 1 of screening effectiveness. The mortality results from this scenario 

provide information on how many of the breast cancer deaths between ages 62 and 77 stem 

from cancers that were present at age 62. Relative to the no-screening scenario, it is the 

maximum achievable mortality reduction from screening and treatment, and the converse (1 

minus the maximum mortality reduction) is the portion of unavoidable breast cancer deaths 

because these cancers had tumor onset after age 62 when the screening test was done (Figure 

3). The age-specific maximum achievable mortality reduction after the screen test at age 62 

also provides insight into the survival time of pre-clinical cancers in existence at age 62.

Scenario 3 involves a one-time digital mammogram at age 62 with sensitivity based on 

observed mammography performance in the Breast Cancer Screening Consortium [9, 19] 

and perfect treatment (i.e., cure) of screen-detected cancers. In this scenario, some of the 

cancers in existence at age 62 will be missed by screening and this will affect clinical 

incidence and mortality at later ages. Because scenarios 2 and 3 vary screening performance 

while holding the treatment effects constant, the comparison of these two scenarios isolates 

the impact of perfect vs. observed sensitivity of screening on reductions in clinical incidence 

and breast cancer mortality, i.e., key determinant 2 of screening effectiveness. This 

comparison also illustrates the room for improvement in terms of fewer clinically diagnosed 

cases and cancer deaths should the sensitivity of screening would improve (e.g., new 

radiology technology or circulating tumor DNA detection).

Scenario 4, the realistic scenario, involves a one-time digital mammogram at age 62 and 

treatment according to current guidelines [19]. Because scenarios 3 and 4 vary treatment 

effectiveness while holding the sensitivity of screening constant, the comparison of these 

scenarios isolates the impact of perfect vs. actual treatment effectiveness on breast cancer 

mortality, i.e., key determinant 3 of screening effectiveness. This comparison isolates the 

portion of cancers that, despite earlier detection by screening, will not be cured with current 

guideline recommended treatment. Also, this provides insight into the room for 

improvement should breast cancer treatment improve in the future, given current 

performance of digital mammography.
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For ease of comparison and interpretation of outcomes across the four scenarios for five 

different models, results are reported as percent reductions in clinical incidence and breast 

cancer mortality relative to each model’s clinically diagnosed breast cancers and breast 

cancer deaths in the absence of screening (Figure 2 & 3).

Results

The results for each scenario for the impact of a one-time screen at age 62 among women 

with no prior screening or past diagnosis of breast cancer are presented separately for 

incidence and mortality.

Breast Cancer Incidence

Tumor Onset and Progression—The maximum achievable clinical incidence reduction 

from a perfect screening test at age 62 (scenario 2) relative to the no-screening scenario 

(scenario 1) illustrates the impact of natural history assumptions such as tumor onset and 

tumor progression on screening effectiveness. The maximum clinical incidence reduction 

ranged from 19% to 71% across the five models with models D, GE, and W grouping 

towards the lower end of the range and models E and S towards the top of the range (Table 

3). This wide variation was the result of differences in the modeling of the timing of tumor 

inception relative to the start of the sojourn time. For example, Model E’s assumption of 

tumor onset long before the start of the sojourn time led to a large screening effect when the 

perfect screening test was applied that detects all tumors from their inception even before the 

pre-clinical screen-detectable phase begins. The majority (71%) of the cancers in this model 

had an onset prior to age 62 and were therefore screen-detected by a perfect screening test at 

age 62, avoiding clinical diagnoses at a later age. The remaining (29%) of cancers had an 

onset after age 62. Model S makes similar assumptions about tumor onset and growth as 

Model E, and has fairly similar patterns in their results as Model E. In contrast, in Models D, 

GE, and W, which simulate tumor inception at the start of the pre-clinical screen-detectable 

phase, only 19% to 27% of cancers were in existence at age 62, leading to a lower maximum 

clinical incidence reduction from a perfect screening test than Models E and S.

The shape of the maximum clinical incidence reduction curve provides insight into the 

variability of tumor growth and disease progression of tumors in existence at age 62 (Figure 

4). In models D, GE and W, the age-specific clinical reductions from the perfect screen 

declined more rapidly in the first five years than in the other two models, indicating the 

presence of more quickly progressing tumors relative to the other models. The non-steep and 

slower linear decline of the age-specific maximum clinical incidence reduction in Models E 

and S is the consequence of greater variability in tumor progression and overall slower 
tumor growth among the tumors in existence at age 62 than seen in the other models.

