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Abstract

Assessing the functional impacts of somatic mutations in cancer genomes is critical for both identifying driver mutations and
developing molecular targeted therapies. Currently, it remains a fundamental challenge to distinguish the patterns through
which mutations execute their biological effects and to infer biological mechanisms underlying these patterns. To this end, we
systematically studied the association between somatic mutations in protein-coding regions and expression profiles, which
represents an indirect measurement of impacts. We defined mutation features (mutation type, cluster and status) and built
linear regression models to assess mutation associations with mRNA expression and protein expression. Our results presented
a comprehensive landscape of the associations between mutation features and expression profile in multiple cancer types,
including 62 genes showing mutation type associated expression changes, 21 genes showing mutation cluster associations and
51 genes showing mutation status associations. We revealed four characteristics of the patterns that mutations impact on ex-
pression. First, we showed that mutation type (truncation versus amino acid-altering mutations) was the most important
determinant of expression levels. Second, we detected mutation clusters in well-studied oncogenes that were associated with
gene expression. Third, we found both similarities and differences in association patterns existed within and across cancer
types. Fourth, although many of the observed associations stay stable at both mRNA and protein expression levels, there are
also novel associations uniquely observed at the protein level, which warrant future investigation. Taken together, our findings
provided implications for cancer driver gene prioritization and insights into the functional consequences of somatic mutations.
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Introduction

Cancer is a genetic disease where genomic abnormalities dir-

ectly or indirectly alter gene expression, protein activities and

signaling pathways that ultimately contribute to cell prolifer-

ation and survival [1, 2]. An important task of cancer research is

to identify driver mutations that confer growth advantage [3].

To date, many computational approaches have been developed

to prioritize driver mutations using a variety of characteristics

of somatic mutations, such as evolutionary conservation infor-

mation of the mutation sites in multiple species [4], sequence

context [5], occurrence frequency [6] and impacts of mutations

on transcriptome [7], among others. With the accumulation of

multidimensional omics data, studies on mutation impact are

drawing increasing attention through integrative approaches

[8]. Some examples include the study of the overall expression
of downstream genes of the candidate mutation in molecular
networks [7], the connection between genomic mutations and
transcriptomic changes [9] or the overall impacts on pathways
[10]. Although all these methods were demonstrated as effect-
ive, it remains critical to distinguish the patterns how muta-
tions exert their impacts and to link these patterns with
possible underlying biological interpretation. For example,
some mutations introduce premature stop codon and lead to
reduced dosage of mRNA transcripts, and some affect protein
activities through changing amino acid sequences. To address
this challenge, we approached mutation impacts by assessing
whether a mutation impacts its residing gene before it expands
its impacts, if any, on the expression of its neighborhood genes
in the transcriptome, pathways or networks.
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Mapping the associations between mutations and their
residing genes presents several analytical challenges. First, the
mRNA dosage, and in turn the protein concentration, in cancer
cells are regulated at multiple levels with different mechan-
isms, involving regulatory variants [11], promoter methylation,
copy number variation (CNV) and copy-neutral loss of heterozy-
gosity (LOH), among others. In particular, for single nucleotide
variants (SNVs) and short insertions and deletions (indels) de-
tected in only cancer cells (i.e. somatic mutations), their associ-
ation with gene expression is not fully understood yet. Second,
the biological interpretation for how somatic mutations impact
its residing genes is diverse. mRNAs carrying premature stop
codon, which can be introduced by truncation mutations (NS),
are typically eliminated by the process called nonsense-medi-
ated mRNA decay (NMD), and thus, both the concentration of
mRNA transcripts and protein products would be decreased
owing to NS [12]. However, if a stop-gain mutation occurs out-
side of the NMD-target regions, e.g. within 50 bp from the 30 end
of the transcripts [13], mRNAs carrying such mutations may es-
cape NMD. Missense mutations (MS), which comprise another
major group of mutations in cancer, typically change the amino
acid sequences of proteins and affect the activities of proteins
in which they are located (e.g. catalytic efficiency [14, 15], recep-
tor activity [16], phosphorylation [17]). Previous studies have
shown that MS could impact other genes’ expression or activ-
ities in the same pathways [18]; however, their association with
the dosage of their residing genes remains unexplored. Third,
for the purpose of identifying driver mutations, lack of an asso-
ciation between a candidate mutation and its coding genes does
not necessarily rule out the possibility of the mutation being a
driver but may also imply that other mechanisms could exist
through which mutations execute their impacts. For example,
mutations in DNA repair genes mainly lead to accumulation of
somatic mutations in cancer cells, and such impacts may not be
well captured through association studies with transcriptomic
data.

In this work, we systematically studied the functional foot-
prints of somatic mutations obtained via whole-exome
sequencing (WES) in 12 cancer types using the data generated
by The Cancer Genome Atlas (TCGA) project [19]. We focused on
protein-coding mutations. To overcome the limitation of many
low-frequency mutations in the data set, we defined three mu-
tation features and grouped the mutations accordingly; these
features are mutation type (MS versus NS), mutation cluster
(mutations clustered in a short region, in domains or in 3D
space) and mutation status [mutated versus wild type (WT)].
Grouping mutations according to these features provides a nat-
ural way of distinguishing the patterns through which muta-
tions impact expression profile, as mutations of the same group
are assumed to have similar mechanisms. We asked whether
these features of somatic mutations are associated with tran-
scriptional levels (measured by RNA-sequencing, mRNA level)
and posttranscriptional modifications [measured by the reverse
phase protein array (RPPA) platform, protein level]. In particular,
we asked for each gene, whether it is differentially expressed in
its mutant samples compared with its WT samples and if the
answer is yes, whether such an association is distinguishable
among different mutation clusters or different mutation types.
Our results showed that among the three features, mutation
type had the strongest influence on transcriptional level, espe-
cially in tumor suppressor genes by NS. Mutation clusters were
detected in well-studied genes, as expected, and yet, they were
only found in a small number of genes. Both similarities and
differences were observed with these mutation clusters within

and across cancer types, such as the same clusters recurrent in
multiple cancer types (e.g. KRAS), different clusters in the same
genes found in different cancer types (e.g. EGFR) and consistent
or inconsistent directions with transcriptional levels.
Examination of mutation features with protein expression lev-
els, which represent mutations’ ultimate impacts on cellular
signaling processes, confirmed some of the associations de-
tected at the mRNA level and also revealed novel associations
that were uniquely observed at the protein level such as
ARID1A, BAP1, CTNNB1 and ERBB3. In summary, this study un-
raveled the effects of somatic mutation features on mRNA and
protein expression, providing implications in the design of can-
cer gene prioritization.

Results
Overview of the data and mutation features

Multi-domain omics data sets from TCGA were downloaded for
12 cancer types [19]: acute myeloid leukemia (conventionally
called AML; we followed the abbreviation in the original publi-
cation of LAML [19]), bladder urothelial carcinoma (BLCA), breast
adenocarcinoma (BRCA), colon and rectal carcinoma
(COADREAD), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney renal clear cell carcin-
oma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous carcinoma (OVCA) and uter-
ine corpus endometrial carcinoma (UCEC). Unless stated specif-
ically, for each cancer type, we obtained somatic mutations,
CNV, copy-neutral LOH (GBM and OVCA), methylation, tumor
purity (excluding LAML), mRNA expression and protein expres-
sion (excluding LAML). For LAML, there is no available RPPA
data, so we only performed the association test using mRNA ex-
pression data. For OVCA, there is only one significant gene,
TP53. Accordingly, we did not discuss further details because
TP53 was also detected in other cancer types.

