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SUMMARY

Multi-arm clinical trials use a single control arm to evaluate multiple experimental treatments. In most
cases this feature makes multi-arm studies considerably more efficient than two-arm studies. A bottleneck
for implementation of a multi-arm trial is the requirement that all experimental treatments have to be
available at the enrollment of the first patient. New drugs are rarely at the same stage of development.
These limitations motivate our study of statistical methods for adding new experimental arms after a
clinical trial has started enrolling patients.We consider both balanced and outcome-adaptive randomization
methods for experimental designs that allow investigators to add new arms, discuss their application in
a tuberculosis trial, and evaluate the proposed designs using a set of realistic simulation scenarios. Our
comparisons include two-arm studies, multi-arm studies, and the proposed class of designs in which new
experimental arms are added to the trial at different time points.
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1. INTRODUCTION

Multi-arm studies that test several experimental treatments against a standard of care are substantially
more efficient compared to separate two-arm studies, one study for each experimental treatment. Multi-
arm studies test experimental treatments against a common control arm, whereas when experimental drugs
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are evaluated using two-arm studies the control arm is replicated in each study. This difference reduces
the overall sample size for testing multiple experimental drugs in a single multi-arm study compared to
using independents two-arm trials. The gain in efficiency is substantial and has been discussed by various
authors (Freidlin and others, 2008; Wason and others, 2014).

The use of response-adaptive assignment algorithms can further strengthen the efficiency gain of multi-
arm studies compared to two-arm studies (Berry and others, 2010; Trippa and others, 2012; Wason and
Trippa, 2014; Ventz and others, 2017). As the trial progresses, adaptive algorithms typically increase
randomization probabilities towards the most promising treatments. On average, this translates into larger
sample sizes for the arms with positive treatment effects and, in turn, into higher power of detecting the
best treatments at completion of the study.

Multi-arm studies also reduce fixed costs compared to two-arm trials. Designing and planning a study
is a time-consuming and costly process, which involves clinicians and investigators from different fields.
Compared to independent two-arm studies, multi-arm trials have the potential to reduce the resources
needed to evaluate experimental drugs. Based on these arguments, regulatory agencies encourage the use
of multi-arm studies (FDA, 2013; Freidlin and others, 2008).

Nonetheless, multi-arm studies constitute a small fraction of the ongoing early stage clinical studies.
A major bottleneck in their implementation is the requirement that all therapies, often drugs from different
pharmaceutical companies, must to be available for testing when the clinical trial starts. Experimental
drugs are rarely at the same stage of development. During the design period, before the study starts, there
are several candidate drugs with promising preclinical or clinical data. But often some of these drugs are
not available when the trial starts recruiting patients due to logistical reasons, investigators’ concerns, or
because the pharmaceutical company decides to wait for results from other studies (e.g. from a clinical
trial for a different disease). Additionally, holdups in the supply chain are not uncommon. Investigators
thus face a choice between delaying the start of the trial or testing only a subset of drugs.

Here we consider the design of multi-arm trials wherein new experimental treatments are added at one
or multiple time points. Our work is motivated by the endTB trial, a Bayesian response-adaptive Phase
III study in tuberculosis that we designed (Cellamare and others, 2017). The study originally sought to
evaluate eight experimental treatments. While designing the trial, it became clear that four drugs would
have not been available for the initial 12 months of the study or longer. Because of the need to test an
increasing number of experimental treatments (Berry and others, 2015) similar examples exist in several
other disease areas. Recent cancer studies (STAMPEDE, AML15, and AML16), the neurology trial NET-
PD, and the schizophrenia study CATIE, to name a few, added or considered adding experimental drugs
to ongoing studies (Hills and Burnett, 2011; Lieberman and others, 2005; Burnett and others, 2013; Elm
and others, 2012). Similarly, the pioneering breast cancer trial I-SPY2 (Barker and others, 2009) adds
and removes arms within a Bayesian randomized trial design.

Nonetheless, statistical studies of designs that allows the addition of arms to an ongoing trial are limited.
A recent literature review of designs that involved the addition of experimental arms Cohen and others
(2015) concluded that the statistical approaches remain mostly ad hoc: few guidelines are available for
controlling and optimizing the operating characteristics of such studies, and the criteria for evaluating the
designs remain unclear. Recent contributions that consider the amendment of one additional arm into an
ongoing study and platform designs include Elm and others (2012), Hobbs and others (2016), and Yuan
and others (2016).

We focus on randomization procedures and inference for trials during which new experimental arms
are added. We discuss three randomization methods and study their operating characteristics. The first
one is a balanced randomization (BR) algorithm. In this case the arm-specific accrual rates vary with the
number of treatments available during the trial. We show that the approach yields substantial efficiency
gains compared to separate two-arm studies. The other two methods use the outcome data to adaptively
vary the randomization probabilities. One of the algorithms has close similarities with Bayesian adaptive
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randomization (BAR) (Thall and Wathen, 2007; Lee and others, 2010), while the other shares similarities
with the doubly adaptive biased coin design (DBCD) (Eisele, 1994). In all three cases the relevant difference
between the designs that we consider and BR, BAR, or DBCD is the possibility of adding new experimental
arms to an ongoing trial. We also introduce a Bootstrap procedure to test efficacy under the proposed
platform designs. The algorithm extends previously introduced bootstrap schemes (Rosenberger and Hu,
1999; Trippa and others, 2012) to platform trial designs with group-sequential interim analysis (IA). The
resampling method estimates sequentially stopping boundaries that correspond to pre-specified type-I
error values at interim and final analyses.

We describe in Sections 2.1, 2.2, and 2.3 the three designs for balanced and outcome-adaptive multi-arm
trials, during which experimental arms can be added. In Section 3, these randomization procedures are
combined with early stopping rules and a bootstrap algorithm for testing efficacy. Section 4 evaluates the
proposed designs in a simulation study. In Section 5, we compare the performances of the three designs
under scenarios tailored to the endTB trial. Section 6 concludes the article with a discussion.

2. ADDING ARMS TO AN ONGOING TRIAL

We consider a clinical trial that initially randomizes n1 patients to either the control arm or to A1 experi-
mental arms. For each patient i, Ci = a indicates that patient i has been randomized to arm a = 0, . . . , A1,
where a = 0 is the control arm. In what follows, N ′

a(i) counts the number of patients randomized to
arm a before the i-th patient, while Na(i) ≤ N ′

a(i) is the number of observed outcomes for arm a before
the i-th enrollment. Different values of Na(i) and N ′

a(i) are typically due to a necessary period, after
randomization and before the patients’ outcome can be measured. We consider binary outcomes. The
random variable Ya(i) counts the number of observed positive outcomes, and has a binomial distribu-
tion with size Na(i) and response probability θa. The available data at the i-th enrollment is denoted by
Di = {(

N ′
a(i), Na(i), Ya(i)

)}a≥0. The goal is to test treatment efficacy, with null hypotheses Ha : θa ≤ θ0,
one null hypothesis for each experimental arm.

