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Abstract

Background —The U.K. Age trial compared annual mammaography screening of women ages
40 to 49 to no screening and found a statistically significant breast cancer mortality reduction at
10-year follow-up, but not at 17-year follow-up. The objective of this study was to compare the
observed Age trial results to the Cancer Intervention and Surveillance Modeling Network
(CISNET) breast cancer model predicted results.

Methods—Five established CISNET breast cancer models used data on population
demographics, screening attendance, and mammography performance from the Age trial together
with extant natural history parameters to project breast cancer incidence and mortality in the
control and intervention arm of the trial.

Results—The models closely reproduced the effect of annual screening from ages 40 to 49 on
breast cancer incidence. Restricted to breast cancer deaths originating from cancers diagnosed
during the intervention phase, the models estimated an average 15% (range across models 13% to
17%) breast cancer mortality reduction at 10-year follow-up compared to 25% (95% CI 3% to
42%) observed in the trial. At 17-year follow-up, the models predicted 13% (range 10% to 17%)
reduction in breast cancer mortality compared to the non-significant 12% (95% CI -4% to 26%) in
the trial.

Conclusions—Overall, the models captured the observed effect of screening from age 40 to 49
on breast cancer incidence and mortality in the U.K. Age trial, suggesting that the model
structures, input parameters, and assumptions about breast cancer natural history are reasonable
for estimating the impact of screening on mortality in this age group.
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Introduction

The breast cancer models of the Cancer Intervention and Surveillance Modeling Network
(CISNET) synthesize data on breast cancer epidemiology, population demographics,
screening accuracy, and treatment to simulate the impact of screening and treatment
interventions on breast cancer incidence and mortality. Prior comparative modeling studies,
i.e., cross-validations [1], by the CISNET models have illustrated the ability of the models to
reproduce the trends in breast cancer incidence and mortality in the United States. [2—4] The
models generated similar rankings of the effects of different screening scenarios and the
relative impact of screening and treatment on breast cancer mortality. Moreover, the
simulation results provided quantitative information about the harms and benefits of various
screening strategies not examined in randomized clinical trials, and have been used by policy
makers to inform decisions about breast cancer screening guidelines. [3, 5]

The consistency of previous collaborative modeling research provides a level of evidence for
cross-validation. However, none of the prior collaborative CISNET research by the Breast
Working Group has included external model validation. The International Society for
Pharmacoeconomics and Outcomes Research in collaboration with the Society for Medical
Decision Making (ISPOR-SMDM) recommends external model validation as part of good
modeling practices, where external model validation is defined as, “the comparison of model
predictions to observed event data not used in model development”[1]. The purpose of this
paper is to conduct an external validation and compare CISNET breast cancer incidence and
mortality predictions to observed clinical trial results of mammaography screening from ages
40 to 49.

To date, the model parameters were primarily developed based on U.S. data on breast cancer
epidemiology, screening, treatment, and population demographics.[6] Outcomes of our
simulations indicated that offering screening to women in their fifties results in a more
favorable ratio of benefits and harms than offering screening to women in their forties. [3, 7]
This difference between the benefits and harms between these age groups, corresponds to
the available evidence of screening women aged 50 and older [8] and the uncertainty about
screening women in their forties, considering the inconclusive evidence from fewer studies,
and the different guidelines for this age group [5, 9, 10]. Given the high prevalence of dense
breast tissue, faster growing tumors, and inferior sensitivity of mammography in these
younger women [11-13], it is important to validate the models for the effectiveness of
screening in the forties. The U.K. ‘Age’ trial is a well-documented [14-20] trial,
investigating the effect of annually screening women from ages 40 to 49 compared to no
screening, and provided a unique opportunity to externally validate the CISNET breast
cancer models for screening in the forties.

In this study, we present the first external validation performed by the CISNET breast cancer
models that use different structures and assumptions about breast cancer natural history to
project the impact of screening. We compare breast cancer incidence and mortality
predictions to the observed results from the U.K. Age trial. The findings from this study are
intended to inform CISNET model users as they can account for this information when
considering and interpreting future model outcomes.
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The U.K. Age trial was the only randomized controlled trial designed specifically to
investigate the effect of annual mammography screening from ages 40 to 49. Between
October 1990 and September 1997, 160,836 women aged 40-41 were randomly assigned in
aratio of 1 : 2 to either the intervention group or the control group. The 53,883 women in
the intervention arm were offered annual screening by mammaography, and the 106,953
women in the control arm received usual care (no screening). We collaborated with the Age
trial investigators to obtain the observed de-identified data from the trial.