The models have structural differences in the timing of tumor inception relative to the 

sojourn time and they had the same calibration targets (observed trends in U.S. breast cancer 

incidence and mortality) in their development phase. This explains why Models E and S 

with tumor inception long before the start of the sojourn time have slower overall tumor 

progression and Models D, GE, and W with tumor inception at the start of the sojourn time 

have faster progressing tumors.
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Screening Sensitivity—Reductions in clinical incidence based on the observed 

sensitivity of digital mammography varied less across models than when assuming perfect 

sensitivity, with ranges of 11% to 24%. Since assumptions about tumor onset and 

progression differ, how the models arrive at this result differs and is illustrated by 

comparison to their predictions for maximum reductions achievable (Scenario 3 vs 2). In 

models D, GE, and W, the differences in clinical incidence reduction were 2%, 3%, and 8%, 

respectively, and in models E and S these were 56% and 27%. While models E and S have 

more tumors in existence at age 62, the majority of tumors were in their pre-sojourn period 

and not yet screen-detectable with a digital mammogram having actual observed sensitivity. 

On the other hand, in models D, GE, and W, the majority of tumors in existence at age 62 

were in their sojourn period and could be detected by the digital mammogram. Thus, the 

variations between model clusters E and S vs. D, GE, and W indicate that modeling 

assumptions about the timing of tumor inception in relation to the implementation of digital 

mammography can have substantial impact on screen detection and reductions in clinical 

breast cancer incidence.

Breast Cancer Mortality

Tumor Onset and Progression—Based on one perfect screening test at age 62 and 

perfect treatment for screen-detected cancers, the maximum reductions in breast cancer 

mortality relative to the no-screening scenario ranged from 33% to 67% over 15 years of 

follow-up (Table 4). Similar to the impact of tumor onset on clinical incidence reductions, 

Models D, GE and W had a higher percent (55% to 67%) of breast cancer deaths stemming 

from cancers with onset after age 62 than Models E and S (33% to 38%). These variations 

reflect interactions between assumptions about tumor onset and survival times.

The steep declines of the maximum mortality reduction curves (Figure 4, right panels) of 

models D, GE and W reveal that, on average breast cancers in these models have shorter 
survival times and less variability in survival times relative to models E and S. These results 

for average survival times correspond to the findings about tumor progression in the models: 

the relatively slow tumor progression, based on earlier inception of tumors, in models E and 

S relate to longer survival times, and the faster tumor progression in Models D, GE and W 

arising from tumor inception at the beginning of the sojourn period ultimately lead to shorter 

survival times on average.

Screening sensitivity—Compared to the maximum achievable mortality reduction, a 

one-time digital mammogram having actual observed sensitivity missed between 3% (Model 

D) to 44% (Model E) of the avoidable cancer deaths. Overall, the mortality reduction from a 

one-time digital mammogram at age 62 and perfect treatment relative to no-screening 

(scenario 3 vs. 1) was 23% to 40% across models (Table 4, Figure 4). The ability to detect 

lethal tumors by mammography screening was higher among the models (D, GE, and W) 

with assumptions of tumor onset at the start of the sojourn time than the models (E and S) 

with tumor onset prior to the start of the sojourn time.

Treatment effectiveness—Assuming observed guideline-concordant treatment 

effectiveness in screen-detected cancers (scenario 4), the percent breast cancer mortality that 
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was not reduced compared to Scenario 3 with perfect treatment was 13% to 23% (Table 4, 

Figure 4). The difference between scenario 3 and 4 show that Models E and GE, have a 

relatively high percentage of cancer deaths that were not averted in the first 3 years after the 

screen at age 62. This illustrates the substantial portion of cancers screen-detected at a 

relatively advanced stage that was not curable with current treatment effectiveness. These 

findings showed that the lethality of the cancers found at screening impacts breast cancer 

mortality differently over time and in magnitude by model.

Sensitivity and Treatment—The combination of screening with a digital mammogram at 

age 62 and guideline-concordant treatment with current treatment effectiveness (Scenario 4 

vs. Scenario 1) provides insight into how assumptions about currently available screening 

and treatment interact with breast cancer natural history to affect breast cancer mortality. 