We consider a design where experimental arms are added at K different time points. At the arrival of
the Mk -th patient, k = 2, . . . , K , Ak experimental arms are added to the trial, and the sample size of the
study is increased by nk additional patients, so that the final sample size becomes n = ∑K

k=1 nk . In most
cases K ≤ 3 and only one or two arms are added. We do not assume that the number of adding times K ,
or the number of added arms Ak , are known in advance, when the study is designed. Thus, we treat K and
(Mk , Ak)

K
k=2 as random variables.

2.1. Balanced randomization

A non-adaptive randomization algorithm for a multi-arm trial assigns patients to control and experimental
arms with a ratio q0/q1. Here q� > 0, � = 0, 1, are pre-specified non-negative weights, for instance
q0/q1 = 1/2, that determine the ratio of patients assigned to the control arm compared to each experimental
arm.

The overall sample size is n1 = nC + A1 × nE , where the number of patients treated with the control
arm nC and each experimental arm nE are selected based on targeted type I/II error probabilities. For the
moment, we do not consider early stopping.

Here we describe a randomization scheme for adding new treatments, focusing on the case of K = 2
first. We define the indicator I {N ′

a(i) < nE}, which is one if N ′
a(i) < nE and zero otherwise. The first

M2 − 1 patients are randomized to the control arm or the initial experimental arms with probabilities
proportional to q0I {N ′

0(i) < nC} and q1I {N ′
a(i) < nE}, a = 1, . . . , A1. At the arrival of the M2-th patient,

arms A1 + 1, . . . , A1 + A2 are added, and the sample size is extended by n2 = nC,2 + nEA2 patients,
nC,2 ≥ 0 for the control arm and nE for each added arm. The remaining patients i = M2, . . . , n1 + n2 are
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then randomized to the initial arms a = 0, . . . , A1 or to the added arms a = A1 + 1, . . . , A1 + A2, with
probabilities

p[Ci = a|Di] ∝

⎧⎪⎨⎪⎩
q0 × I {N ′

0(i) < nC + nC,2} if a = 0,

q1 × I {N ′
a(i) < nE} if 0 < a ≤ A1,

q2 × I {N ′
a(i) < nE} if A1 < a ≤ A1 + A2,

(2.1)

where q2 > 0. At the completion of the study, nE patients have been assigned to each experimental arm
a > 0, and nC + nC,2 patients are assigned to the control arm. In early phase trials, one can potentially
set nC,2 = 0 and use the control data from patients randomized before and after the M2-th enrollment, to
evaluate the added experimental arms.An additional nC,2 > 0 patients for the control arm may be necessary
for longer studies with a slow accrual and potential drifts in the population. The parameter q2 modulates
the enrollment rate to the new arms after these arms have been added to the trial. The choice of q2 should
depend on (q0, q1, M2, A1, A2). For example, with q2 equal to Q2 = (q0+q1A1)/((n1+n2−M2+1)/nE−A2),
and nC,2 = 0, all arms complete accrual at approximately the same time (see Figure 1).

The case K ≥ 2 is similar. At the enrollment of the Mk -th patient (2 ≤ k ≤ K), Ak new arms are added;
and the sample size is increased by nk = nC,k + AknE patients, nC,k ≥ 0 patients for the control, and AknE

for the new arms. Let Ak be the k-th group of treatments, where A1 is the set of initial experimental arms
and M1 = 1. Patient Mk ≤ i < Mk+1 is assigned to an active arm a, with probability

p[Ci = a|Di] ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q0 × I

{
N ′

0(i) < nC + ∑k
�=1 nC,�

}
if a = 0,

q1 × I {N ′
a(i) < nE} if a ∈ A1,

· · ·
qk × I {N ′

a(i) < nE} if a ∈ Ak .

(2.2)

As before, the parameters qk , 1 < k ≤ K , control how quickly each group of arms Ak enrolls patients
compared to the previously added arms. For example, with nc,k = 0 and qk equal to

Qk = q0 + ∑k−1
j=1 AjQj

(
∑k

j=1 nj − Mk + 1)/nE − Ak

(2.3)

for k = 1, . . . , K , all arms complete accrual at approximately the same time.
The step function I {N ′

a(i) ≤ nE} leads to a randomization scheme, where the assignment of the last
patient(s) enrolled in the trial can be predicted. Alternatively one can replace the indicator by a smoothly
decreasing function.

Example 2.1 We consider a multi-arm trial with four experimental arms and a control arm with response
probability of θ0 = 0.3 after 8 weeks of treatment. A multi-arm trial with (q0 = q1 = 1) and targeted type
I/II error probabilities of 0.1 and 0.2 requires an overall sample size of 265 patients to detect treatment
effects of θa−θ0 = 0.2, with nC = nE = 53 patients. With an accrual rate of six patients per month, the trial
duration is approximately 45 months. We can now introduce a departure from this setting. Two treatments
a = 3, 4 become available approximately 12 and 24 months after the beginning of the trial (M2 = 72,
M3 = 144, and A2 = A3 = 1). We describe three designs. (1) The first one uses all outcomes of the
control arm available at completion of the study to evaluate arms a = 1, . . . , 4. In this case, nC,k = 0 and
qk = Qk for k = 2, 3 with definition of Qk as in (2.3). (2) To avoid bias from possible population trends,
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Fig. 1. Adding experimental arms to a multi-arm BR trial. We consider a trial with two initial arms A1 = 2 and two
added A2 = 2 experimental arms. The graph shows the expected number of patients randomized to an arm during the
accrual period for the control a = 0, one initial arm in A1 and one added arm in A2. The two additional arms were
added after 50% of the initially planned sample size, at M2 = n1/2. Patients were initially randomized to the control
or experimental arm with ratio q0 = 1.25 to q1 = 1. Dashed lines correspond to q2 = 1. Solid lines correspond to
the q2 = Q2, in this case all arms are expected to complete accrual at the same time. Bold numbers are operating
characteristics of effective experimental arms.