Simulation models

Five CISNET breast cancer models were included in this analysis: Model D (Dana-Farber),
Model E (Erasmus), Model M (MD Anderson), Model S (Stanford), and Model W
(Wisconsin-Harvard). These models have been developed independently within CISNET
over the past 15 years and are described in detail elsewhere [21-25]. Briefly, women are
born in a breast cancer-free stage, some women develop a tumor that may progress to a pre-
clinical stage where it could be screen-detected in its pre-clinical sojourn time, or be
diagnosed with breast cancer due to clinical symptoms. Once diagnosed with breast cancer,
women receive age-, stage-, and biomarker-specific treatment. Breast cancer incidence and
mortality projections depend on age, start and stopping ages of screening, screening
frequency, mammography screening performance, stage at diagnosis, estrogen receptor (ER)
and Human Epidermal growth factor Receptor 2 (HER?2) status of the tumor, breast cancer
treatment, and factors related to the natural history of breast cancer (Tables 1 & 2). However,
since the Age trial did not collect HER2 status, the models did not simulate HER2 specific
molecular subtypes of breast cancer. The models adopt a ‘parallel universe’ approach; the
same population of women is simulated twice: in one scenario women were invited to
annual screening in the forties (intervention group), and in the second scenario women did
not receive any screening in the forties (control group).

As summarized in Table 1, the models differ in the ways they approximate unobservable
events in the natural history of breast cancer. In model D, tumors progress via discrete state
transitions [23], models E, S and W have continuous tumor growth [21, 22, 25], and model
M uses Bayesian simulation [24] and does not have a natural history component. In models
D and W, tumors are technically screen-detectable from the moment at tumor inception.
Models E and S start simulating tumors at small tumor sizes, prior to the start of the sojourn
time, when tumors are not yet screen-detectable by film or digital mammography. Screening
benefit in models D and M is modeled as a stage shift to earlier stage breast cancer, with the
latter model including an additional benefit of screening beyond stage shift. The benefits of
screening in models E, S and W are simulated by the detection of tumors at smaller sizes
than at clinical diagnosis in the absence of screening. (Table 1)

Model inputs

The Age trial data that the CISNET models obtained included control arm incidence in the
absence of screening, mammography screening performance, screening attendance patterns,
and demographic data such as life years and the distribution of birth years of women
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participating in the trial (Table 2). In the Age trial, data were not collected for breast cancer
treatment. To fill this gap we modeled the breast cancer treatment dissemination between
1991 and 2006, the intervention period of the trial, based on reports from the British
Association of Surgical Oncology [26]. The effectiveness of breast cancer treatment was
taken from analyses by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)
that included trials conducted in the U.K. [27]. Model parameters related to the natural
history of breast cancer such as tumor onset and tumor growth were based on the original
CISNET parameters and no calibration was performed to the results from the Age trial.

Simulation of the Age trial

Analysis

The women who participated in the Age trial were born between 1950 and 1957, therefore,
we simulated the 1950-1957 birth cohort. In the trial, two thirds of women aged 40 to 41
were randomized to the control group and were not invited to any screening in their forties.
The models simulated 2 to 10 million women in each arm of the trial as they were not
limited by practical issues concerning invitations and the number of women who can be
included in the simulation of the trial. (Table 3) Any unscheduled screening in the control
group was primarily a consequence of clinical symptoms and not because of routine
screening [17], so we did not model screening contamination in the control group explicitly.

We used the control arm incidence as model input for a baseline projection of breast cancer
incidence in the absence of screening. The models then overlaid the screening parameters
according to the observed screening attendance patterns of the 53,883 women in the
intervention group of the Age trial [18]. The percent uptake of invitations increased by
screening round while the absolute number of invitations sent to the women in the trial
decreased by almost 50% near the end of the intervention period and consequently the
absolute number of women who were screened decreased as well. [18] The models
accounted for this by simulating the decrease in the number of women who were screened
by age. The first analog mammogram in the trial included two views, and all subsequent
mammograms were single-view, similar to the standard practice in the U.K. at the time of
the trial. Screen detection of pre-clinical breast cancer was modeled on the basis of observed
sensitivity data published by the trial investigators [16].