Models E, W and S grouped towards the lower end and models D and GE towards the higher 

end of the clinical incidence reductions (Table 3). But for breast cancer mortality slightly 

different groupings of models were seen: Models D, GE and S predicted 17 to 18% breast 

cancer mortality reduction relative to the no-screening scenario, whereas models E and W 

predicted 8% breast cancer mortality reduction (Table 4).

The lower breast cancer mortality reductions predicted by models E and W were primarily 

the result of a low screen-detection rate of lethal cancers and the lack of improving 

prognosis with treatment of screen-detected cases: in both models 23% of the cancers 

destined to cause breast cancer death were screen-detected (Scenario 3), and of those 

detected only one-third (8 out of 23; Scenario 4 vs. Scenario 3, Table 4) were cured.

Models D and S predicted a similar 17 and 18% mortality reduction as model GE, also due 

to a combination of relatively high screen-detection and high improvement of prognosis 

from treatment. However, the shape of the mortality reduction curve of Model GE, relative 

to other models, was distinct. The inverted shape of model GE can be explained by the 

presence of more advanced-stage cancers at screen detection, where breast cancer death 

could not be avoided.

Discussion

This study is the first to apply the maximum clinical incidence reduction (MCLIR) method 

to illustrate how model structure and assumptions impact both clinical incidence and cancer 
mortality predictions. To understand variations in model estimates of screening effects, the 

analysis decomposed the relative contributions of model-specific structures and assumptions 

regarding the pre-clinical duration of breast cancer, the ability of a screening test to detect 

cancers, and breast cancer treatment to breast cancer incidence and mortality predictions. 

The results illustrated that models with similar predictions for screening effectiveness may 

use differing assumptions about screening, treatment, tumor onset, and tumor progression. 

Altogether, the key finding was that assumptions about the timing of tumor inception and its 

effect on the pre-clinical duration of breast cancer had the greatest impact on the model 

groupings on predicted clinical breast cancer incidence and mortality reductions. As a result 

of this finding, we now include this model-specific tumor attribute in our CISNET model 

comparison table (Table 1).
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The MCLIR scenarios showed that models E and S simulate the longest pre-clinical duration 

of breast cancer. While this implies a longer period to detect cancers by screening and 

possibly avert cancer deaths, these models showed the greatest difference in breast cancer 

mortality reduction between the scenarios with perfect detection to those with (realistic) 

digital mammography. Again, this was related to those models’ assumptions about early 

tumor onset prior to the start of a cancer’s sojourn time. The loss in breast cancer mortality 

reduction due to digital mammography (imperfect) screening provides information about the 

further reductions in breast cancer mortality should screening sensitivity improve in the 

future, given the current state of the models. On the other hand, models D, GE and W had 

similar and relatively short pre-clinical durations due to their assumptions of tumor inception 

at the start of the sojourn time and therefore ultimately predicted smaller losses in breast 

cancer mortality reduction due to digital mammography screening. The effect of guideline-

concordant treatment with actual observed treatment effectiveness on breast cancer mortality 

reduction differed by model structure. In general, greater breast cancer mortality reductions 

were predicted by models that use a hazard-reduction treatment structure than the models 

with cure fractions to implement breast cancer treatment. These types of insights from the 

MCLIR results provide further clarity on the differences and similarities across models and 

can be used to interpret variations in model outcomes.

The MCLIR analyses also illustrated model variation in the distributions for tumor 

progression assumed in the models, with models D, GE, and W tending to have faster 

progressing tumors than models E and S. This knowledge about the models can help 

interpret model differences in predictions of screening effectiveness by screening frequency. 

For example, one would expect more cancers to be diagnosed with more frequent screening 

in models that have relatively faster tumor progression on average and vice versa. This was 

confirmed in a recent analysis of the impact of screening intervals on breast cancer mortality, 

with Models D, GE, and W showing greater benefits (breast cancer deaths averted preceded 

by more cancer diagnoses) from more frequent screening than models E and S. [9]

The MCLIR methodology was first used to evaluate differences in the CISNET colorectal 

cancer screening models. [16] The colorectal cancer findings indicated that assumptions 

about the duration between adenoma onset and clinical diagnosis were an important factor in 

explaining colorectal cancer model differences. The results of this study were similar in 

demonstrating that models with long pre-clinical durations of breast cancer and relatively 

low screen detection rates project similar screening effects as models with a shorter pre-

clinical durations and higher screen detection rates.