the second design estimates treatment effects of arm a ∈ Ak using only control outcomes of patients
i ≥ Mk randomized to the control arm after the Mk -th enrollment. In this case, to maintain a power of 80%
for the added arms, and to keep the accrual ratios qa/q0 = 1 constant during the active accrual period
of each treatment a = 1, . . . , 4, we set nC,2 = N ′

0(M2) and nC,3 = N ′
0(M3) − nC,2 at the M2-th and M3-th

arrival. (3) We also consider a third strategy with three independent trials; one for the initial experimental
arms, and two additional two-arm trials for arm a = 3 and a = 4, each study has its own control arm.
We assume again an average enrollment of 6 patients per month. Design 1 requires 265 patients, and the
treatment effect estimates are available approximately 45 months after the first enrollment. Design 2, with
qk = 1, requires on average 307 patients. Treatment effects estimates are available approximately 37, 47,
and 53 months after the first enrollment. The three independent trials in design 3 would instead require
371 patients and the effect estimates are available approximately 46, 60, and 64 months after the first
patient is randomized.
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2.2. Bayesian adaptive randomization

BAR uses accumulating data during the trial to vary the randomization probabilities (Thall and Wathen,
2007; Lee and others, 2010). Initially, BAR randomizes patients with equal probabilities to each arm.
As the trial progresses and information on efficacy becomes available, randomization favors the most
promising treatments. This can translate into a higher power compared to balanced designs (Wason and
Trippa, 2014).

We complete the outcome model with a prior θa ∼ p[θa|ν] for the response probabilities of arm a ≥ 0.
We use a conjugate beta distributions with parameters ν = (ν1, ν2). To predict the response probabilities
of new arms in the group Ak , k > 1, even when no outcome data are available for treatments in Ak , we
leverage on hierarchical modeling with a hyper-prior ν ∼ p(ν). We use a discrete uniform distribution
p(ν) over a grid of possible ν values.

When we do not add arms, K = 1, BAR assigns patient i to arm a with probability

p[Ci = a|Di] ∝
{

p[θa > θ0|Di]h(i) if a ∈ A1,

c(i) exp
{ − b × [

N ′
0(i) − maxa∈A1 N ′

a(i)
]}

if a = 0,
(2.4)

where b > 0, c(i) = ∑
a∈A1

P[θa > θ0|Di]h(i)/A1 and the function h(·) is increasing in the number of
enrolled patients (Thall and Wathen, 2007). Initially h(·) equals zero, and randomization is balanced.
As more information becomes available, h(·) increases and more patients are randomized to the most
promising arms. The randomization probability of the control arm in (2.4) is defined to approximately
match the sample size of the control and the most promising treatment. This characteristic preserves the
power of the adaptive design (Trippa and others, 2012).

We extend BAR to allow the addition of new arms. We first consider K = 2. At the M2-th arrival, A2

new arms are added and the sample size is increased by n2 patients. The randomization probabilities are
defined as

p[Ci = a|Di] ∝

⎧⎪⎨⎪⎩
p[θa > θ0|Di]h1(i) × q1(i) if a ∈ A1,

p[θa > θ0|Di]h2(i) × q2(i) if a ∈ A2 and i ≥ M2,

c(i) exp
{ − b × max�=1,2 s�(i)

}
if a = 0,

(2.5)

where s�(i) = I (i ≥ M�)
{[

N ′
0(i) − N ′

0(M�)
]
− maxa∈A�

N ′
a(i)

}
and c(i) =

∑
k=1,2;a∈Ak

I {Mk ≤ i} × qk(i) ×

p[θa > θ0|Di]hk (i). We introduce group-specific scaling and power functions qk(i) and hk(i). The power
function hk(i) controls the exploration–exploitation trade-off within each group Ak . The scaling function
qk(i) has two purposes: (i) It introduces an initial exploration advantage for newly added treatments, which
compete for accrual with all open arms. (ii) It ensures sufficient exploration of all treatment groups Ak .
Several functions serve both purposes. We use a Gompertz function

qk(i) = r0 + r1 exp
{ − exp

(
N ′(k)(i) − mk

)}
, (2.6)

where N ′(k)(i) is the number of patients randomized to the group of experimental arms Ak and mk , r1, r0 > 0
are tuning parameters. The function has an initial plateau at r0 +r1, followed by a subsequent lower plateau
at r0. The initial plateau provides group Ak with a necessary exploration advantage when the number of
patients randomized to group Ak is small, i.e. N ′(k)(i) < mk . During the later stage of the trial, once a
sufficient number of patients has been assigned to treatments in group Ak , i.e. N ′(k) > mk , the scaling
function qk(i) ≈ r0 reaches the lower plateau, and patients are assigned to treatment arms approximately
according to standard BAR.
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We noted that limiting the maximum number of patients per arm can avoid extremely unbalanced
allocations. This may be achieved, for example, by multiplying the Gompertz function in (2.6) by the
indicator I {N ′

a(i) < n′
E}, where n′

E > 0 represents a desired maximum number of patients in each
experimental arm.

We use a function h1(·) that is increasing in the number of patients randomized to arms in A1 with a
maximum β > 0 after n1 enrollments. Similarly, for the added arms in A2, h2(·) is increasing in the number
of patients randomized to A2, with a maximum H at n2. In particular hk(i) is equal to β × [N ′(k)(i)/nk ]γ
if N ′(k)(i) ≤ nk and β otherwise, where γ ≥ 0 and, as explained above, nk denotes the extension of the
overall sample size after Mk enrollments.

The general case K ≥ 2 is similar. Each patient i is randomized to the available treatments with
probabilities

p[Ci = a|Di] ∝
{

p[θa > θ0|Di]h�(i) × q�(i) if a ∈ A� and M� ≤ i,

c(i) exp
{ − b × max�:M�<i s�(i)

}
if a = 0,

(2.7)

where s�(i) and c(i) are defined as in (2.5), and q�(i) is the Gompertz function defined in (2.6). For K = 1
the scheme reduces to standard BAR. The parameter of the scaling function qk(i) can be selected at the
Mk -th arrival such that the expected number of patients assigned to each arm in a ∈ Ak under a selected
scenario equals a fixed predefined value.

