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Abstract

Repositioning of previously approved drugs is a promising methodology because it reduces the cost and duration of the
drug development pipeline and reduces the likelihood of unforeseen adverse events. Computational repositioning is
especially appealing because of the ability to rapidly screen candidates in silico and to reduce the number of possible repos-
itioning candidates. What is unclear, however, is how useful such methods are in producing clinically efficacious repos-
itioning hypotheses. Furthermore, there is no agreement in the field over the proper way to perform validation of in silico
predictions, and in fact no systematic review of repositioning validation methodologies. To address this unmet need, we
review the computational repositioning literature and capture studies in which authors claimed to have validated their
work. Our analysis reveals widespread variation in the types of strategies, predictions made and databases used as ‘gold
standards’. We highlight a key weakness of the most commonly used strategy and propose a path forward for the consistent
analytic validation of repositioning techniques.
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Introduction

In recent years, the drug-repositioning field has gained substan-
tial traction with both academics and pharmaceutical compa-
nies, both because of the lack of preclinical development and
optimization, as well as the substantially reduced risk of unfore-
seen adverse events [1]. A search for ‘drug repositioning’ in
PubMed reveals that the number of publications has grown rap-
idly from only 11 articles in 2007 to 274 in 2015. Many of the publi-
cations in the drug repositioning space have been computational
methods; despite advances in high-content screening and ro-
botics, high-throughput in vitro screens are still costly, leading
many groups to turn to computational repositioning strategies
[2]. Computational repositioning methods have proliferated
substantially, using a variety of molecular [3–6], literature-
derived [7–10] and clinical [11, 12] data as their core drivers of
repositioning hypothesis generation.

All computational repositioning methods promise to priori-
tize repositioning candidates, and studies describing these
methods typically claim superiority over competing methodolo-
gies. To do so, such studies perform analytic validation, whereby
they compare the computational results of their methods (and
competing methods) to existing biomedical knowledge. A suc-
cessful method is one that consistently identifies known associ-
ations between drugs and diseases (and for some, fails to
identify ‘wrong’ associations). When examining the reposition-
ing literature, however, it is apparent that there are no consist-
ent best practices for comparing studies and for validation of
methods.

In this article, we examine the current trends in validation
among studies in the computational repositioning field. We
identify three major types of validation, involving the use of
case studies, overlap of predictions with known drug
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indications and sensitivity- or specificity-based methods. All of
these methods have drawbacks, trading off between a lack of
analytic rigor and the unsatisfying assumption that all repos-
itioning candidates are, a priori, false positives. We propose
that the best-case scenario with currently available data is to
use ‘overlap-type’ validation and describe a promising next step
for the field.

Analytic validation in the computational
repositioning literature

To gain a better understanding of validation in the computa-
tional repositioning field, we searched PubMed for articles in
the computational drug repositioning space that claimed to
have performed validation of their methodology or pipeline
using a Boolean search [‘(drug repositioning OR drug repurpos-
ing) AND (gold standard OR AUC OR receiver operating charac-
teristic OR validation OR validated OR validate)’, performed on
14 June 2016, Figure 1A].

Using this search, we began our analysis with a pool of 213
articles. To further refine our search, we manually reviewed
each of the articles, and excluded non-computational papers
(e.g. high-throughput drug screens in cell lines or clinical trials),
those not in the small molecule/drug field (e.g. articles referring
to surgical or dental repositioning), and non-research articles
(reviews and book chapters). From the remaining 141 articles,
we focused on those that predicted novel indications for drugs.
At this point, we excluded 35 articles that focused on target pre-
diction only; in silico target prediction studies aim to predict
novel, molecular targets for existing and novel drug candidates.

We argue that target prediction is still one step removed from
drug repositioning; true or predicted molecular targets can be
used as part of repositioning methodologies, but do not them-
selves provide the full repositioning hypothesis from drug to in-
dication. Furthermore, we note that benchmarking such studies
is already possible with the wealth of high-throughput drug–
target binding screens [13].