To identify the eligible genes for our follow-up analyses, we
first required genes mutated in a sufficient number of samples,
i.e. a minimum of five samples in each respective feature group.
We defined three types of mutation features: mutation type,
mutation cluster and mutation status (Figure 1). For mutation
type, we categorized all SNVs and small indels with amino acid
changes into MS (including missense SNVs and in-frame indels)
and NS (including nonsense SNVs, frame-shift indels and splice
site SNVs and splice site indels). We used WT (no SNV or indel
in the prospective gene) for comparison. We required the genes
eligible for mutation type analysis as those that had at least one
mutation type (MS or NS mutations) occurred in at least five
samples. As shown in Supplementary Table S1, the number of
eligible genes for mutation type analysis varied and could be
several hundred in each cancer type. For mutation clusters, we
grouped those that were located no more than 5 amino acids
(AAs) apart from each other in their protein sequences. The dis-
tance of 5 AAs was defined arbitrarily. We explored other dis-
tance units, such as 7 AAs and 10 AAs, and found minor
difference in the eligible genes (Supplementary Table S2). Thus,
we chose 5 AAs as the threshold throughout this work. Using
other definitions of mutation clusters is also optional [20].
Surprisingly, the number of eligible genes for mutation cluster
analysis was quite moderate in each cancer type, ranging be-
tween 3 and 17 (Supplementary Table S1). This observation was
unexpected for two reasons. First, numerous previous studies
have reported highly recurrently mutated genes in various can-
cer types [21, 22], and we initially expected that there would
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have been more genes eligible for the cluster analysis. Second,
our way of defining mutation clusters includes mutation hot-
spots (e.g. the R132 mutation in IDH1 and the G12 mutation in
KRAS), which are frequently reported in oncogenes.
Accordingly, we would have expected more genes eligible for
our mutation cluster analysis. We thus explored the potential
reasons that prevented recurrent genes from the inclusion in
our clusters. We found that most of the recurrent genes had
their mutations scattered across their protein sequences and
failed to form any mutation clusters within a short distance of
several AAs (e.g. 5 AAs, 7 AAs or 10 AAs, Supplementary Table
S2). In this work, we only focused on genes with a high fre-
quency of clustered mutations; thus, many of the recurrent
genes that had non-clustering mutations were excluded in our
analysis. Finally, for mutation status, we defined two groups,
mutated or WT. Because we were more interested in testing
whether the impacts of mutations on expression were mediated
through mutation types or mutation clusters, we required eli-
gible genes for the mutation status test as those that were eli-
gible for at least one of the mutation type tests and mutation
cluster tests (Figure 1).

Furthermore, we used two additional ways to cluster muta-
tions. First, we proposed to cluster mutations according to their
locations in protein domains based on the PFAM database [23].
For each gene, we grouped the samples whose mutations
occurred in the same protein domain and compared the mRNA
expression of the gene in these samples with that in WT sam-
ples. For genes with multiple domains, we tested each domain
independently. This strategy increased the number of eligible
genes for the association test (Supplementary Table S2).
Second, we proposed to cluster mutations according to their
space locations in 3D protein structures (herein, named ‘space
clustering’). Specifically, we extracted the residues reported in
Kamburov et al. [24] that were closely located in the Protein
Data Bank (PDB) chains (Euclidean distance< 7Å). For each
gene, we tested whether its MS belonging to these close resi-
dues showed any association with gene expression.

Mutation features associated with mRNA expression

We aimed to learn the relationship between features of somatic
mutations and measured expression levels by building multi-
variate linear regression (MLR) models in which mutations pre-
dict mRNA expression or protein expression. With MLR and
assistance from Wilcoxon rank sum test for each particular fea-
ture group (e.g. a mutation type, a mutation cluster or a muta-
tion status) versus the WT group samples, we conducted a
systematic association test for each gene between its mutation
features and its transcriptional changes obtained from RNA-
sequencing in each of the 12 cancer types. Using false discovery
rate (FDR)<0.05, we found 62 genes (76 times considering differ-
ent cancer types) that had at least one mutation type signifi-
cantly associated with their transcriptional changes, 21 genes
(25 times) that had at least one cluster of mutations associated
with their transcriptional changes and 51 genes (55 times) that
were associated with mutation status (i.e. differentially ex-
pressed in mutated samples and the respective WT samples)
(Figure 2). We, respectively, referred these three sets of genes as
mutation type-associated genes (Supplementary Figure S1),
cluster-associated genes (Supplementary Figure S2) and status-
associated genes (Supplementary Figure S3).

In all three tests, the WT samples, which were used as the
reference group, remained the same for each gene. The mutated
samples in the status test were the combination of NS and MS
samples in the type test, and also the combination of samples
with all mutation clusters (Figure 1). Thus, the type and cluster
tests could be considered as a nested form of the status test
with mutated samples being further categorized, and a com-
parison of the three sets genes would help reveal genes with
specific association relationships with their mutations. As
shown in Figure 2, 12 genes were shared by all three gene sets,
i.e. their mRNA expression levels were associated simultan-
eously with mutation types, mutation clusters and mutation
statuses (Figure 2A). Eight genes were only associated with mu-
tation statuses but were neither associated with mutation types

Figure 1. Illustration of association studies of mutation features with expression in human cancer. (A) Schematic description of the three mutation features and ana-

lysis steps. We defined mutation types, mutation clusters and mutation statuses as three independent mutation features. For each gene, its WT samples remained the

same in all three features, whereas its mutated samples (Mut status) were further separated as NS or MS in the feature of mutation type, or categorized into multiple

cluster groups (C1, C2, C3 and C4 in the feature of mutation cluster). For gene expression, we considered mRNA expression measured by RNA sequencing data and pro-

tein expression measured by the RPPA platform. (B) Pie chart shows the number of samples used in each cancer that had somatic mutation, RNA sequencing and copy

number variation data in each sample. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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nor with mutation clusters, indicating that although their
mRNA expression differed in mutated samples versus WT sam-
ples, such effects were not attributable to any particular muta-
tion type or mutation cluster. We manually checked each of
these eight genes and found no particular pattern, and thus, we
chose not to follow them further. Sixteen genes were associated
only with mutation types but not with mutation statuses.
Examples of such genes include BAP1, EPHA2, KEAP1, NOTCH1,
NOTCH2, SETD2 and STK11. One possible explanation to their
failure in the status test is that these genes might be primarily

impacted by one type of the mutations, e.g. NS, whereas the
other type had no detectable association with their expression
changes, and inclusion of all mutated samples as one group (i.e.
mutation status test) weakened the potential association in the
MLR analysis. Finally, two genes, APC and VHL, were associated
with mutation clusters but not with mutation statuses, indicat-
ing that only certain clusters of mutations, but not all muta-
tions, of these genes were correlated with mRNA expression
changes. Put together, the observation of genes that were only
associated with particular feature groups of mutations but not

Figure 2. Overview of mutational impacts on gene expression. (A and B) Venn diagrams showing genes associated with each mutation feature based on their mRNA expression

(A) and protein expression (B). (C–E) Comparison of genes associated with mutation types (C), mutation clusters (D) or mutation statuses (E) at the mRNA level and at the protein

level, respectively. (F) Plot of the impact of mutation clusters versus the impact of mutation statuses. Each dot represents a gene in a cancer type. Node color indicates cancer

type, e.g. TP53 was found in multiple cancer types. The x-axis and y-axis show the negative log10 P-values for each gene obtained from the regression models in which the muta-

tion status of a gene predicts its mRNA expression (x-axis) or its mutation cluster predicts its mRNA expression (y-axis), respectively. The dash line indicates where P¼0.05.