Example 2.2 We consider the same trial as in Example 2.1, but use a BAR design instead. To simplify
comparison to BR, we set the overall sample size to n = 265 as for BR. We can easily verify that if
(β, b, n′

E) = (0, 0, 53) and qk(i) = 1, the BAR and BR designs (with qk = 1) are identical. We now
describe the major operating characteristics under three scenarios. In scenarios 1 to 3, either arm a = 1,
or arm a = 3 added at M2 = 72, or arm a = 4 added at M3 = 144 have positive treatment effects,
(θa, θ0) = (0.5, 0.3). In each scenario, the remaining 4 of the 5 arms, including the control, have identical
response rates equal to 0.3. We tuned the parameters of the design to maximize power under the assumption
that there is a single effective arm and n2 = n3 = 53, (β, γ , b) = (3, 1.5, 0.5). The tuning parameter for
the Gompertz function (r0 = 1, r1 = 3) and (m1, m2, m3) = (20, 30, 45) are selected through simulations,
to get approximately the same average sample size for each arm when θk = 0.3 for all arms.

As for BR, in all three scenarios, the trial completes accrual after approximately 45 months. In scenario
1, BAR randomizes on average 64 patients to arm 1 and to the control arm across 5000 simulations, while
on average (43, 46, 47) patients are assigned to the ineffective arms 2, 3, 4 with standard deviations (SDs)
of 4.7, 6.4, 7.4, 5.3, and 5.4 (see Table 1). The power increases to 85%—compared to 80% for BR—with
an identical overall sample size. In scenarios 2 and 3, BAR randomizes on average 64 and 63 patients to
arm a = 3 and a = 4, respectively. This translates into 86% and 85% power for the added arms 3 and 4,
respectively, compared to 80% for BR.

2.3. Doubly adaptive biased coin design

The DBCD (Eisele, 1994) is a response adaptive randomization scheme that seeks to assign patients
to treatments according to a vector of target proportions {ρa}a that depends on response rates. Examples
include the Neyman allocation ρa ∝ √

θa(1 − θa) and ρa ∝ θ 1/2
a (Hu and Zhang, 2004). Since the response

probabilities θa are unknown, the target allocation is estimated from the accumulated data by ρ̂a(i). For
K = 1, patients are randomized to arm a = 0, . . . , A1 with probabilities

p[Ci = a|Di] ∝ ρ̂a(i) × qa(i). (2.8)
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Table 1. Expected sample size (E), standard deviation (SD) and power (Po) for experimental arm 1, the
first added arm a = 3 and the second added arm a = 4 for a trial with two initial experimental arms, and
two arms which are added after 12 and 24 month, (M3, M4) = (72, 144)

Scenario Control Arm 1 First added arm Second added arm
E SD E SD Po E SD Po E SD Po

BR 1 53 0.0 53 0.0 0.11 53 0.0 0.10 53 0.0 0.10
2 53 0.0 53 0.0 0.80 53 0.0 0.11 53 0.0 0.11
3 53 0.0 53 0.0 0.11 53 0.0 0.80 53 0.0 0.10
4 53 0.0 53 0.0 0.11 53 0.0 0.11 53 0.0 0.80

BAR 1 62 3.7 50 10.1 0.10 51 7.6 0.10 52 6.9 0.10
2 64 4.7 64 6.4 0.85 46 5.3 0.11 47 5.4 0.10
3 64 4.3 45 7.8 0.10 64 5.8 0.86 47 5.7 0.11
4 62 3.4 46 8.2 0.10 48 5.9 0.11 62 5.5 0.85

DBCD 1 57 3.3 52 4.8 0.10 52 4.6 0.10 52 4.3 0.10
2 60 3.9 59 4.0 0.82 48 4.4 0.10 49 4.2 0.10
3 58 3.6 49 4.6 0.10 59 3.8 0.82 48 4.1 0.10
4 58 3.4 50 4.5 0.09 49 4.3 0.10 58 3.4 0.83

Results are based on 5000 simulated trials under balanced randomization (BR), Bayesian adaptive randomization (BAR) and a
doubly adaptive biased coin design (DBCD) without early stopping rules. The initial planned overall sample size is 159, which is
then extended by 53 patients for each added arm. Bold numbers are operating characteristics of effective experimental arms.

Here, qa(i) = (
ρ̂a(i) × (i + 1)/(N ′

a(i) + 1)
)β

varies with the ratio of (i) the estimated target allocation
proportion ρ̂a(i) and (ii) the current number of patients that are randomized to arm a (Hu and Zhang,
2004). If the current proportion of patients assigned to arm a is smaller than the target, then for the next
patient, the randomization probability to arm a will be larger than ρ̂a(i) and vice versa. Larger values of h
yield stronger corrections towards the target. As for BAR, we limit the maximum number of patients per
arm by multiplying the correction qa(i) by the indicator I {N ′

a(i) < n′
E}.

We now consider adding new experimental arms during the study. Until the M2-th arriving patient,
the target {ρa}A1

a=0 is a function of {θa}A1
a=0, and it is estimated through the hierarchical Bayesian model in

Section 2.2 by ρ̂a(i) = E[ρa(θ)|Di]. Patient i < M2 is randomized to the control or experimental arm
a ∈ A1 with probabilities defined by (2.8). Then, at the enrollment of the Mk -th patient, k ≥ 2, Ak arms
are added, and the overall sample size is increased by nk patients. Before observing any outcome for arm
a ∈ Ak , the target is re-defined to ρa(θ), 0 ≤ a ≤ A1 +· · ·+Ak , with θ = {θa; 0 ≤ a ≤ A1 +· · ·+Ak}. The
posterior distribution of the hierarchical model is used to compute ρ̂a(i) = E[ρa(θ)|Di] for all initial and
added arms a. Also in this case, the function qa(i) is used to approximately match the patient allocation
to arm a with the estimated target ρ̂a(θ). Each patient i ≥ 1 is randomized to the control arm a = 0 or to
treatments a ∈ Ak for groups k added before the i-th arrival with probability

p(Ci = a|Di) ∝ ρ̂a(i) × qa(i). (2.9)

For treatments in Ak , 1 ≤ k ≤ K , the functions qa(i) = [
ρ̂a(i)(i + 1)/(N ′

a(i)+ 1))
]hk (i)

correct the current
allocation proportions towards the estimated target.

To avoid extremely unbalanced randomization probabilities, we can replace ρ̂a(i)×qa(i) in expression

(2.9) with max(ρ̂a(i) × qa(i), w(i)), where w(i) is a function of the data Di. We used w(i) ∝ 1
/(

1 +∑
k;a∈Ak

I {Mk ≤ i, N ′
a(i) < n′

E}
)

, a decreasing function of the number of active arms. Also for the DBCD
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design, the function hk(·) increases during time with hk(i) = hk + β × (N
′(k)(i)/nk)

γ if 0 ≤ N
′(k)(i) < nk

and hk +β otherwise. The interpretations of the functions hk(i) in the DBCD and BAR designs are different,
and in our simulation studies the parameters are tuned separately for these trial designs.