From the studies that predicted new indications for existing
drugs, we excluded 67 articles that predicted indications for a
single drug or disease, and kept those that made predictions for
more than one drug and disease. We excluded these single-drug
and disease studies because they were not designed to be applied
broadly, and often contained domain-specific knowledge about a
particular drug or disease (e.g. Genome Wide Association Studies
results for a single disease or structure–association relationship
studies for a single drug). This resulted in 39 computational re-
positioning methods articles with predictions spanning multiple
drugs and indications and a clear claim of analytic validation
(the full list of captured articles is provided in Supplementary
Table S1).

We began our analysis by first examining the types of data-
bases used for analytic validation: we discovered that, although
many of the investigators in the 39 studies we examined claim
to use a ‘gold standard’, there is substantial heterogeneity in
the source of these standards as well as the types of data they
contain (Figure 1B). For example, DrugBank [14] contains infor-
mation about only the FDA-approved indications for drugs,
while the Comparative Toxicogenomics Database (CTD) [15]
contains literature-annotated links between drugs and both
approved and investigational indications. While DrugBank con-
tains a set of true drug-indication annotations, it misses off-
label uses and late-stage clinical trials; on the other hand, the
CTD relies on literature annotations and contains drug–indica-
tion pairs that have subsequently failed to receive FDA ap-
proval. This inconsistency in specificity among databases used
for validation is detrimental to reproducibility and may lead to
claims on extremely high accuracy.

We next examined the types of analytic validation methodol-
ogies used by investigators in computational repositioning. We
grouped the 39 captured studies into three classes: (1) validation
with a single example or case study of a single disease area
(CSV), (2) sensitivity-based validation only (SV) and (3) both sen-
sitivity- and specificity-based validation (SSV) (Figure 1C). First,
of the three validation types, CSV is the least rigorous; each of
the four CSV studies reported one to three clinically justifiable
predictions (Supplementary Table S1). For example, Sirota and
colleagues [16] identified cimetidine as a potential therapy for
lung adenocarcinoma, which was picked from 2664 significant
predictions (of >16 000 drug–indication pairs tested) on the basis
of tolerability. The investigators provided evidence of its success
using both the literature and an in vitro study. The inclusion of
in vitro evidence lends additional biological credence to their sin-
gle case study, but analytic evidence of their method’s overall
success is lacking. We note here that we are not arguing that
in vitro evidence is inferior to analytic validation; biological valid-
ation is a requirement for any individual candidate to be
advanced in a drug development pipeline. However, successful
biological validation of a single repositioning candidate cannot
be extrapolated to all predictions made by a method.

Following CSV, SV provides more analytic rigor by measuring
the overlap between currently approved or investigational indi-
cations for drugs and the indications predicted by a given repos-
itioning method. In contrast to CSV, SV validation methodologies
assess the general ability of repositioning methods to make

Figure 1. Computational repositioning validation studies. (A) The search term

used with PubMed to retrieve articles. (B) Sources of drug-indication annotation

data used in studies retrieved in the literature search. (C) Types of validation in

studies retrieved in the literature search. See main text for details.
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reasonable claims, rather than selecting a single or several high-
ranking predictions to test in depth. For example, Jung and Lee
[17] examined the overlap between predictions made by their
method and both approved drug indications (from a combination
of DrugBank [14], PharmGKB [18] and TTD [19]) and investiga-
tional indications from ongoing clinical trials (from
ClinicalTrials.gov). SV is appealing because investigators only
need to have a set of true positives to which to compare their
predictions (e.g. all approved or investigational drug indications).
A key drawback of SV is the inability to use traditional two-class
machine learning (ML) approaches. An alternative is to train one-
class classification algorithms on positive examples only; how-
ever, to our knowledge, no methods in the drug repositioning
space have used one-class ML approaches. We emphasize, as in
any ML exercise, that investigators should perform cross-
validation in which algorithms are fine-tuned on a portion of the
data and tested on another; testing using an as yet unseen por-
tion of the data is more representative of future performance
than training and testing on the full data set [20].