The U.K. treatment dissemination developed for this project indicated whether a breast
cancer is treated with hormone therapy and/or chemotherapy after surgical removal of the
tumor. Overall, ER-positive breast cancers were primarily treated with hormone therapy and
ER-negative breast cancers with chemotherapy. Since, the trial did not collect HER2 status,
and Trastuzumab (Herceptin) was not yet disseminated in the U.K. at the time of the trial, it
was not included in the treatment regimens.

Model predictions were compared to breast cancer incidence and mortality observations
from the Age trial by arm without calibrating the natural history parameters of the models to
the trial. In addition, we compared the number of mammograms in the intervention group to
that of the Age trial to investigate whether any differences in model predictions were related
to variations in the number of mammograms.
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We compared model outcomes to those from the trial at 10-year and 17-year follow-up,
corresponding to the most recent analysis by the Age trial investigators [15]. The trial used
‘incidence based mortality’ to measure the effect of screening and treatment on breast cancer
mortality. This implies, only counting cancer deaths that originated from cancers diagnosed
during the intervention phase of the trial (ages 40 to 49). This is necessary because all
women from both the intervention and control group ‘rolled’ into the national U.K. breast
cancer screening program at age 50 and were invited to screening once every three years.
For example, if at age 54 there would be fewer breast cancer deaths among women
randomized to the intervention group than among the women in the control group, one could
conclude that the intervention of annual screening in the forties effectively reduced breast
cancer mortality at age 54. However, because all women ‘rolled’ into the national screening
program at age 50, it may be the case that the breast cancer deaths prevented at age 54 were
actually from breast cancers diagnosed by screening at age 50 as part of the national
program and not by the trial’s annual screening intervention in the forties. Therefore, the
trial and the models only used breast cancer deaths from cancers diagnosed during the
intervention phase to measure the effect of annual screening in the forties on breast cancer
mortality.

The confidence intervals associated with the mortality reduction observed in the Age trial at
10-and 17-year follow-up are useful as these are mainly influenced by the finite number of
women included in the trial. The CISNET models have not included confidence intervals on
their results given the millions of women simulated per trial arm. The model estimates will
have a negligible range, given that the model outcomes are based on simulations of millions
of women, each with varying combinations of variables constituting the life history, and
sampled across the distribution of each variable. However, the model results do have
uncertainty due to assumptions about unobservable parameters and structural uncertainties
that are addressed. The use of multiple models provides a range of results that captures this
structural uncertainty and could be considered to provide information comparable
conceptually to a confidence interval.

Breast cancer incidence

The average simulated invasive breast cancer incidence among women aged 40 to 49 in the
control arm was 131 per 100,000 women (range across models 124 — 138) compared to 132
observed in the Age trial (Figure 1). The modeled ductal carcinoma in situ (DCIS) incidence
was 11 per 100,000 women on average (range across models 7 — 17), and equivalent to the
11 per 100,000 observed in the Age trial.

The average number of mammograms per woman in the intervention arm of the simulated
trial was 5.2 (range across models 4.9 — 5.4) compared to 4.84 in the Age trial. Modeled
invasive breast cancer incidence in the intervention arm increased by age and was an average
of 135 per 100,000 among women aged 40 to 49 (range across models 131 — 141). This is
consistent with the pattern for the 139 invasive breast cancers diagnosed per 100,000 women
in the trial (Figure 2). DCIS intervention arm incidence varied more across the models
(range 18 — 38) and with 27 diagnoses on average, higher than the 21 DCIS diagnoses per

Med Decis Making. Author manuscript; available in PMC 2019 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

van den Broek et al.

Page 7

100,000 women in the trial. Models with continuous tumor growth (Models E and W) and
models with tumor inception prior to the start of the tumor’s sojourn time (Model E) tend to
have the highest incidence of screen-detected DCIS.