(G–H) Plots of the impact of mutation types versus the impact of mutation statuses (G), and its zoom-in view (H). The x-axis shows the negative log10 P-value of the regression

model fitted for each gene in which the gene’s mutation status predicts its mRNA expression. The y-axis shows the negative log10 P-value obtained using a gene’s mutation type

to predict its mRNA expression. P-values shown are after multiple testing correction. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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all mutations highlighted the importance to examine the effects
of mutation features independently.

Two alternative ways to cluster mutations are protein do-
mains and residue space locations. When grouping mutations
by their locations in domains, we found 19 genes (27 times) that
had one or more domains significantly associated with mRNA
expression changes (FDR< 0.05, Supplementary Table S4). Nine
of these genes were detected in our mutation cluster test afore-
mentioned. When we grouped MS, which were closely located
in space, we found 13 genes (19 times) that showed nominal as-
sociation with mRNA expression changes (Supplementary
Table S5). Because of the limited numbers of eligible genes, here
we used nominal P-values instead of the adjusted values. A
comparison of the significant genes identified by mutation clus-
ters, protein domains and residue space locations was shown in
Supplementary Figure S5. The overlapping genes by all three
tests included several well-established cancer genes (e.g. EGFR,
FGFR3, HRAS, KRAS, PIK3R1 and TP53), whereas the genes
uniquely identified as associated with protein domain (CDH1,
CHD4, IDH2, MAP3K1, MED23, MED24, RB1, SMC1A and TMCC3) or
space locations (EP300, KEAP1 and TLR4) were also worth further
investigation.

Assessment of potential confounding effects

As has been widely reported, cancer samples frequently acquire
genetic and epigenetic alterations, which in turn influence gene
expression through various mechanisms. To validate the asso-
ciations that we observed between mutation features and gene
expression, we assessed other potential confounding factors
including CNV, methylation status, tumor purity (excluding
LAML) and copy-neutral LOH (GBM).

Effects of CNV
To control the potential confounding effects by CNV on gene ex-
pression levels, we conducted three types of analyses to fully
assess the impact of CNVs in our results. First, we used CNV as
a covariate for all our association tests for mutation type and
mutation status. Applying this model, we found that for the 55
significant events in mutation status test, except one gene that
was removed owing to lack of CNV data, all the remaining 54
events were nominally significant and 46 of them remained sig-
nificant at FDR< 0.05. For the 23 significant events (MS) and 55
significant events (NS) in the mutation-type test, all remained
nominally significant and after multiple testing correction, 21
(91.3%) remained significant for MS and 38 (69.1%) for NS.

Second, we restricted the association test in the subset of
samples with the most prevalent copy number status. For the
majority of genes, their most prevalent status is copy number
neutral; for a few number of genes, the most prevalent status is
copy number gain or copy number loss. We made this adjust-
ment, instead of using copy number neutral for all genes, in
order that the largest subset of samples could be analyzed. This
restricted test reduced sample size and, thus, many genes were
no longer eligible for the test. Applying this model, we found
that for the 55 significant events in mutation status test, after
removing one gene with no CNV data, 43 (79.6%) of them re-
mained nominally significant and 28 (51.9%) were significant at
FDR< 0.05. For the 23 significant events for MS in mutation-type
test, 18 were eligible for the test (requiring the most prevalent
CNV status occurred in�8 samples), all remained nominally sig-
nificant and after multiple testing correction, 14 (77.8%) re-
mained significant. Similarly, for the 55 significant events for
NS, 39 were eligible for the controlled test and all were

nominally significant, including 38 (97.4%) significant ones after
multiple testing correction.

Third, we used linear regression to obtain the residual ex-
pression of copy number status and used the residual expres-
sion for the association test. For the 54 significant events in
mutation status test excluding the one with missing CNV, all re-
mained nominally significant and 45 (83.3%) stayed significant
after multiple testing correction. For the mutation cluster test,
24 of the 25 (96%) significant events remained significant
(FDR< 0.05). For the 23 significant events (MS) and 55 significant
events (NS) in mutation type test, 21 (91.3%) remained signifi-
cant for MS and 54 (98.2%) for NS (FDR< 0.05). Collectively, these
results suggested that the majority of our findings (>80%) on
mutation feature association were also significant after ac-
counting for CNV, indicating that these associations with muta-
tion features were beyond the impact of CNVs.

Effects of methylation
Similar to our analysis strategy for CNV, we conducted two
types of analyses to control the effect of methylation. First, we
used methylation status as a covariate in all our association
tests. Second, we used linear regression to obtain the residual
expression of methylation status and used the residual expres-
sion in the association test. As shown in Supplementary Table
S6, both strategies showed that methylation status had gener-
ally minor impact on our association results. Our initial screen
showed that the majority of genes eligible for the association
tests did not have methylation data. Because the methylation
data set we used only selected 2203 probes that were methy-
lated in a sufficient number of samples (>10% of any of the
tumor types or 50% of any of the well-defined subtypes), genes
with no methylation data in this data set indicated that the
methylation statuses of these genes showed no substantial
variation across samples. More specifically, for those genes
from our list of significant genes that had methylation data in
the 2203 probes, they remained significant after we controlled
the effects by methylation status (Supplementary Table S6).

Control for tumor purity
Tumor cellularity and purity are confounding factors that might
influence gene expression changes. We conducted the associ-
ation analyses by controlling the tumor purity for the cancer
types excluding LAML. As a result, for the significant genes that
we detected to be associated with their mutation features, the
majority of them remained significant after adjusting tumor
purity: 43/49¼ 87.8% in mutation status test, 20/21¼ 95.2% in
mutation cluster test, 17/21¼ 81.0% in mutation-type test for
MS and 46/52¼ 88.5% in mutation-type test for NS, respectively.
For the remaining genes that were no longer in the significant
gene lists after adjusting tumor purity, we found that they were
not eligible for the test because of the decreased small sample
size. Taken together, we consider tumor purity had minor ef-
fects on our association results.

Control for copy-neutral LOH
Similarly, for copy-neutral LOH status that may have an impact
on gene expression, we included LOH status as a covariate and
conducted the association tests. We performed this analysis in
GBM only because this is the only cancer type having a reason-
able number of samples with LOH data. There were other data
sets for 11 cancer types [22], but they were not made publicly
available when this study was conducted. We did not observe
dramatic changes in our detected association results. The
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significant genes still remained significant after adjusting for
LOH status.