Example 2.3 We consider again the setting in Examples 2.1 and 2.2, and use a DBCD design for the
trial. Following Hu and Zhang (2004) we use the target allocation ρa(θ) ∝ θ 1/2

a for a > 0. To preserve
the power of the design, similarly to Example 2.2, we use ρ0(θ) = maxa>0 θ 1/2

a to approximately match
the sample size of the control and the most promising experimental arm. For comparison to Examples 2.1
and 2.2 we use again an overall sample size of 265 and n2 = n3 = 53. If the response probabilities for all
arms are 0.3, a DBCD with (β, γ ) = (3, 1) and (h1, h2, h3) = (0, 4, 5) randomizes on average 52 patients
to each experimental arm, and 57 to the control (SD 3.3, 4.8, 4.8, 4.6, and 4.3). We consider the same
scenarios as in Examples 2.1 and 2.2.

In all 3 scenarios, the trial closes after approximately 45 months, as for BR and BAR. In scenario
1, DBCD randomizes on average 59 and 60 patients to arm 1 and the control (the target is 61), and
approximately 49 patients to the remaining ineffective arms a = 2, 3, 4 (SD 3.9, 4.0, 4.6, 4.4, and 4.2).
The power is 82% for arm a = 1, while it is 80% and 85% under BR and BAR in Examples 2.1 and 2.2,
respectively. For scenarios 2 and 3, the DBCD randomizes on average 59 and 58 patients to the effective
arms a = 3 and a = 4 (SD of 3.8 and 3.4). Compared to 80% and 85% for BR and BAR the power of the
DBCD becomes 82%. Similarly in scenario 3, for arm 4 we have a power equal to 82% using the DBCD
compared to 80% and 85% using BR and BAR.

3. EARLY STOPPING RULES AND HYPOTHESIS TESTING

We describe hypothesis testing and early stopping rules. We consider the interpretable strategy where arm
a in group Ak is stopped for futility after the enrollment of the i-th patient if the posterior probability
of a treatment effect, falls below the boundary fi,a, i.e. p[θa > θ0|Di] ≤ fi,a. Here fi,a = f × (

Na(i)/n′
E

)g

increases from 0 to f ∈ [0, 1] when the number of observed outcomes for arm a is equal to the maximum
accrual n′

E , for BR n′
E = nE .

3.1. A bootstrap test for platform trials without early stopping for efficacy

For a platform trial T , if arm a ∈ Ak added after Mk enrollments is not stopped for futility, we compute
a bootstrap P-value estimate at a pre-specified time τa, for example when Na(i) reaches n′

E , or at the
completion of the trial T . The bootstrap procedure is similar to the algorithms discussed in Rosenberger
and Hu (1999) and in Trippa and others (2012). We use the statistic Ta, the standardized difference
between the estimated response rate of arm a > 0 and the control, to test the null hypothesis Ha : θa ≤ θ0

at significance level α. Large values of Ta indicate evidence of a treatment effect. The algorithm estimates
the distribution of Ta under the null hypothesis Ha and the platform design, which includes changes of the
randomization probabilities when new experimental arms are added.

If the estimated response probability θ̂a for experimental arm a > 0 is smaller than the estimated
probability for the control θ̂0, we don’t reject the null hypothesis Ha. If θ̂a > θ̂0, we use the following
bootstrap procedure, which is also summarized in Algorithm 1:

(i) For all arms a′ that enrolled patients before time τa, we compute maximum likelihood estimates
(MLEs) θ̂a′ . For arm a and the control, we restrict the MLE to θ0 = θa.

(ii) The algorithm then simulates C trials {Ta,c}C
c=1, from the first enrollment until time τa,c. Here τa,c is

defined identical to τa and corresponds to simulation Ta,c. In each simulation Ta,c, Aj arms are added
to the study after Mj enrollments, for all Mj < τa,c, and randomization probabilities are updated as
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described in Section 2. Patients in these simulations respond to treatments with probabilities θ̂ and
the simulations’ accrual rate is identical to the accrual rate of the actual trial T .

(iii) For each simulation Ta,c we compute the test statistics Ta,c at time τa,c, and set Sa,c equal to zero
if arm a was stopped early for futility and equal to one otherwise. The simulations generate test
statistics Ta,c under the null hypothesis Ha and the platform design. We can therefore estimate the
P-value by ̂p(Ta) = ∑C

c=1 I {Ta,c ≥ Ta, Sa,c = 1}/C and reject Ha at level α if ̂p(Ta) ≤ α.

3.2. A bootstrap test for platform trials with early stopping for efficacy

We extend the procedure described in the previous section and include early stopping for efficacy. In this
case, there is a connection between the α-spending method of Lan and DeMets (1983) and our algorithm.
We consider J IA, conducted after a pre-specified set of observed outcomes. At each IA, the arms that are
evaluated for efficacy may vary, for instance because arms have been added or removed from the trial.
We partition the type I error probability α = ∑J

j=1 α(j)
a into pre-specified values α(j)

a ∈ [0, 1] for each IA
j. For each initial and added arm a ∈ Ak , k ≥ 1, the algorithm estimates the thresholds t(j)a defined by
the following target. Under the platform design and the unknown combination (θ0, . . . , θa−1, θ0, θa+1, . . .),
where we replace θa with θ0, the probability of stopping arm a for efficacy at the IA j is α(j)

a ≈ p
(
T (j)

a ≥
t(j)a , S(j)

a = 1
)
. Here S(j)

a = 0 if arm a is stopped before the j-th IA and equals 1 otherwise, while T (j)
a is the

test statistics computed at IA j. In what follows, simulations under the null hypothesis Ha are generated
using the estimates (θ̂0, . . . , θ̂a−1, θ̂0, θ̂a+1, . . .). We tested the following algorithm for up to six IA and eight
arms:

First IA: We compute the MLEs θ̂ and the statistics T (1)
a for all initial and added arms a ∈ Ak that

enrolled patients before the first IA. Then, separately for each of these arms a:

(i) We generate C platform trials {Ta,c}C
c=1 under Ha, from the first enrollment until the first IA. In these

simulations, all arms a′ ∈ Ak ′ which have been added to the actual trial T before the first IA are
successively added to the simulated trial Ta,c, and patients respond to treatment a′ with probability
θ̂ ′

a. By adding these arms to the trial Ta,c before the first IA we account for and mimic in simulation
Ta,c the variations of the randomization probabilities after the new arms have been added.