Both the model results and the observed Age trial data included a small peak (Figure 3) at
age 40 in screen-detected breast cancers due to the detection of (prevalent) cases on the first
mammogram, the only two-view mammogram in the trial with better sensitivity than
subsequent screens (Table 4). This was the only age during the trial at which the rate of
screen detected cancers was higher than the rate of clinically diagnosed cancers in the
intervention group. The average rate of screen-detected DCIS and invasive breast cancers in
the intervention arm in the age range 40 — 49 was 69 per 100,000 women in the Age trial,
compared to the models’ average of 75 (range 63 — 89). The rate of clinically diagnosed
cases (DCIS and invasive breast cancers) in the intervention arm was 97 in the trial and 93 in
the models (range 82 — 99). Regardless of mode of detection, the rate of breast cancers
diagnosed in the intervention arm between ages 40 — 49 was 161 per 100,000 women on
average (range across models 154 — 169) and similar to 162 in the Age trial.

Breast cancer mortality

Among breast cancers diagnosed between ages 40 to 49, the Age trial found a total of 83
breast cancer deaths in the first 10 years of follow-up in the intervention arm (16 breast
cancer deaths per 100,000 women) and 219 breast cancer deaths in the control arm (21 per
100,000 women). At 10-year follow-up, the rate of breast cancer deaths per 100,000 women
predicted by the models was 20 on average (range across models 17 to 22) in the
intervention arm, and 23 (range across models 20 to 25) in the control arm (Table 5). The
number of breast cancer deaths predicted by the different models consistently somewhat
higher in both arms than in the trial.

On average, the modeled breast cancer mortality reduction due to screening was 15% (range
across models 13% to 17%) at 10-year follow-up vs. 25% (95% CI 3% to 42%) observed in
the Age trial. At 17-year follow-up, the models predicted 13% (range across models 10 —
17%) breast cancer mortality reduction when restricted to breast cancer deaths that
originated from breast cancers diagnosed during the intervention phase (incidence-based
mortality) vs. 12% (95% CI -4% to 26%) observed in the trial (Table 6). The models with
either tumor onset at tiny tumor sizes prior to the start of the sojourn time and on average
slow tumor progression (Model E), or with tumor cure fractions for treatment benefit
(Models E, M and W) maintained their 10-year follow-up breast cancer mortality reduction
prediction at 17-year follow-up, whereas mortality reduction in the trial decreased. Similar
to the Age trial, the models showed a turning point around age 50 where the increase in the
cumulative number of breast cancer deaths averted started to diminish (Figure 5).

Discussion

This is the first collaborative CISNET breast cancer study comparing model predictions to
observed clinical trial results not used in the development of any model parameters. The
results indicate that all five models estimate the long-term effect of annual screening
between the ages of 40 to 49 well within the observed confidence intervals of the U.K. Age
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trial. The impact of screening on breast cancer mortality was also internally consistent with
individual model structures regarding the natural history of breast cancer.

The ISPOR-SMDM Modeling Good Research Practices TaskForce-7 [1] states that
predictive and external validation are the strongest forms of model validation as decision-
makers can account for this information when considering model outcomes. In the past, the
breast CISNET models have illustrated accurate predictions of molecular-subtype-specific
and overall U.S. breast cancer incidence and mortality trends. [3, 4, 28] This study extends
these prior cross-validations by independently estimating the observed results from a U.K.
randomized controlled trial.

All models reproduced the trend in control group breast cancer incidence from ages 40 to
49, implying that the extant model structures and assumptions about the natural history of
breast cancer in the absence of screening are reliable. Despite the intensive (annual)
screening intervention, the models predicted more clinically diagnosed than screen-detected
breast cancers in the intervention group. This was likely to be explained by the relatively low
sensitivity of all subsequent single-view mammograms that followed after the more sensitive
prevalent two-view mammogram, and the decrease in the number of women screened by
screening round in the trial [18]. Although the models utilized different mechanisms such as
a threshold tumor size (Models E, S, and W) or stage shift (Models D and M) to simulate
screen detection of pre-clinical breast cancer, they were all able to accurately estimate the
impact of screening from ages 40 to 49 on invasive breast cancer incidence.

The effect of screening and treatment on breast cancer mortality was underestimated by all
models at 10-year follow-up compared to the reduction observed in the Age trial. Since all
models accurately predicted breast cancer incidence, and the fact that the underestimation of
the mortality reduction was present across all models, it might be explained by a common
model input not related to screening. Specifically, the derived U.K. treatment dissemination
may not represent the actual treatment received by women diagnosed with breast cancer in
the trial. This is in line with the higher rate of breast cancer deaths predicted by the models
in the control arm in the absence of screening.