Both CSV and SV validation methods are less popular than
SSV. SSV is, in theory, the most rigorous type of validation. For
our purposes, SSV-based methods include those that directly re-
port sensitivity and specificity (or reported values for positive or
negative predictive value), as well as area under the receiver
operating characteristic (AUROC, a commonly used method for
determining the predictive value of a method reviewed in [21]).
For example, Gottlieb and colleagues [4] used a list of approved
drug indications (from DailyMed), and determined how many of
their predicted drug indications overlapped with that set (true
positives) or did not overlap (false positives); their results are
summarized by calculating the AUROC of their predictions. In
contrast to sensitivity-only validation methods, methods that
rely on both sensitivity and specificity require information about
which predicted drug indications are false (false positives). In all
of the SSV studies we reviewed, the investigators chose to mark
all unannotated drug–indication pairs as false positives. This is
troubling for two major reasons. First, the choice of annotation
database can substantially impact the sensitivity and specificity
estimates. If investigators consistently used a single database of
standardized indication information, this issue could be
avoided; however, in practice, annotation is derived from a var-
iety of drug information databases and annotation types, from
FDA approval, to ongoing clinical trials (Figure 1C). Second,
marking unannotated pairs as false suggests that all novel
repositioning hypotheses are false positives. This is obviously
counterintuitive, as computational repositioning methods
should predict novel indications, for which there is no currently
annotated association. In addition, this strategy creates a sub-
stantial imbalance in the number of true and false positives;
such an imbalance has been shown to reduce the accuracy of
AUROC and other SSV estimates [22].

It is our opinion that, with currently available data, the best
strategy for analytic validation in repositioning studies is SV.
Under ideal conditions, in which a database of true positives and
true negatives exists, SSV is the optimal choice; currently, how-
ever, the field lacks such a database. In contrast, SV does not re-
quire true negatives and therefore may be the most practical
solution until such a database emerges. We note that there are
still two central caveats with using SV for analytic validation: (1)
investigators should choose the database to which they should
compare their results carefully, potentially corroborating drug–
indication pairs between multiple sources and (2) investigators
using ML-based methods should test the performance of their

methods with cross-validation to prevent over-fitting and limit
the reporting of unrealistic predictive power.

The question then becomes the following: where can we go
from here for analytic validation? Is there an internally consist-
ent database that could be used with SSV? The way forward for
SSV is to develop a set of true negatives; such a set would in-
clude drug–indication pairs that were tried in a clinical setting
and were proved not to be efficacious or safe. An easily access-
ible database of this information does not, to our knowledge,
currently exist, and creating one would require substantial bio-
medical, regulatory and legal understanding and resources.
Despite these challenges, creating a true ‘gold standard’ that
contains both repositioning successes and failures is one way to
improve consistency in the field, and allows for equitable com-
parisons between methods. We believe that such a ‘gold stand-
ard’ database can improve the accuracy of drug repositioning
methods and increase the probability of success in clinical trials.

Conclusions

We present here a brief review of the computational drug repos-
itioning field, with a focus on strategies for analytically validat-
ing such methods. We describe the three types of validation
currently in use, and highlight the issues with both consistency
and key assumptions made by each. In closing, we propose a
strategy for improving the quality of validation in computa-
tional repositioning.

Key Points

• There are currently three predominate validation
methods used for computational repositioning studies:
(1) case studies, (2) overlap of predictions with known
drug indications and (3) sensitivity- or specificity-
based methods.

• There is wide variation in the types and sources of an-
notation data used for performing validation, leading
to a lack of consistency in the field.

• Despite being rigorous, sensitivity- or specificity-based
methods require the use of true negatives, and current
studies assume that all unannotated drug–indication
pairs are false positives.

• While a sensitivity and specificity based method is
optimal, we posit that the current best strategy is
overlap (sensitivity only) because, despite a lower level
of rigor, it does not require contradictory assumptions.

• We propose a new direction in repositioning valida-
tion through the creation of a repositioning database
to promote reproducible calculations of sensitivity and
specificity.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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