Usually, models are characterized by describing modeling approach, model inputs and 

assumptions. [19,21,22] In this research, we examined model outcomes to drill down to the 

mechanics of incidence and mortality predictions. There are several caveats that should be 

considered in evaluating this method. First, the effect of a single screen on breast cancer 

incidence and mortality is not the same as the effect of routine screening from age 50 to 74. 

The results in this study are therefore not directly translatable to projections of the effects of 

a periodic screening program on overall breast cancer incidence and mortality. Second, it 

was beyond the scope of this paper to perform and evaluate the MCLIR scenarios at different 

ages or at multiple ages across five different models. Evaluating the MCLIR scenarios at 
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different ages would provide insight into age-specific and between-model differences in 

tumor inception, progression, and test-characteristics and the impact of these on breast 

cancer incidence and mortality. Third, the MCLIR methodology employed did not explicitly 

allow for formal assessments of the factors that account for differences in rates of over-

diagnosis. This will be an interesting area for future research and extended use of the 

MCLIR method.

CISNET collaborative modeling predictions are increasingly used by policy makers to 

inform screening guidelines [9, 14], evaluate screening and treatment programs [12, 13], and 

can be used by clinicians to assist in decision-making about breast cancer screening. [23] 

How different models arrive at their predictions of harms and benefits of screening and 

treatment may be perceived as opaque due to the complexity of the models. This study 

complements model descriptions [1–6] by using MCLIR analyses to illustrate and compare 

which structural differences and natural history assumptions may be important to consider 

by policy makers when using collaborative modeling outcomes. The MCLIR approach could 

be adopted in other comparative modeling research to improve model transparency.
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Explanation of Terms Used in Table 1

Analytic Analytical approach to estimate the impact of 

mammography screening and breast cancer treatment on 

incidence and mortality of breast cancer

Simulation Stochastic simulation is based on the Monte Carlo method 

and use of random numbers to evaluate the impact of 

screening on life histories, cancer incidence and mortality

Parallel universe Screening and treatment is modeled in a parallel universe, 

implying that the same population is simulated twice: once 

to determine the impact of breast cancer without screening, 

and once to determine the impact of breast cancer with 

screening

APC model
Breast cancer onset and breast cancer in the absence of screening was derived by Gangnon et 

al. [23] and is driven by an age-period-cohort model:

Age: As women age, their risk of developing breast cancer increases

Period: Onset of breast cancer is different in certain calendar time periods
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Cohort: Year of birth influences the risk of developing breast cancer

Breast density
Breast density is associated with different levels of risk for developing breast cancer and 

modifies the operating characteristics of breast cancer screening

ER/HER2
Onset of breast cancer is different for molecular subtypes ER and HER2

Tumor stage transition
Tumor progression is modeled as transitions between discrete stages

Continuous tumor growth
Tumors grow continuously after tumor inception

Sensitivity
Sensitivity can be used directly or indirectly (e.g., when translated to tumor size)

Overdiagnosis
The detection and diagnosis of a condition that would not go on to cause symptoms or breast 

cancer death in a woman’s lifetime in the absence of screening

Duration of preclinical detectable phase
The period between tumor onset and the start of a cancer’s screen-detectable phase

Hazard reduction
Reduction in breast cancer mortality hazard, derived from the hazard ratio reported for the 

different treatment regimens [19]

Cure fraction
If hazard rate reduction is not a direct model input, it can be translated into a cure fraction to 

implement breast cancer treatment

Death from breast cancer
Once diagnosed with breast cancer, a survival until breast cancer death is competing with the 

other cause mortality survival. That is, breast cancer death occurs only if the patient does not 

die from other causes
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Figure 1. 
Three versions of a woman’s life history: A, without breast cancer; B, with breast cancer and 

without screening; C, with breast cancer and mammography screening. In scenario C, the 

preclinical phase is the period of time between tumor inception and clinical diagnosis in the 

absence of screening. The sojourn time for a screening test, e.g., mammography is the period 

of time within the preclinical phase that a cancer can be screen detectable; this period can 

also be termed the preclinical screen-detectable phase. The point when the cancer is detected 

by screening depends on when the screening test is performed and the sensitivity of the 

screening test. The period before the sojourn time represents a period in which the tumor is 

present but undetectable by mammography. Should the sensitivity of mammography 

improve, or new types of screening tests evolve, the point of screen-detectability would shift 

to the left and tumors could be detected closer to tumor inception.
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Figure 2. 
The MCLIR metrics explained for breast cancer incidence.