After 10 years of follow-up, breast cancer mortality reduction observed in the trial decreased
and lost significance, whereas most models predicted a fairly constant mortality reduction
between 10- and 17-year follow-ups. Previous analysis of the CISNET models [29]
illustrated that Model D, with tumor inception at the start of the sojourn time, has fast tumor
progression on average, and Model E, with tumor inception prior to the start of the sojourn
time, has the slowest tumor progression on average. These individual model structures affect
the pattern in breast cancer deaths averted after age 49 when screening ceased, because
cancers diagnosed in the control arm caused breast cancer death at a younger age in Model
D and at a later age in Model E. Consequently, mortality reduction due to screening was
greater at later ages (between 10- and 17-year follow-up) in Model E than in Model D.
While the model structure of Model S is similar to that of Model E, Model S does not
include DCIS, which implies no possible benefit in terms of mortality reduction from
screen-detected DCIS. However, these otherwise screen-detected DCIS cases will likely be
diagnosed as local stage small invasive tumors (size <1 cm.) in Model S with relatively high,
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and similar survival as DCIS cases. Model W is unique in that it simulates tumors with a
limited malignant potential [25]. This may have resulted in a substantial amount of screen-
detected tumors that did not cause breast cancer death during the 17-year follow-up.
Consequently, Model W’s mortality reduction decreased slightly after age 49 despite their
high rate of screen-detected cancers in the forties.

In summary, at 10- and 17-year follow-up, the models reproduced the effects of annual
screening in the forties on breast cancer mortality well within the trial’s confidence intervals
[15]. In terms of model validation, it can be questioned what these model outcomes imply, as
it is quite common to have relatively wide confidence intervals in randomized trials on
cancer screening. The wide confidence intervals in the trial are partly due to the limited
number of women included and breast cancer deaths observed in the trial. The models’
outcomes may be less sensitive to the number of women that are simulated because they
simulated at least 2 million women in each arm of the trial, notwithstanding the fact that the
models are ultimately based on observed data as well.

The CISNET breast models used Age trial-specific model inputs and data sources applicable
to the U.K., but we can still draw a comparison between the outcomes of this study and
published results from a recent collaborative modeling study on screening in the United
States [3]. In the U.S. study, we simulated annual screening from age 40 to 74 and compared
it to annual screening from age 50 to 74. This implies that the difference in breast cancer
deaths averted between these two scenarios over the women’s lifetime, is due to the effect of
annual screening in the forties. Similar to the results of this analysis, the outcomes indicated
that Model M and E avert the most breast cancer deaths from annual screening in the forties
followed by Models W, S and D. In other words, the ranking of the models is fairly
consistent when applied in another country with different model inputs.

This study presented the first external comparison performed by multiple breast cancer
simulation models applied in a different country and setting. A strength of this analysis is
that we used detailed observed de-identified trial data as model inputs. Another important
strength is that we performed an independent external validation [1] in which no model
calibration was performed to ensure credibility of the model outcomes.

Although the CISNET breast models used Age trial-specific model inputs and data sources
applicable to the U.K., there were several limitations in this analysis. The trial did not collect
data on breast cancer molecular sub-type and treatment, these were estimated based on U.K.
data. It is possible that these data underestimated the actual treatment patterns of trial
participants. That this is the case is suggested by the fact that all models had estimates for
mortality reduction that were consistently lower than the point estimate from the trial.
Moreover, when the models simulated the Age trial assuming all women received the most
effective therapy available, the average model estimate was very close to trial result. [3] The
lack of precision in being able to model the treatment of women in the Age trial is likely to
have contributed more to the differences between model and trial results than the screening
and natural history components of the models. Other limits include the fact that the models
did not explicitly simulate screening in the control arm because the reported amount of
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unscheduled screening was low, and primarily due to symptomatic reasons. [17] While this
may not affect conclusions of the simulations, it is a limitation.