(ii) We then compute the test statistics and the indicator variable
(

T (1)
a,c , S(1)

a,c

)
for each simulated trial

Ta,c, with definitions identical to those of
(

T (1)
a , S(1)

a

)
for the actual trial T . The threshold t(1)

a is then

estimated by t̂(1)
a = min

t

{
t :

∑
c

I {T (1)
a,c ≥ t, S(1)

a,c = 1}/C ≤ α(1)
a

}
and arm a is stopped for efficacy

at the first IA if T (1)
a ≥ t̂(1)

a and S(1)
a = 1.

Second IA: We recompute the MLEs θ̂ using the data available at the second IA.

(i) Separately for each arm added before the second IA we re-estimate t̂(1)
a using a new set of simulations

{Ta,c}C
c=1 under Ha from the first enrollment until the first IA.

(ii) In these new simulations Ta,c, if for any arm a′ that enrolled patients before the first IA the statistics
T (1)

a′ ,c > t̂(1)

a′ and S(1)

a′ ,c = 1, then arm a′ is stopped for efficacy in the simulated trial Ta,c. This part of
the algorithm creates, for each arm a that enrolled patients before the first IA, C simulations under
Ha that cover the time window from the first enrollment until the first IA.

(iii) Simulations then continue beyond the first IA. After the thresholds t̂(1)
a ’s have been recomputed, we

extend, for each arm a, the new simulations {Ta,c}c in time to cover the window between the first
and the second IAs. Importantly, these simulations include early stopping at the first IA. Analogous
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to the first IA, if new arms (e.g. a′ ∈ A2) are added between the first and second IAs, then, starting
from the M2-th enrollment, all simulations will include the added arms to mimic the actual platform
trial.

(iv) We estimate t̂(2)
a = mint

{
t :

∑
c I {T (2)

a,c ≥ t, S(2)
a,c = 1}/C ≤ α(2)

a

}
and then stop arm a at the second

IA for efficacy if T (2)
a ≥ t̂(2)

a and S(2)
a = 1.

jth IAThe same procedure is iterated similarly to j = 2 for all other IAs j = 3, . . . , J . In some simulations
of the multi-arm study under Ha, where a ∈ Ak , arm a might not appear because the experimental arms
have been all dropped and the trial stopped before Mk enrollments. To account for this, all simulations
under Ha (when a ∈ Ak ) are generated conditional on the event that the multi-arm study enrolls more than
Mk patients.

We refer to the Supplementary material available at Biostatistics online for an example (Example S1.1)
of the described algorithm. We also include in the Supplementary material available at Biostatistics online,
a discussion on hypothesis testing and departures from the error rate α when the patient population varies
during the trial.

4. SIMULATION STUDY

We continue Examples 2.1, 2.2, and 2.3 using four scenarios. In scenario 1 no experimental arm has a
treatment effect. Whereas in scenarios 1–3 either the initial arm a = 1, the first added arm a = 3, or the
second added arm a = 4 is effective with response rate of 0.5. The remaining experimental arms have
response rates equal to the control rate of 0.3. The initial sample size is n1 = 159 and n2 = n3 = 53, and
the type I error is controlled at 10%.

Both, BAR and DBCD, can assign at most n′
E = 69 ≈ 1.3 × nE patients to each experimental arm,

and all three designs use outcomes from patients randomized to the control before and during the accrual
period of the added arms to define randomization probabilities and for hypothesis testing. In Section S2
of supplementary available at Biostatistics online, we outline possible modifications of the designs when
trends on the patient population during the trial represent a concern.

We used the same parameters to define the randomization probabilities as in Examples 2.1, 2.2, and 2.3.
For BR the scaling parameters equal qk = Qk , with Qk defined in (2.3), and nC,k = 0. The parameters of the
Gompertz function in BAR equal (r0, r1) = (1, 3), (m1, m2, m3) = (20, 30, 45) and (β, γ , b) = (3, 1.5, 0.5).
For DBCD we used (β, γ ) = (3, 1), and (h1, h2, h3) = (0, 4, 5), and the randomization probabilities for

active arms have been restricted to values larger than w(i) = 1
/[

3
(
1 + ∑

k;a∈Ak
Ia(i)

)]
. Here Ia(i) = 1

if Mk ≤ i, N ′
a(i) < n′

E and arm a has not been stopped before the enrollment of the i-th patient, and the
indicator Ia(i) is equal to zero otherwise.

We first summarize the operating characteristics of the three designs without early stopping to illustrate
the performance of the randomization schemes. The three designs are compared to three independent trials;
one trial for the initial two experimental arms, and two independent two-arm studies for the added arms 3
and 4, each with their own control arms. We indicate them as balanced randomized and independent trials
(BRI). The overall rate of accrual of the three independent trials in BRI is set to six patients per month,
and is assumed to be identical for the competing studies.

Figure 2 shows the median number of patients randomized to arms 1, 3, and 4 as a function of the
overall number of patients enrolled in the trial. For each scenario and design, the plotted graph represents
for a fixed arm a the median number of patients assigned to arm a over 5000 simulated trials (y-axis), after
a total of x = 1, 2, . . . , 265 (371 for BRI) patients have been enrolled to the trial (x-axis). Under BRI, 106
additional patients are necessary for the two additional control arms. This prolongs the trials and slows
down the accrual to experimental arms.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx030#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx030#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx030#supplementary-data
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Fig. 2. Number of patients randomized to treatment arms during the accrual period of the study, for a trial with two
initial experimental arms and two arms that are added after the enrollment of M2 = 72 and M3 = 144 patients. BRI
corresponds to a design that uses three balanced and independent trials—one trial for the initial arms and one two-arm
trial for each added arm, BR, BAR, and DBCD denote balanced randomization, Bayesian adaptive randomization
and the doubly adaptive biased coin design. For each arm a, the plotted graph (x, y) represents the median number of
patients y assigned to arm a, after a total of x patients have been randomized. In scenario 1 all experimental arms are
ineffective, whereas in scenarios 2–4 either arm 1, the first or the second added arm have a treatment effect, with a
response probability of 0.5 compared to 0.3 for the control.