Mutation features associated with protein expression

To assess the association between mutation features and pro-
tein expression levels measured by the RPPA platform, we per-
formed the MLR association test on the genes that are available
with RPPA data. By using FDR< 0.05, we found 15 antibodies for
13 genes that had at least one mutation type significantly asso-
ciated with their protein expression changes, 8 antibodies for 6
genes that had at least one cluster of mutations associated with
their protein expression change and 15 antibodies for 13 genes
that had differential protein expression levels in mutated sam-
ples versus WT samples (Figure 2). Some genes whose mRNA
expression levels were significantly associated with mutation
features were successfully validated at protein levels, including
BAP1 (antibody: Bap1� c� 4) and CDH1 (E�Cadherin) in muta-
tion type and status tests, EGFR (EGFR, EGFR_pY1068, and
EGFR_pY1173) in all three tests, NOTCH1 (Notch1) in mutation-
type test and PTEN (PTEN) and TP53 (p53) in mutation cluster
and type tests.

We next studied the genes that were not consistently identi-
fied at the mRNA and protein expression levels with details.
Notably, the RPPA platform for protein expression levels only
provided measurements for 187 antibodies targeting �150
genes. Thus, many genes that were detected at the mRNA level
were not available for protein expression test, partially explain-
ing the dramatic decrease of the number of associated genes
from the mRNA level to the protein level. Furthermore, there
are often posttranscriptional regulation mechanisms that place
additional layers of control on mRNA and protein expression,
such as microRNA regulation, but were not examined in our
work.

On the contrary, for genes that were only detected at the
protein level but were missed by the mRNA expression tests, we
sought for the potential explanations with particular interests.
There were 5 genes in the mutation type test, 2 genes in the
cluster test and 10 genes in the status test, which were uniquely
significant at the protein level (Figure 1). We use ARID1A and
CTNNB1 as examples to illustrate their mRNA and protein ex-
pression changes. ARID1A (AT-rich interactive domain 1A) en-
codes a member of the SWI/SNF family, which regulates gene
transcription through altering chromatic structures. ARID1A has
been recently identified as a tumor suppressor gene whose defi-
ciency has been found in a broad spectrum of cancer types [25,
26]. As shown in Figure 3, samples with NS mutations of ARID1A
turned to be substantially significant at the protein level
compared with the mRNA level in BLCA (pmRNA¼0.18,
pRPPA¼4.29� 10�4, Wilcoxon test, nominal P-value), BRCA
(pmRNA¼0.16, pRPPA¼3.61� 10�3), KIRC (pmRNA¼0.38,
pRPPA¼0.02) and UCEC (pmRNA¼0.02, pRPPA¼5.11� 10�9). As for
mutation clusters, ARID1A had a cluster covering the amino
acids between the 1324th and 1335th positions in its protein se-
quence that occurred in seven samples with decreased protein
expression levels in UCEC (pmRNA¼0.06, pRPPA¼0.02), including
three samples with nonsense SNVs and four with splice site
SNVs. We inferred that the association between the observed
ARID1A protein expression decrease and this cluster was attrib-
utable to the NS mutation type as discussed above, because all
the seven samples had NS mutations. The gene CTNNB1 had
only noticeable changes in UCEC and, surprisingly, it was the
MS mutation type that showed decreased expression level
(pmRNA¼0.10, pRPPA¼2.74� 10�5; Supplementary Figure S4). The

significant cluster in CTNNB1 was located between the 32th and
41th positions. No significant difference was observed in sam-
ples with mutations in that cluster compared with CTNNB1 WT
samples at the mRNA expression level (pmRNA¼0.10); however,
significant decrease was observed at the protein level (beta-
catenin, pRPPA¼4.27� 10�5, Supplementary Figure S4).

We found more similar genes to ARID1A and CTNNB1, such
as ATM, CTNND1, ERBB3 and IRS1, which were uniquely associ-
ated with mutation types at the protein expression level but not

at the mRNA expression level, and ATM, BAP1, CCND1, ERBB3,
IRS1 and PTEN, which were uniquely associated with mutation
statuses at the protein expression. Notably, for ERBB3, there
are two antibodies showing the association: HER3 and
HER3_pY1289. ERBB3 was not detected with differential expres-
sion at the mRNA level for its MS mutations (pmRNA¼0.82) but
showed increased protein expression by one of its antibody
HER3_pY1289 (pRPPA¼0.01), but not by the other antibody HER3
(pRPPA¼0.73). A full list of these genes is presented in
Supplementary Figure S4.

Oncogenic genes and tumor suppressor genes are
associated with different mutation features

Tumor suppressor genes have been reported to be frequently
disrupted by NS, leading to the onset and progression of cancer

[27], whereas proto-oncogenes are activated through multiple
mechanisms in cancer [28]. We compared the gene sets ob-
tained by each mutation feature test with tumor suppressor
genes and oncogenes, respectively (Supplementary Table S3).
The strongest overrepresentation was observed with mutation-
type-associated genes, in which 45 (45/62¼ 72.6%) were tumor
suppressor genes. In particular, genes whose expression levels
were specially associated with the truncation mutation type
(n¼ 55, truncation-associated genes) formed the majority of the
overlapping tumor suppressor genes (n¼ 41, 74.5%). On the con-
trary, MS-associated genes had comparable proportion of tumor
suppressor genes (n¼ 6) and oncogenes (n¼ 8). Although ex-
pected, these results provide a systematic evaluation of the ef-
fects of NS on gene expression in multiple cancer types.

The tumor suppressor genes identified in our list of trunca-
tion-associated genes included RB1, TP53, NF1, PTEN, NOTCH1

and NOTCH2. Except NOTCH1/2 genes that were only detected in
HNSC, all the other genes were recurrently decreased by NS in
multiple cancer types. In addition to tumor suppressor genes,
another major functional group of genes that were associated
with NS were chromatin modification genes, such as ATRX,
BAP1, CHD4, CREBBP, DNMT3A, IDH1, KDM5C, KDM6A, NSD1,
PBRM1, SETD2 and SMARCA4, indicating that these genes may
also function in cancer through inactivation mechanisms.
Finally, MSH3, a DNA repair gene whose loss of function leads to
increased mutation rates [29], was also found to be significantly
associated with NS mutations.