Overall reductions in breast cancer incidence at 15-year follow-up: The light gray area 

denoted by A is the overall clinical incidence reduction over the 15 years after the digital 

mammogram at age 62. The area B alone represents the proportion of clinical incidence that 

could not be reduced because of the non-perfect sensitivity of the digital mammogram. As a 

digital mammogram does not detect all tumors in existence, the area B provides a measure 

of the room to further reduce breast cancer clinical incidence if better (more sensitive) 

screening would become available. The 2 light gray areas combined (A and B) are the 

maximum clinical incidence reduction from perfect screening. The dark gray area denoted 

by C, is the proportion of clinical incidence that is not reducible by a perfect screen at age 62 

because these clinical cancers had a tumor onset after age 62.

Age-specific reductions in breast cancer incidence: Scenario 1, the no-screening scenario, 

serves as comparator from which the reductions, as measured on the y-axis, are calculated. 

Scenario 2 (dashed line) is the age-specific percent reduction in clinical incidence from one 

perfect screening test at age 62 with perfect sensitivity relative to the clinical incidence in 

the no-screening scenario. Scenario 4 (solid line) is the age-specific percent clinical 

incidence reduction from one digital mammogram at age 62 relative to the no-screening 

scenario. Scenario 3 (also solid line) uses sensitivity of current digital mammography and in 

contrast to scenario 4 has perfect treatment effectiveness which only affects breast cancer 

mortality, and thus, scenario 3 has the same impact on breast cancer incidence as scenario 4.
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Figure 3. 
The MCLIR metrics explained for breast cancer mortality.

Overall reductions in breast cancer mortality at 15-year follow-up: The light gray area 

denoted by A is the overall breast cancer mortality reduction over the 15 years after one 

digital mammogram at age 62 and guideline recommended treatment with observed 

treatment effectiveness. The area B alone represents the proportion of breast cancer 

mortality that could not be reduced because of the non-perfect treatment effectiveness of 

current guideline recommended treatment. Since guideline recommended treatment does not 

cure all screen-detected cancers, B provides a measure of the room to further reduce breast 

cancer mortality if better (more effective) treatment would become available.

The area C alone represents the proportion of breast cancer mortality that could not be 

reduced because of the non-perfect sensitivity of currently available digital mammography. 

As a digital mammogram does not detect all tumors in existence, B provides a measure of 

the room to further reduce breast cancer mortality if better (more sensitive) screening would 

become available. The 3 areas combined (A, B and C) are the maximum mortality reduction 

from perfect screening and perfect treatment where B + C represent the maximum room to 

further reduce breast cancer mortality if screening sensitivity and treatment effectiveness 

would become improve. The dark gray area, denoted by D, is the proportion of breast cancer 

deaths that is not reducible by a perfect screen at age 62 and perfect treatment because these 

breast cancer deaths had tumor onset after age 62.

Age-specific reductions in breast cancer mortality: Scenario 1, the no-screening scenario, 

serves as comparator from which the reductions, as measured on the y-axis, are calculated. 

Scenario 2 (dashed line) is the age-specific percent breast cancer mortality reduction from 

one perfect screening test with perfect sensitivity and perfect treatment relative to the breast 

cancer mortality in the no-screening scenario. Scenario 3 (dotted line) is the age-specific 

percent breast cancer mortality reduction from one digital mammogram at age 62 and 

perfect treatment relative to the no-screening scenario. Scenario 4 (solid line) is the age-

specific percent mortality reduction from one digital mammogram at age 62 and guideline-
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concordant treatment with observed treatment effectiveness in screen-detected cases relative 

to the no-screening scenario.
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Figure 4. 
Age-specific reductions in breast cancer clinical incidence and mortality over 15 years after 

a one-time screening test at age 62 by model. The percent marks in the panels of Figure 4 

represent the cumulative outcomes for the 15-year follow-up period from age 62 to age 77.