Figure S1 of supplementary available at Biostatistics online shows the variability of treatment assign-
ments at the end of the trial. In scenario 1, DBCD has a median accrual of 52 patients for all experimental
arms with interquartiles (IQ) (49, 56) for arms 1 and 2, and an IQ of (49, 55) for arms 3 and 4. In com-
parison, using BAR, the median accrual for the first two experimental arms is 49 (IQ: 42, 58), and for
the two added arms the median equals 50 and 52 with IQs of (48, 57) and (45, 56). In scenario 2, where
the first initial arm has a positive effect, BAR and DBCD have a median accrual of 66 (IQ: 61,70) and
59 (IQ: 57,62) patients for this arm, with 85% and 82% power, compared to 80% using BR (Table 1).
In scenario 3, BAR and DBCD have 86% and 82% power of detecting the effect of the first added arm,
respectively, compared to 80% under BR (Table 1). The median accrual for the first added arm is 65 (IQ:
60,69) patients for BAR and 59 (IQ: 57, 62) for DBCD. Lastly, in scenario 4 the second added arm has a
positive effect. BAR and DBCD assign a median number of 63 (IQ: 56, 66) and 58 (IQ: 56, 61) patients
to this arm, which translates into 85% and 83% power, respectively.

We now compare BR, BAR, and DBCD, when early stopping for efficacy and futility are included as
described in Section 3. The tuning parameters of the futility stopping boundaries (f , g) is selected such
that the probability of stopping an effective initial arm early for futility is approximately 1%, (f , g) =

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx030#supplementary-data
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Table 2. Expected sample size (E), standard deviation (SD) and power (Po) for experimental arm 1, the
first added arm a = 3, and the second added arm a = 4, for a trial with two initial experimental arms,
and two arms which are added after 12 and 24 months, with futility and efficacy early stopping

Scenario Control Arm 1 First added arm Second added arm
E SD E SD Po E SD Po E SD Po

BR 1 51 3.4 47 9.3 0.10 49 7.0 0.11 51 5.2 0.09
2 51 3.4 52 3.0 0.79 48 8.0 0.10 51 5.7 0.10
3 51 3.2 47 9.7 0.11 52 2.6 0.79 51 5.0 0.10
4 51 3.2 46 9.8 0.10 49 7.4 0.11 52 3.9 0.78

BAR 1 62 5.1 48 12.8 0.10 50 9.4 0.10 52 8.7 0.09
2 65 5.2 54 13.2 0.84 49 9.8 0.10 51 8.8 0.10
3 65 4.9 45 11.2 0.10 62 6.3 0.84 48 7.8 0.09
4 63 4.5 46 11.6 0.11 49 8.3 0.11 59 6.9 0.84

DBCD 1 57 4.4 51 5.9 0.09 51 5.7 0.10 52 5.6 0.09
2 61 4.1 60 4.5 0.81 48 5.1 0.08 49 4.9 0.09
3 59 4.1 48 5.2 0.10 61 4.5 0.81 48 4.8 0.10
4 59 4.0 48 5.4 0.09 49 4.8 0.10 60 4.2 0.81

Two IA for efficacy are planned after 100, 200 patients have been enrolled. Results are based on 5000 simulated trials under balanced
randomization (BR), Bayesian adaptive randomization (BAR) and doubly adaptive biased coin design (DBCD). The initial planned
sample size is 159, which is then extended by 53 patients for each added arm. Bold numbers are operating characteristics of effective
experimental arms.

(0.25, 1.5) for BR, and (f , g) = (0.2, 1.5) for BAR and DBCD. Larger values of g (1 to 2.5) decrease the
probability of dropping an arm for futility during the study. As before, the overall type I error bound α was
set to 10%, with error rates of

(
α(1)

a , α(2)
a , α(3)

a

) = (0.025, 0.025, 0.05) for the initial arms after 100, 200,
and 265 observed outcomes, and

(
α(1)

a , α(2)
a , α(3)

a

) = (0, 0.05, 0.05) for the first and second added arms
a = 3, 4.

Table 2 shows the average sample size, SD and power for experimental arms a = 1, 3, and 4, across
5000 simulated trials. Under scenario 1, BAR and DBCD have a higher average overall sample size than
BR, with 260 and 261 patients for BAR and DBCD, compared to 245 for BR. This is expected; once
an arm a that enrolled N ′

a(i) patients is stopped, the final overall sample size in a BR trial is reduced by
53 − N ′

a(i), while BAR and DBCD assign these patients to the remaining active arms. The type I error
probabilities across simulations are close to the target of 10%. In scenario 2, BR randomizes on average
52 patients (SD 3) to the superior arm 1, compared to 54 (SD 13.2) for BAR and 60 (SD 4.5) for DBCD.
The power under the three designs is 79%, 84%, and 81%, with probabilities of rejecting H1 at IA 1, 2,
and 3 equal to (0.31, 0.25, 0.23) for BR, (0.33, 0.27, 0.24) for BAR and (0.32, 0.25, 0.24) for DBCD. In
scenario 3, BAR and DBCD have 84% and 81% power, respectively, compared to 79% for BR, with a
mean accrual of 52 (SD 3), 54 (SD 13), and 61 (SD 4.5) patients for BR, BAR and DBCD. The probability
of stopping the effective arm incorrectly for futility is 1.2% for BR compared to <1% for BAR and DBCD.
BAR and DBCD randomize on average less patients to ineffective experimental arms compared to BR.
The probability of dropping the second added arm incorrectly for futility was 1.5% for BR and <1% for
BAR and DBCD.

5. THE ENDTB TRIAL

Our motivation for adding arms to an ongoing study is the endTB trial for multi-drug resistant Tuberculosis
(MD-TB) (Cellamare and others, 2017). The trial tests five experimental treatments under a response-
adaptive BAR design that is similar to the one described in Section 2.2. We initially designed the trial
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Table 3. Expected sample size (E), standard deviation (SD) and power (Po) for initial arm 1, arm 5 (added
at M2 = 200), and arm 7 (added at M3 = 300) based on 5000 simulations under balanced randomization
(BR), Bayesian adaptive randomization (BAR) or the doubly adaptive biased coin design (DBCD), with
an initial planned sample size of n0 = 500 patients and an extension of the overall sample size by 200
patients at time M2 and M3

Control Initial arms First added group Second added group
Scenario arm Arm 1 Arm 5 Arm 7

E SD E SD Po E SD Po E SD Po

BR 1 98 5.1 79 25.3 0.05 80 25.5 0.05 82 24.4 0.05
2 99 3.4 99 8.3 0.70 100 2.9 0.90 82 24.6 0.05
3 99 3.5 99 7.4 0.70 81 25.2 0.05 100 3.1 0.92
4 99 3.4 99 8.7 0.70 100 2.7 0.90 99 5.2 0.70

BAR 1 134 10.9 93 26.3 0.05 95 23.9 0.05 97 21.4 0.05
2 137 8.8 127 15.8 0.80 132 11.8 0.97 88 16.1 0.05
3 137 9.1 127 15.7 0.80 86 18.4 0.05 130 12.5 0.97
4 134 9.3 121 17.1 0.79 128 13.3 0.96 118 16.0 0.79