Similarities and differences in association patterns
among mutation clusters

The 21 genes with functional mutation clusters included well-
studied cancer genes (Table 1). Three of them were recurrent in
multiple cancer types: EGFR, PIK3R1 and TP53. The recurrent
genes increased only by two when we relaxed FDR from 0.05 to
0.2; these additional genes were KRAS and PIK3CA. We choose to
discuss several representative genes below (Figure 4).
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NFE2L2
The gene NFE2L2 encodes nuclear factor-erythroid 2 p45-related
factor 2 (also called Nrf2). NFE2L2 is a transcription factor that
regulates many genes responsible for oxidative stress and
chemical detoxification. NFE2L2 contains seven domains.
Among them, the Neh2 domain contains two binding motifs,
DLG (29th–31th codons) and ETGE (79th–82th codons), which
interact with KEAP1 (Kelch-like ECH-associated protein 1) [30].
The interaction between NFE2L2 and KEAP1 negatively regu-
lates the expression of NFE2L2. In normal conditions, KEAP1
binds to the DLG and ETGE motifs of NFE2L2 and brings NFE2L2
to KEAP1-CUL3-E3 ubiquitin ligase complex, leading to ubiquiti-
nation and subsequent degradation of NFE2L2 [31]. In cases of
stress, NFE2L2 is stabilized and function to regulate the expres-
sion of many cytoprotective genes [31, 32]. Constitutive activa-
tion of NFE2L2 in cancer cells may confer cancer cells the ability
to survive against drugs [33]. In our work, we observed that
NFE2L2 had two recurrent mutation clusters, one around amino
acids at the 24th–34th positions (cluster 1), which overlaps with
the DLG motif, and the other around the 80th amino acid (clus-
ter 2), which overlaps with the ETGE motif. Both clusters were
within the KEAP1 binding domain [30]. Samples with mutation

cluster 1 had noticeable trend of increase in NFE2L2 mRNA ex-
pression changes in three cancer types (BLCA, HNSC and LUSC),
although only in BLCA the difference in expression changes was
significant (pBLCA¼4.48� 10�4). The second mutation cluster
around the 80th position occurred in HNSC and LUSC, but the
impact by the statistical test was not significant, although with
an observed trend of increase in expression. We hypothesized
that these mutations blocked the NFE2L2–KEAP1 binding
and allowed NFE2L2 to escape KEAP1-mediated degradation.
Concordantly, we observed increased mRNA expression
of NFE2L2 in samples with clusters 1 and 2 mutations. Future
work with larger sample sizes will warrant clarification of the
impact of the mutation cluster around the 80th position in
NFE2L2.

PIK3R1
PIK3R1, together with PIK3CA, are key players in the phosphati-
dylinositol 3-kinase signaling pathway. The gene PIK3R1 en-
codes p85a, a regulatory unit important for the stability of p110a

encoded by PIK3CA. The longest transcript of PIK3R1 has 724
amino acids, including multiple domains [34]. In our ana-
lysis, we found PIK3R1 had two mutation clusters around the

Figure 3. Comparison of ARID1A expression level in each mutation feature group. (A) Mutation cluster plots on mRNA and protein expression. The x-axis shows the cluster index,

where x¼0 indicates the wild type (WT) group and x¼27 indicates the 27th mutation cluster around 1324th–1335th amino acids. (B) Mutation type plots in eight cancers. The top

panel showed ARID1A mRNA expression versus its three mutation types: NS, MS and WT. The bottom panel showed its protein expression versus the three mutation types. The

P-values were calculated by Wilcoxon rank sum test between the NS group and the WT group. (C) Mutation status plots. Similarly to (B), the top and bottom panel showed ARID1A

mRNA and protein expression, respectively, versus its mutation status. The P-values shown were obtained based on Wilcoxon rank sum test comparing the mutated group (Mut)

and the WT group. In (B) and (C), we showed all eight cancer types in which ARID1A was eligible for the corresponding feature association test and highlighted those that were nom-

inally significant (nominal P<0.05). Sample size was labeled for each feature group. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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455th–465th positions (cluster 1) and the 558th–593th positions
(cluster 2), respectively. Both clusters were within the critical in-
ter-SH2 (iSH2) domain required for the inhibition of p110a activ-
ity. Mutations in the iSH2 domain of PIK3R1 may lead to
increased catalytic activity of p110a. As shown in Figure 4, clus-
ter 1 was significantly associated with gene expression in UCEC
(pmRNA¼0.01), whereas cluster 2 was significantly associated
with gene expression changes in both BRCA
(pmRNA¼2.76� 10�3) and UCEC (pmRNA¼1.68� 10�3). We also
observed the same mutation clusters in GBM, but could not test
their association with gene expression owing to insufficient
sample size in gene expression data.

EGFR
EGFR is a well-studied oncogene in many cancers. We found
completely different clusters of EGFR in GBM and in LUAD
(Figure 4). The two clusters in GBM surrounded the 289th pos-
ition and the 596th–598th positions, respectively. The two clus-
ters in LUAD, however, were distributed around the 746th–754th
and 858th–861th positions. In GBM, samples with either muta-
tion cluster of EGFR had significantly higher gene expression
compared with EGFR WT samples (pmRNA¼4.46� 10�4 for the
289th position, pmRNA¼4.29� 10�3 for the 596th–598th pos-
itions). Both clusters in GBM co-occurred with EGFR amplifica-
tions. To evaluate the impact of CNV status in the cluster test,

Table 1. Significant genes with mutation cluster associations

Cancer type Gene Cluster
index

Position (AA)a Number of
samples

Wilcoxonb Regression-based testc

P Model p t value Pr(>jtj)

LAML CEBPA 7 300::310 6 1.14 � 10�4 8.75 � 10�6 4.599 8.75 � 10�6

LAML DNMT3A 17 882 21 0.018 7.98 � 10�3 �2.691 7.98 � 10�3

LAML RUNX1 6 171:174 6 0.042 0.019 1.994 0.048
LAML FLT3 2 593::604 28 0.041 0.020 2.180 0.031
LAML FLT3 4 835:839 12 0.035 0.020 2.072 0.040
BLCA NFE2L2 1 24::34 6 4.48 � 10�4 3.96 � 10�5 4.328 3.96 � 10�5

BLCA KDM6A 10 555 5 0.035 0.013 �2.557 0.013
BLCA FGFR3 4 248:249 5 3.26 � 10�3 0.017 2.430 0.017
BRCA GATA3 4 329::335 10 7.37 � 10�5 1.86 � 10�5 2.914 3.67 � 10�3

BRCA GATA3 5 345::365 10 1.45 � 10�3 1.86 � 10�5 2.038 0.042
BRCA GATA3 7 395::410 17 7.33 � 10�5 1.86 � 10�5 2.806 5.16 � 10�3

BRCA GATA3 8 419::445 16 1.23 � 10�3 1.86 � 10�5 2.766 5.82 � 10�3

BRCA PIK3R1 3 455::465 6 0.136 7.74 � 10�4 2.045 0.041
BRCA PIK3R1 5 559::577 9 2.76 � 10�3 7.74 � 10�4 3.228 1.30 � 10�3

COADREAD TP53 9 194:195:196 6 1.04 � 10�3 1.63 � 10�6 �4.423 1.74 � 10�5

COADREAD TP53 10 207:212:213 6 2.18 � 10�3 1.63 � 10�6 �4.514 1.19 � 10�5

COADREAD APC 3 213:216 11 8.10 � 10�5 4.00 � 10�4 �4.318 3.13 � 10�5

COADREAD APC 16 564:567 6 0.093 4.00 � 10�4 �2.688 8.14 � 10�3

COADREAD TGFBR2 1 125 13 1.28 � 10�3 9.29 � 10�4 �3.362 9.29 � 10�4

COADREAD MSH3 2 381 9 0.017 0.012 �2.543 0.012
GBM EGFR 9 289 15 4.46 � 10�4 1.84 � 10�4 3.490 6.73 � 10�4

GBM EGFR 14 596:598 14 4.29 � 10�3 1.84 � 10�4 2.691 8.13 � 10�3

GBM IDH1 1 132 8 4.62 � 10�4 5.46 � 10�4 �3.537 5.46 � 10�4

HNSC TP53 7 98::110 9 0.05 3.28 � 10�6 �2.509 0.013
HNSC TP53 13 265::286 42 0.264 3.28 � 10�6 2.120 0.035
HNSC TP53 14 292::306 10 6.78 � 10�5 3.28 � 10�6 �4.595 6.64 � 10�6