The line at the top in the breast cancer incidence panels on the left of Figure 4 is the 

maximum clinical incidence reduction from a screening test at age 62 with 100% sensitivity 

and perfect treatment of screen-detected cancers (Scenario 2). Just after the screening test, 

the reduction in clinical incidence (panels on the left) is highest and decreases by age as it 

becomes less likely that clinical cancers at later ages were already in existence at age 62 and 

could have been prevented by a screening test at that age.
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The percentages in the left-panel figures represent, for example for Model S: 57% of the 

cancers that are clinically diagnosed in the absence of screening between ages 62 and 77 

have an onset after age 62, this implies that 100-57=43% (Scenario 2, Table 3) of the cancers 

diagnosed in the absence of screening could be prevented from becoming clinical diagnosis 

at later ages by a perfect screening test at age 62. The solid line below the dashed line is the 

clinical incidence reduction from a digital mammography screening test: 16% of clinical 

diagnoses could be prevented by a one-time digital mammogram at age 62 (Scenario 3, 

Table 3). This implies that 27% of clinical incidence between ages 62 and 77 was not 

reduced by the one-time digital mammogram at age 62 (Scenario 3 vs 2).

The dashed line at the top in the breast cancer mortality panels on the right of Figure 4 is the 

maximum achievable mortality reduction from a screening test with 100% sensitivity 

combined with perfect treatment in screen-detected cases (Scenario 2). The dotted line 

below the top line represents the breast cancer mortality reduction over the 15-years after a 

current digital mammogram at age 62 and perfect treatment in the screen-detected cases 

(Scenario 3). The solid line at the bottom is the reduction in breast cancer mortality from a 

current screening test combined with current treatment (Scenario 4).

The percentages in these figures are, for example for Model S: 38% of breast cancer deaths 

observed in the scenario without screening stem from cancers with onset after age 62 and 

could therefore not be screen-detected and prevented from breast cancer death by screening 

at age 62. This implies that 100-38=42% of breast cancer deaths could be reduced by perfect 

screening and perfect treatment of screen-detected cases (Scenario 2, Table 4). However, 

31% of breast cancer deaths are not prevented due to lack of screen-detection if screening is 

performed with a digital mammogram (Scenario 3 vs 2, Table 4), and 13% of breast cancer 

deaths is not prevented because current guideline-concordant treatment lacks the 

effectiveness to cure those screen-detected breast cancers (Scenario 4 vs 3). The 18% 

mortality reduction follows from current screening and current treatment (Scenario 4).
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Table 2

Description of Maximum Clinical Incidence Reduction (MCLIR) Method

Scenarios Scenario Description Implication Analyses

No Screening
(Scenario 1)

No screening: no screening during a 
woman’s lifetime. Diagnosed breast 
cancers will be treated with current 

treatment*

All cancers diagnosed in this 
scenario are diagnosed due to 
clinical symptoms and will be 
treated with guideline-concordant 
treatment.

Comparator to calculate the 
screening effect in scenarios 2, 3, 
and 4.

Perfect screening
Perfect treatment

(Scenario 2)

A one-time perfect screen with 100% 

sensitivityΦ at age 62, all screen-detected 
cancers are treated with perfect 

treatment≈

All existing cancers at age 62 will 
be screen-detected and cured by 
perfect treatment and will not lead 
to breast cancer death.

Comparison of Scenario 2 to 1 
isolates the effect of the pre-
clinical detectable duration of 
breast cancer and provides the 
tumor progression distribution.

Current 
sensitivity

Perfect treatment
(Scenario 3)

One-time digital mammogram with 

current sensitivity^ at age 62, all screen-
detected cancers are treated with perfect 
treatment

Some of the existing cancers at age 
62 are screen-detected. All screen-
detected cancers are cured and will 
not lead to breast cancer death.

The comparison of scenario 3 to 2 
isolates the effect of digital 
mammography (non-perfect) 
sensitivity on reductions in clinical 
incidence and breast cancer 
mortality.

Current 
sensitivity
Current 

Treatment
(Scenario 4)

One-time digital mammogram with 
current sensitivity at age 62, all screen-
detected cancers are treated with current 
treatment

Some of the existing cancers at age 
62 are screen-detected. All screen-
detected cancers are treated with 
guideline-concordant treatment and 
some will not lead to breast cancer 
death.

Comparison of scenario 4 to 3 
isolates the effect of guideline-
concordant (imperfect) treatment 
effectiveness on breast cancer 
mortality reduction.

*
Current treatment: All diagnosed breast cancers receive guideline-concordant breast cancer treatment with observed treatment effectiveness. [19]

Φ
Perfect sensitivity: All existing breast cancers are screen-detected at screening (e.g., Sensitivity is 100%).

≈
Perfect treatment: All diagnosed breast cancers are “cured” and women will not die of breast cancer.

^
Current sensitivity: Screening is performed with the observed sensitivity of digital mammography. [19]
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