The quantitative information in this study demonstrated how well the models reproduced the
effects of annual screening from ages 40 to 49 on breast cancer incidence and mortality. In
the future, the CISNET models could simulate the impact of what would have happened if
two-view digital mammography had been used for all screening examinations in the Age
trial, simulate the impact of different patterns of screening attendance, provide estimates on
overdiagnosis, and estimate the lifetime effects of different screening programs offered to
women in their forties. The demonstration that the models can reproduce observed external
trial results should increase confidence in models results to inform policy decisions about
breast cancer screening.
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Intervention group breast cancer incidence (DCIS and invasive separate) per 100,000

women, compared to the Age trial.
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Intervention group (screen detected) breast cancer incidence per 100,000 women. Screening
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Intervention group (clinically diagnosed) breast cancer incidence per 100,000 women.
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*Cumulative breast cancer deaths averted only using breast cancer deaths from cancers
diagnosed in the intervention period per 100.000 women. Calculated by the rate of breast
cancer deaths in the control group minus the rate of breast cancer deaths in the intervention

group.
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Table 2

Model inputs used for the Age trial simulation:

Page 19

Model Input Description Source
Population demographics
Birth cohort Birth years of women participating in the Age trial Age trial
Life years Number of life years by trial arm by age Age trial
Natural history of breast cancer
Incidence Control arm incidence (incidence in the absence of screening) Age trial
Tumor onset The moment tumors start to grow (tumor inception) CISNETZ
Sojourn time Time between when a cancer is first screen-detectable and cancer diagnosis in the absence CISNETZ
of screening.
Tumor progression Tumor growth, tumor progression and regression affect tumor sojourn times and breast CISNETS
cancer survival.
Estrogen receptor distribution ~ Age-specific ER positive and ER negative distributions UK4
Breast cancer screening
Attendance Adherence to annual screening in the intervention arm Age trial
Sensitivity Probability that the screen will be positive among women with breast cancer by age, Age trial
screening round (first vs. subsequent)
Mammography Two-view mammography for first screens, for all subsequent screens one-view Age trial
mammography
Breast cancer treatment
Treatment dissemination Breast cancer treatment by age, stage and ER-status BASO?
Effectiveness Hazard reduction breast cancer mortality by age and ER-status EBCTCG?
Breast cancer survival
Survival Breast cancer survival by age, stage and ER-status CISNET”
Other-cause mortality Probability of dying from causes other than breast cancer UK.

1-3 . . . - . .
Tumor onset, sojourn time and tumor progression are model-specific parameters. These, and other model-specific assumptions about breast
cancer natural history are described elsewhere [6, 21-25].

4
Estrogen receptor status comes from observed U.K. data [26].

5The treatment dissemination was derived from BASO reports [26] published by the NHSBSP.

6Treatment effectiveness / hazard reduction for breast cancer death was published by the Early Breast Cancer Trialists Collaborative Group
(EBCTCG) that included the U.K. trials [27]

Breast cancer survival by age and ER status from the UK is not available for the time period of the trial, the existing survival in the models which

is based on U.S. data was used.

8 . . .
Other cause mortality was taken from the Human Mortality Database [30] with breast cancer deaths removed.
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Table 3

Number of women included in the control and intervention group

Nr. of women in the control arm

Nr. of women in theintervention arm

Age trial 106,953 53,883
Model D N/A* N/A
Model E 10,000,000 10,000,000
Model M 4,000,000 4,000,000
Model S 5,000,000 5,000,000
Model W 2,000,000 2,000,000

Page 20

All models simulated at least about 20 times as many women in the control group and 40 times as many women as in the intervention group. The
number of women simulated was selected by each model to balance feasibility of simulation time with model output that yields relatively smooth
incidence and mortality curves.

*
Model D uses entirely analytical formulations to evaluate the impact of screening and treatment on breast cancer incidence and mortality, i.e., the
number of women simulated does not apply to Model D.
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Table 4

Sensitivity of screening in the Age trial and in the models.

First screen (two view mammogr aphy)

Subsequent screens (single view mammogr aphy)

Age trial 73.6 55.2
Model D 73.6 55.3
Model E 725 55.7
Model M ™ - -

Model S 75.5 59.0
Model W 67.7 59.6

Page 21

*
Model M is a Bayesian without a natural history part and a woman’s disease status is unknown. As a result sensitivity is not applicable. Model M
simulates screen- and clinically-detected incidences without knowing the true disease status.

Sensitivity of screening and screen detection is modeled differently in various models. In the continuous tumor growth models E, S, and W screen
detection of tumors is simulated by transforming sensitivity to a threshold tumor size at which tumors can be screen detected. On the other hand,
model D uses sensitivity of screening by simulating a shift to a less-advanced stage of breast cancer.
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