HNSC HRAS 1 11:12:13 9 1.09 � 10�3 7.61 � 10�6 4.558 7.61 � 10�6

KIRC VHL 2 39::45 5 0.814 9.33 � 10�3 �2.143 0.033
KIRC VHL 3 60::137 123 0.019 9.33 � 10�3 2.278 0.023
KIRC VHL 4 143::189 62 0.053 9.33 � 10�3 2.430 0.016
LUAD KRAS 1 12:13 43 3.18 � 10�7 2.21 � 10�6 4.911 2.21 � 10�6

LUAD EGFR 4 746:751:754 7 2.24 � 10�4 4.16 � 10�5 4.436 1.70 � 10�5

LUSC TP53 10 151::163 19 9.77 � 10�4 1.11 � 10�5 3.559 5.05 � 10�4

LUSC TP53 11 172::183 13 4.56 � 10�4 1.11 � 10�5 3.910 1.42 � 10�4

LUSC TP53 12 193:195:196 6 0.044 1.11 � 10�5 2.158 0.033
LUSC TP53 14 234::252 24 4.62 � 10�5 1.11 � 10�5 4.433 1.84 � 10�5

LUSC TP53 15 259::287 27 2.63 � 10�3 1.11 � 10�5 3.458 7.16 � 10�4

UCEC PTEN 12 165::182 8 0.050 2.39 � 10�4 1.981 0.049
UCEC PTEN 15 233:237:240 12 8.48 � 10�4 2.39 � 10�4 �3.678 3.04 � 10�4

UCEC PTEN 20 335::344 8 1.25 � 10�3 2.39 � 10�4 3.252 1.35 � 10�3

UCEC PIK3R1 8 442::466 18 0.012 8.75 � 10�4 2.493 0.013
UCEC PIK3R1 12 558:593 33 1.68 � 10�3 8.75 � 10�4 3.108 2.16 � 10�3

UCEC LIMCH1 3 421 6 6.25 � 10�3 3.62 � 10�3 �2.943 3.62 � 10�3

UCEC RPL22 1 16 23 2.19 � 10�3 8.61 � 10�3 �2.652 8.61 � 10�3

aTwo continuous colons (::) indicate that there are multiple positions with mutations. AA: amino acid position.
bWilcoxon test was performed in the comparison of the samples having a single cluster with the wild type samples.
cRegression-based test was performed using all eligible clusters.
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we conducted the analysis only in the subset of GBM samples
with EGFR amplification. However, the association was no lon-
ger significant in either cluster. Given this observation, we could
not determine whether the mutation–cluster association was
owing to the SNV clusters or copy number gain, or a combined
effect of both events. In LUAD, the cluster around the 746th–
750th positions, which mainly involved a deletion of 5 AAs
(15 bp), showed significantly increased expression
(pmRNA¼2.24� 10�4), whereas the cluster around the 858th–
861th positions failed to reach a statistical significance albeit
with the same trend of increase in gene expression
(pmRNA¼0.09). The complete different clusters found in the
same gene EGFR but in different cancer types further high-
lighted the importance of comparative studies of somatic muta-
tions and reflects the strong heterogeneity in cancer.

Another two genes, IDH1 and KRAS, were also found with re-
current clusters in multiple cancer types. IDH1 had a hotspot at
the 132th codon, residing in the substrate binding sites, in both
LAML and GBM, with an observed decrease at mRNA expression
level (pmRNA¼0.08 in LAML and pmRNA¼4.62� 10�4 in GBM). The
cluster in KRAS was found at the 12th–13th positions, with sig-
nificantly increased mRNA expression in LUAD (n¼ 43,
pmRNA¼3.18� 10�7) and COADREAD (n¼ 69, pmRNA¼0.04, nom-
inal P-value), and similar but not significant trend in BRCA
(n¼ 5, pmRNA¼0.14) or UCEC (n¼ 35, pmRNA¼0.20). Collectively,
these results indicated that both similarities and differences of
mutation features existed in the same gene across multiple can-
cer types, providing implications for future studies.

Discussion

In this work, we present an association study of mutation fea-
tures with mRNA and protein expression levels in multiple can-
cer types. We discovered 72 genes whose mutation types (62),
mutation clusters (21) or mutation statuses (51) were associated
with their mRNA expression levels. We found 14 genes whose
protein expression levels were associated with their mutation
features, including 13 with mutation types, 6 with mutation
clusters and 13 with mutation statuses. Eight genes were repli-
cated at both the mRNA and the protein expression level,
whereas there were also genes that were uniquely detected at
the protein level but not the mRNA level. As for each mutation
feature, our analysis indicated that tumor suppressor genes
were sensitive to NS. Finally, genes whose mRNA expression
changes with their mutation clusters were discovered, illustrat-
ing that both recurrent clusters and unique clusters in the same
gene may be associated with their expression in different can-
cer types.

The association results we reported are likely reliable, as we
have controlled multiple potential confounding factors in our
analyses, such as CNV, methylation status, tumor purity and
copy-neutral LOH. These genetic or epigenetic events all had
been reported in previous studies to impact gene expression in
certain cancer types and certain genes. These factors could be
the true driving sources that cause expression changes.
Therefore, controlling for the potential effects of these factors
was required to clarify whether the associations we detected
might have biases. The majority of our association results

Figure 4. Comparison of mutation clusters of the five genes in different cancer types. We showed similarities and differences in the impacts of mutation clusters of five represen-

tative genes in different cancer types: NEF2L2, PIK3R1, KRAS, EGFR and IDH1. X-axis indicates the amino acid positions of each cluster. For a fair comparison, we chose all cancer

types in which the gene was eligible for the cluster test (e.g. the mutation cluster occurred in�5 samples), regardless of the association being significant or not. For EGFR, we

showed its different mutation clusters in different cancer types and their association with mRNA or protein expression. Three antibodies for EGFR, i.e. EGFR, EGFR_pY1068 and

EGFR_pY1173, were shown for the relationship between mutation clusters and the protein expression. For the other four genes, we showed the same or overlapping clusters

associated with consistent trend of mRNA expression changes in multiple cancer types. Sample size and P-value were added on each plot. The P-values shown were obtained

from Wilcoxon rank sum test. For the ease of illustration, we presented nominal P-values. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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remained significant after controlling the effects by CNV,
methylation status, tumor purity or copy-neutral LOH, support-
ing that these associations are likely true between mutation
features and expression. However, there are still limitations in
our association analyses. For example, owing to the lack of data,
we could not take into consideration of the status of heterozy-
gous variants. It could occur when the mutant allele was on the
un-transcribed strand or isoform(s). Such mutations were likely
passenger mutations, as they do not have impact on gene ex-
pression. We may exclude these mutations in future work when
such information can be extracted from the original data sets.
Our work is also limited to the alteration types that we could
collect. In addition to the alternation types that we used, which
commonly affect gene expression, there are other alternation
types that may impact gene expression such as internal tandem
duplication [35], but they are not often readily available to use.
Considering the complicated and multiple levels of regulations
on gene expression, caution should be taken when interpreting
the data.