DBCD 1 106 5.8 99 6.4 0.05 98 6.3 0.05 98 6.2 0.05
2 110 4.7 106 4.9 0.73 108 4.4 0.93 95 4.9 0.05
3 109 4.8 106 5.0 0.73 96 5.2 0.05 108 4.4 0.93
4 109 4.7 105 4.9 0.72 107 4.5 0.93 103 4.5 0.73

In Scenario 1, all experimental arm has response rates identical to the control of 0.55, whereas in Scenarios 2 and 3 experimental
arm 1 and 5 (Scenarios 2) or experimental arm 1 and 7 (Scenarios 3) are superior to the control with probability of response equal
to 0.7 and 0.75. Lastly, in Scenario 4 experimental arms 1, 5 and 7 are effective with probability of response equal to 0.7, 0.75 and
0.7 compared to 0.55 for the control. Bold numbers are operating characteristics of effective experimental arms.

with eight experimental arms, but we were later informed that four of these treatments would have not
been available at the activation of the trial. Thus the investigators wanted to know if the treatments could
be added later during the study. Previous trials showed response probabilities of approximately 0.55 after
6 months of treatment with the control therapy. A response probability of 0.7 for experimental arms was
considered a relevant improvement. The study was designed with an expected accrual rate of 10 patients
per month.

We present a simulation with four initial experimental arms, and an initial sample size of n1 = 500
patients. Two groups of A2 = A3 = 2 arms are added after M2 = 200 and M3 = 300 enrollments, and
sample size is increased each time by n2 = n3 = 200 patients. The type I error is controlled at the α = 5%
level. We consider the four scenarios. Experimental arms without treatment effects have response rates
identical to the control of 0.55. In scenario 1, all arms have identical response rates equal to 0.55. In
scenarios 2 and 3, the initial arm a = 1 and added arm a = 5 ∈ A2 (scenario 2) or a = 7 ∈ A3 (scenario
3) are effective, with response rates of 0.7 and 0.75. Lastly, in scenario 4, arms 1, 2, and 7 are effective,
with response probabilities 0.7, 0.75, and 0.7.

For BR we use the scaling parameters qk = Qk , with nc,2 = nc,3 = 0, and (f , g) = (0.3, 1.5) for futility
stopping. For BAR we use (r0, r1) = (1, 3), (m1, m2, m3) = (200, 125, 135) and (β, γ , b) = (3, 1.5, 0.5).
The DBCD utilizes the parameters (h1, h2, h3) = (0.5, 2, 2) and (β, γ ) = (3, 1). For BAR and the DBCD
the futility stopping rules are implemented with (f , g) = (0.2, 1.5) and we limit the accrual to each
experimental arm to n′

E = 140 patients.
Table 3 shows the mean number of patients randomized to the control arm, and to arms 1, 5, and

7 across 5000 simulations, together with the SD and the power. Under scenario 1, BR randomizes on
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average 98 and 79 patients to the control arm and the initial arms, respectively, and 80 and 82 patients to
arms in the second and third group (SD 5.1, 25.4, 25.4, and 24.4) compared to (134, 93, 95, 97) for BAR
(SD 10.9, 26.3, 23.9, and 21.4) and (106, 99, 98, 98) for DBCD (SD 5, 8, 6.4, 6.3, and 6.2), respectively.
Under scenario 2, BR has 70% and 90% power of detecting a treatment effect for arms a = 1 and a = 5
with response rates 0.7 and 0.75, respectively. BAR and DBCD have 10% and 3% higher power for arm
a = 1 (80% and 73%), and 7% and 3% higher power for arm a = 5 (97% and 93%). The gain in power
of BAR and DBCD compared to BR is associated with an increase of the average number of randomized
patients to arm a = 1 and a = 5. In scenario 3, BR randomizes on average 99 (SD 7.4) patients to arm
1, compared to 127 (SD 15.6) for BAR and 106 (SD 5.0) for DBCD, respectively. This translates into a
power of 70%, 80%, and 74% for BR, BAR and DBCD. For the added arm a = 7, BR has 92% power
compared to 97% and 93% for BAR and DBCD, with mean accruals of 100, 130, and 108 under BR, BAR,
and DBCD, respectively. Lastly, in scenario 4, arms 1, 5, and 7 are effective with response rates 0.7, 0.75,
and 0.7. Here BR randomizes an average (99, 100, 99) patients to these arms (SD 8.7, 2.7, and 5.2) with
70%, 90%, and 70% power. In comparison BAR and DBCD randomize on average (121, 128, 118) and
(105, 107, 103) patients to arms a = 1, 5, 7. These gains in mean sample sizes translate into 79%, 96%
and 79% power under BAR, and 72%, 93%, and 73% under DBCD, respectively.

6. DISCUSSION

Drug development in oncology, infectious diseases and other areas focuses increasingly on targeted patient
populations defined by biological pathways. Drugs that target biological pathways are usually at differ-
ent stages of development, and low accrual rates for rare subpopulations require efficient allocation of
patients in clinical studies. Multi-arms studies are strongly encouraged by regulatory institutions, to pro-
mote comparisons to the standard of care without redundant replicates of control arms. For example,
given that in hormone receptor positive metastatic breast cancer patients eventually become resistant
to the standard endocrine therapy, several trials with overlapping accrual windows recently explored
mTOR and CDK4/6 inhibitors in combination with endocrine therapy (NCT00721409, NCT02246621,
NCT02107703, NCT01958021, NCT01958021, and NCT00863655). Adding arms to clinical trials could
save resources, and a higher proportion of patients could be treated with new experimental therapies.
Sharing an active control arm among multiple experimental treatments reduces the proportion of patients
allocated to the control.

We explored three randomization schemes for adding experimental arms to an ongoing study. The
designs vary in their level of complexity and in the resources required for their implementation. Adding
treatments to a trial under BR can be implemented without a substantial increase in the complexity of
the design, and can substantially improve efficiency. BAR and DBCD require simulations for parameter
tuning, but can potentially increase the power of the study. Sequential stopping rules for BR, which
target a predefined type I error, can be implemented using a standard error spending function approach.
For outcome-adaptive BAR and DBCD designs, the type I error probabilities can be controlled with the
proposed bootstrap procedure in Section 3.

7. SOFTWARE

An R package which implements the proposed designs is available at http://bcb.dfci.harvard.edu/∼steffen/
software.html.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

http://bcb.dfci.harvard.edu/~steffen/software.html
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx030#supplementary-data
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