We studied two major types of mutations: NS and MS. For
NS, as most mRNA transcripts carrying these mutations
undergo NMD, we observed decreased expression level at both
the mRNA and protein levels. Exceptions were observed in a
few genes, which could escape NMD and express normally at
the mRNA level but would have generated truncated protein
products [36]. Such genes only have detectable decrease expres-
sion at the protein level. For MS, some of them formed clusters
that were associated with increasing expression levels.
Mutation clusters could take multiple forms, such as sequence
clusters, protein domains and space clusters in 3D structures.
Although MS mainly change amino acid sequences and are not
expected with expression changes, one possible explanation is
that these mutations might confer growth advantage to cancer
cells and were positively selected when their residing genes
showed increased expression levels. This was further supported
by the similar association relationships for the same mutation
clusters with mRNA expression across multiple cancer types,
such as NFE2L2, KRAS and PIK3R1. Taken together, these obser-
vations highlighted that different patterns of mutation impacts
are associated with different biological mechanisms and under-
standing of these patterns can be benefited by integration of
both mRNA and protein expression data.

A main challenge on the association analysis between som-
atic mutations and mRNA and protein expression is to distin-
guish causal effects from reactive effects. For the mutation-type
associations, the decreased expression associated with NS in
many genes was supported by recent studies. When the muta-
tions leading to premature stop codons are located in NMD-tar-
get regions, which is generally considered as 50 bp upstream of
the last exon–exon junction in a transcript, these variants could
trigger NMD-mediated degradation and result in a measurable
decrease of mRNA expression [12, 13]. Exceptions could occur
when a nonsense mutation escapes NMD (e.g. located outside
of NMD-target regions) or a stop codon read-through occurs. For
MS, interpretations and mechanisms remained elusive on how
they are linked to differential expression changes. Our prelimin-
ary speculation is that the associations observed across cancer
types are likely to reflect the positive selection on these muta-
tions and their associated expression change, which might lead
to an advantage in cell growth that is related to cancer develop-
ment. Overall, caution should be taken when interpreting our
results, and future experimental validation is required to war-
rant mechanistic insights.

The reported results provide insights into studies of driver
mutations and genes and may potentially help the designs of
integrative analyses in future translational studies. Integrative
approaches are believed to offer advantages over mutation ana-
lysis alone by combining multidimensional genomics data such
as genetic annotations, transcriptomic profile and protein ex-
pression [37]. With multi dimensional data becoming available
for large-scale samples, methodologies are rapidly being de-
veloped to take advantage of comprehensive and complemen-
tary information by integrating multi-omics data [3, 7, 8, 38, 39].
However, caution should be taken when detecting driver muta-
tions based on the transcriptional consequences of somatic mu-
tations. In our results, although we observed many somatic
mutations, most of them were not linked to any expression
changes of their residing genes. These genes included, as ex-
pected, many passenger mutations (such as TTN), and also
genes whose impacts are not predictable through expression
dosage but protein activity changes. To measure the impacts of
the latter, examination of their neighborhood genes should be
considered such as those in the same signaling pathways or
those closely located in molecular networks.

We introduced three ways of clustering somatic mutations
for their association study: cluster by linear amino acid se-
quence, cluster by protein domain and cluster by space cluster-
ing in 3D protein structures. Each approach has its own
strength but also the weakness in discovering genes with
unique mutation features. Although we mainly reported and
discussed the genes identified by linear amino acid distance, as
shown in Supplementary Figure S5, there were nine genes
uniquely associated with protein domains and three genes
uniquely associated with space clustering, which deserved fur-
ther investigation too. Most of these genes had been studied in
previous work and some were functionally correlated. For ex-
ample, among the six domain-associated genes identified in
BRCA (CDH1, PIK3CA, MED23, MAP3K1, GATA3 and TMCC3,
Supplementary Table S4), a recent study reported that some of
these genes formed mutually exclusive gene sets (MEGS) [40].
One reported MEGS module included TP53 (identified by all
three clustering methods), CDH1 (unique to domain cluster),
GATA3 (unique to domain cluster) and MAP3K1 (unique to do-
main cluster). The second MEGS module included PIK3CA
(identified by domain and space cluster but not linear sequence
cluster), TP53 and GATA3. And the third MEGS module con-
tained TP53, GATA3, FOXA1 and MED23 (unique to domain clus-
ter). More importantly, we found a number of kinase domains
associated with expression changes, such as ‘PI3-kinase family,
p85-binding domain (PF02192)’ in PIK3CA, ‘Protein kinase do-
main (PF00069)’ in MAP3K1 and ‘Tyrosine kinase (PF07714)’ in
EGFR (Supplementary Table S4).

The numbers of feature-associated genes were not as high
as would have been expected, considering that regulatory vari-
ants had been predicted as prevalent [41]. There are a few pos-
sible explanations. First, we focused on somatic mutations
obtained from WES and tested those that resulted in amino acid
changes, excluding synonymous SNVs in coding regions.
Mutations in noncoding regions, such as promoter, untrans-
lated regions and intronic or intergenic regions, were not tested
either. Second, unlike regulatory variants, the majority of som-
atic mutations with amino acid changes in coding regions may
not function through regulation of gene expression. Rather,
they could change protein confirmation, obstruct protein–
protein interactions and activate/deactivate kinase activities.
Third, it is worth noting that among the small number of eli-
gible genes for mutation cluster test, only a few of them were
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associated with gene expression changes. Our step to define the
eligible genes had already preselected genes with mutation
clusters, which included many well-studied cancer genes. In
previous studies, these eligible genes would have been reported
as having hotspot mutations and predicted as candidate driver
genes. Here, we showed that many such mutation clusters were
not associated with expression changes, implying that their im-
pact on cancer might be executed by other ways, rather than
changing the expression of their residing genes. It is likely that
the consequences of somatic mutations on the transcriptome
level may not be restricted to the gene itself but its participating
pathways.

Conclusion

We systematically examined the associations between muta-
tion features and mRNA/protein expression levels in multiple
cancer types, aiming to address the functional consequence of
somatic coding mutations in terms of their expression and pro-
tein products. Our analyses revealed that mutation type was
the most important determinant of expression level and muta-
tion clusters could be detected in well-studied oncogenes that
were associated with gene expression. We found both similar-
ities and differences in association patterns existed within and
across cancer types. In summary, our results suggested that
mutation features were important factors in somatic mutation
data analyses for their functional consequences.

Materials and methods
TCGA data acquisition and process

SNV and indel reannotations
We downloaded SNV and indel data from the synapse Web site
(syn1729383), which is listed as the data deposition for the pan-
cancer study in [17]. The downloaded SNVs and indels were
organized in the MAF format. We annotated them using the tool
Oncotator (v1.5.1.0) [42]. Reference transcripts were downloaded
from GENCODE (hg19). For each protein-coding gene, we use its
longest transcript for annotation. For some cancer types, there
are hyper-mutated samples with extremely large size of SNVs
and indels. We removed those with >1000 nonsilent SNVs and
indels from our analysis.

CNV data
CNVs were downloaded from http://cbio.mskcc.org/cancerge
nomics/pancan_tcga/. CNVs were originally obtained using the
tool GISTIC [43]. The downloaded data included five levels to
represent different CNV status, i.e. deletion (CN ¼ �2), copy loss
(CN ¼ �1), neutral, copy gain (CN¼ 1) and amplification (CN¼ 2).
In our analysis, we simplified the group as copy number loss
(CN< 0), copy number neutral (CN¼ 0) and copy number gain
(CN> 0).

We conducted three types of analyses to fully assess the im-
pact of CNVs in our results. The first two were similar to a strati-
fication test and were sensitive to the number of samples in
each group, and thus, they were applied to only mutation type
and mutation status analysis but not mutation cluster analysis.
The third method was applied to all three association tests.
First, we used CNV as a covariate for all our association tests.
Specifically, for each gene, we constructed the MLR model as:
Y � b0 þ bmXm þ bCNXCN, where Y is the mRNA expression of the
gene, Xm represents the mutation status vector

(xm;i ¼
0; WT
1; mutated

�
for the ith sample) or mutation type

vector xm;i ¼

0; WT

1; MS

2; NS

8>><
>>:

1
CCA

0
BB@ , and XCN represents the CNV vector

xCNV;i ¼
�1; loss

0; neutral

1; gain

8>><
>>:

1
CCA

0
BB@ . Note Xm is a factorized vector

where values in Xm represent independent groups, rather than
ordinal numbers. We choose the P-value for bm to determine
whether the corresponding mutation feature is significantly
associated with gene expression levels. Second, we restricted
the association test in the subset of samples with the most
prevalent copy number status. Third, we used linear regression
to obtain the residual expression of copy number status:
Y ¼ b0 þ bCNXCN þ e. Then, we used the residual expression, e, for
the association test. This model does not stratify CNV status,
and so, it is applicable to all genes with CNV data.

Methylation data
We downloaded methylation data from UCSC Cancer Genome
Browser (28 January 2015). There were two platforms used
by TCGA to measure methylation levels: Infinium
HumanMethylation 27K (HM27K) and Infinium
HumanMethylation 450K (HM450K). We chose the TCGA
PANCAN AWG (PanCancer Analysis of Whole Genomes) dicho-
tomized DNA methylation data across 12 TCGA cohorts in the
PANCAN12 study (file name: TCGA_PANCAN12_hMethyl-2015-
01-28.tgz). This data set had been preprocessed by performing a
moderate probe-design-dependent platform normalization to
remove systematic platform bias [44]. The file contains a
merged data set on 25 978 probes shared by the HM27K and
HM450K platforms. A detailed description of the preprocessing
procedure can be found elsewhere [44]. Briefly, the major filter-
ing criteria included removing probes with a standard deviation
of>0.05 (to control batch and platform effects) and removing
probes that showed methylation (median b value> 0.2) in any of
the 12 matched normal tissue types. The data set we down-
loaded included probes with dichotomized b values at 0.3.
Samples with a b value� 0.3 were designated methylated and
samples with a b value< 0.3 were designated unmethylated.
The original working group of PANCAN AWG had selected the
2203 probes that were methylated in >10% of any of the tumor
types or 50% of any of the well-defined subtypes for clustering.
Thus, genes not tagged by these probes indicated that their
methylation statuses did not change substantially across cancer
types or subtypes.

Tumor purity
We obtained the tumor purity predictions for TCGA samples
from the work by Yoshihara et al. (2013). In the original work,
the authors described a method to calculate stromal and im-
mune scores to predict the level of infiltrating stromal and im-
mune cells, from which they inferred tumor purity in tumor
tissue. We downloaded the tumor purity score for each sample
from the supplementary materials of Yoshihara et al. (2013) and
included tumor purity as a covariate in our MLR model. This
analysis applied to all cancer types excluding LAML.

Copy-neutral LOH
We searched in the TCGA database for copy-neutral LOH data.
The LOH status was determined by Hudson Alpha Institute for
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Biotechnology using Human 1MDuo SNP chip as part of the
TCGA initiative. We systematically searched data for the 12 can-
cer types used in this study. There were only three cancers that
had LOH data: GBM, LUSC and OVCA. For LUSC, there were only
23 samples with available LOH data. For OVCA, we found only
one gene that was significant in our association tests, and we
did not discuss this cancer type in most of our analysis. We
then excluded OVCA as well as from the LOH analysis. Thus,
only GBM was eligible for the LOH analysis. We preprocessed
the LOH data following the works in [45, 46]. Specifically, we
considered only the LOH events with log2 values>0.075. We
included LOH status as a covariate and constructed the MLR
model as follows: Y � b0 þ bmXm þ bLOHXLOH.

RNA sequencing data
Normalized mRNA expression data from RNA sequencing
(HiSeq V2) was downloaded from UCSC Cancer Genome
Browser (28 January 2015) [47]. Two layers of filters based on
gene expression were applied to remove low expression genes.
The first filter eliminated genes with low variability across pa-
tients (var< 0.1), as measured by the variance per gene. The se-
cond filter eliminated genes that had static expression levels in
more than half of all patients, i.e. genes whose minimum and
median expression levels remained the same across samples.
Genes remained after these filters were considered as expressed
in the corresponding cancer type.

Protein expression data
Normalized protein expression data measured by the RPPA
were downloaded from The Cancer Proteome Atlas [48]. The
RPPA platform is an antibody-based screening tool that meas-
ures �150 proteins (187 antibodies) and their posttranscrip-
tional (e.g. phosphorylation) levels. The data we downloaded
had been normalized using the ‘replicates-based normalization
(RBN)’ method across 11 cancer types (no RPPA data for LAML)
[49].

Statistical tests

We examined three mutation features that likely impact ex-
pression changes. Mutation type is a categorical parameter with
three statuses: MS, NS and WT. Mutation cluster is a factor with
multiple levels. Mutation status is described as a categorical
parameter with two groups, mutated or not. We grouped muta-
tions that are located with no more than 5 AAs away from each
other. Genes with insufficient representations in any cluster
grouping or type grouping (with a threshold of five samples)
were excluded. MLR was performed for each feature independ-
ently, using mutation features as the predictive parameter and
expression values as the responsive parameter. Genes that are
significantly impacted by any feature (evaluated by the model
P-value) were collected. To avoid potential false discoveries
owing to data inflation, we further examined each mutation
cluster or mutation type for these genes using Wilcoxon rank
sum test by comparing the group of samples with the feature of
interest and the WT samples. Only those with a significant mu-
tation cluster or mutation type were kept. Multiple testing cor-
rection [50] was conducted in each cancer type.

Key Points

• We presented a comprehensive landscape of the asso-
ciations between mutation features and expression

profile in multiple cancer types, including 62 genes
showing mutation type associated with expression
changes, 21 genes showing mutation cluster associ-
ations and 51 genes showing mutation status
associations.

• Mutation type (truncation versus amino acid-altering
mutations) was found as the most important deter-
minant of expression levels.

• Mutation clusters were detected in well-studied onco-
genes that were associated with gene expression.

• We found both similarities and differences in associ-
ation patterns existed within and across cancer types.

• Although many of the observed associations stay sta-
ble at both mRNA and protein expression levels, there
were also novel associations uniquely observed at the
protein level, which warrant future investigations.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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